International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:7, No:2, 2013

Ground System Software for Unmanned Aerial
Vehicles on Android Device

Thach D. Do, Juhum Kwon, and Chang-Joo Moon

Abstract—A Ground Control System (GCS), which controls
Unmanned Aerial Vehicles (UAVs) and monitors their mission-
related data, is one of the major components of UAVS. In fact, some
traditional GCSs were built on an expensive, complicated hardware
infrastructure with workstations and PCs. In contrast, a GCS on a
portable device — such as an Android phone or tablet — takes
advantage of its light-weight hardware and the rich User Interface
supported by the Android Operating System. We implemented that
kind of GCS and called it Ground System Software (GSS) in this
paper. In operation, our GSS communicates with UAVs or other GSS
via TCP/IP connection to get mission-related data, visualizes it on the
device’s screen, and saves the data in its own database. Our study
showed that this kind of system will become a potential instrument in
UAV-related systems and this kind of topic will appear in many
research studies in the near future.

Keywords—Android Operating System, Ground Control System,
Mobile Device, Unmanned Aerial Vehicle.

|. INTRODUCTION

CCORDING to Peter van Blyenburgh [1], UAVs are
defined as uninhabited and reusable motorized aerial
vehicles, which are remotely controlled, semi-autonomous,
autonomous, or have a combination of these capabilities, and
that can carry various types of payloads, making them capable
of performing specific tasks within the earth’s atmosphere, or
beyond, for a duration. In reality, UAVs are used widely by
the military for missions that are long, tiring, and dangerous
for aircraft pilots. Consequently, the military has increased
funding for the development of UAVs, which has caused the
appearance of generations of UAVs with different capabilities
related to their missions, such as tactical UAVs,
MALE/HALE UAVs, or the modern Micro UAVs [2].
Moreover, the need for UAVs for non-military purposes
increased considerably in recent years. Nowadays, we can see
the role of UAVs in the entertainment and nuclear industries
as well as in the fight against illegal activities, surveying wild
animals, etc [3]. Interest in using UAVs is also growing within
the scientific world. A number of studies have been done on
the control method, system architecture, and software
implementation for UAVs [4]-[14].
However, in order for UAVs to successfully complete more

Thach D. Do is currently a student of the Department of Aerospace
Information Engineering at the Konkuk University, Seoul, Republic of Korea
(phone: +82-2-456-9169; e-mail: thachdo@konkuk.ac.kr).

JuHum Kwon received a Ph.D. degree from Korea University, Seoul,
Republic of Korea. He was a Project Manager at central data processing
center in Korea Air Force (email: jkweon@gmail.com).

Chang-Joo Moon is currently an Associate Professor of the Department of
Aerospace Information Engineering at the Konkuk University, Seoul,
Republic of Korea (e-mail: cjmoon@konkuk.ac.kr).

complicated missions, the GCS is indispensable. In particular,
a GCS on an Android device is mobile and portable, and
consequently can be deployed and operated anywhere with
relative ease. On the other hand, implementing a miniature
GCS [15] is not easy because of the hardware related
limitations of small, portable devices. The first obstacle is the
data link. Due to the restricted system hardware, a mini-type
GCS can provide only a single, non-backup data link for data
communication. The second problem is the display device.
There is an obvious shortage of display area in a small device
compared to powerful workstations or PCs. This makes the
GUI design more difficult. While implementing our GSS, we
tried to minimize those limitations by using reliable TCP/IP
communication and making a careful plan of visualizing and
displaying flight information.

In this paper, we present our approach to implementing a
light-weight GSS that supports real-time data acquisition, real-
time flight state display, flight data management, and off-line
flight trajectory. In detail, through Ethernet communication,
GSS acquires real-time GPS positioning information, the
UAV’s velocity and orientation. Such information is sent to
the map and compass components so that operating personnel
can visually see the UAV flight trajectory. The data
management function is responsible for storing data for off-
line flight trajectory or other analyses. In order to ensure the
reliability of intercommunication, the GSS exchange a large
volume of multi-type information via a TCP/IP connection
that serves as a high-speed, reliable data link with the
capability of detecting errors and faults in the data link.
Moreover, due to the limitations of display devices, we
carefully considered the process of visualizing and displaying
information according to the different levels of importance
and the real-time requirements for enhancing the efficiency of
information interaction.

The rest of the paper is organized as follows: after giving a
brief survey of some previous related research in Section I,
the details of our implementation are described in Section Ill,
including the system’s workflow, classes, components, and
database diagram. In Section IV, we show the real User
Interface of our GSS and discuss its performance. Finally, in
the last section we give some conclusions and suggestions for
future work.

Il. LITERATURE REVIEW

There have been many research studies involving GCSs for
UAVs. Almost all of them are for large-scale GCSs with many
functions: command transmission, flight control and
navigation, 3D trajectory viewing, etc. Due to the large extent
of their function, those systems require a powerful hardware

204

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:7, No:2, 2013

infrastructure with workstations or PCs. This raises the cost
and makes the system architectures complicated. As an
example, the purpose of the Ground Station Software System
of the National University of Singapore [16] is to provide a
friendly and realistic interface for users to monitor the process
of flight tests. Thus, they focus on implementation of a 3D
view of the helicopter, and it is actually convenient for users
to navigate the UAV. Nevertheless, because of the lack of map
component, users may have some difficulty keeping track of
the UAV in a large area. Another example is the idea of
AMFIS [17]. In this case, the developing team approached the
GCS in a different way. They designed their GCS as a data
integration hub that integrates and controls different kinds of
sensors equipped in UAVs, UGVs, or in a sensor network. On
the other hand, the heart of the system is the combination of
workstations and servers, which are expensive and make the
system more bulky.

In addition, some research has concentrated on the small-
scale GCS. In those cases, the light-weight hardware is taken
as an advantage and a smart phone is a good choice. Although
the fact is that the limitations of small-scale hardware
absolutely affect researchers’ creativity in this case, a number
of great works have been published in recent years. The
Single-User Control of a MAV-Swarm [18] is an instance. In
this project, they programmed an application on an HTC
Android phone to control many micro aerial vehicles with
different strategies. The AR.Drone [19] is also an excellent
example of a small-scale commercial GCS. The AR.Drone
appears as a game on Android or iOS that allows users to
control the UAV using their own phone. In general, in the few
attempts to install a GCS on small devices like smart phones,
most of systems had friendly User Interfaces were easy to
operate anywhere at any time. However, most of them have
had the same approach, which was to use a portable and
instable phone to control UAVs directly. This is an approach
that may cause unexpected accidents for UAVs during
operation. Consequently, this approach is quite risky and
dangerous for both UAVs and the surrounding environment.

To summarize, to take advantages of both the functions and
stability of a workstation-based GCS and the light-weight
hardware of a small-scale GCS, we endeavored to implement
as many of the functions of a workstation-based GCS as
possible, such as flight tracking, data management, offline-
trajectory replay, instead of allowing direct control of UAVs
on an Android device.

1. IMPLEMENTATION

A. System Framework

The main framework, as shown in Fig. 1, invokes the Initial
stage at first. In this stage, all of the graphic components, such
as Compass, Map Views and some TextViews and other
important variables including IP address, Port number,
Connection Flag are created or declared. Then, the system
starts to update some parameters that are set by the user in the
Update Preferences stage. According to the parameters, the
system knows exactly if it should make a connection and get

data or just maintain the current Graphic User Interface (GUI).
If the connection flag was set, the system, with updated
network parameters, creates and calls a background thread for

the next stage.
w/ Start

Initiate Components

!

Update Configuration

Connection
Status

Yes—l

Connect to Server
(do in background)

No No

!

Extracted

Update GUI ‘ﬁ flight data

N

—(

Yes

S A
w/ End

Fig. 1 The main workflow of Ground System Software

We call the next stage the Background stage because it runs
totally in the background and is managed by the Android OS.
Fig. 2 shows the detailed order of tasks in this stage. The main
mission of this stage is to receive flight data, extract it to
create meaningful information and pass it to appropriate
components. In order, the socket and 1/0 Stream created first
with the up-to-date network parameters. Later, the thread
looks for the raw data in bytes that was sent from the remote
data terminal. At the next step, the nine floating values of
Position, IMU and Velocity are extracted from the raw data.
Consequently, those meaningful values are stored in a
database and then used to update the status of some GUI
components. This routine of tasks is executed continuously
until the connection mode is turned off.

B. System Components

With the properly designed framework and solution, we
implemented our system’s components using XML and Java
programming language. Fig. 3 shows the main Java objects
and their attributes, which are related to the designed
components. In general, all of the components were
implemented by inheriting and modifying some existing
classes in the Android library, such as Activity for GUI,
Content Provider for the database and AsyncTask for the
background thread.

205

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:7, No:2, 2013

Start

Initiate Socket, InputStream,
OutputStream

}

Connect to Socket

t

// ~
__—Connection™
. Status ;

Yes
Send data back
Get byte stream to GUI
No Y

A,

Extract flight _| Insert flight data
data "] to Database

| Close Socket, InputStream,
OutputStream

!

End

Fig. 2 The workflow of Background stage

In the set of GUI components, we implemented Pitching-
Rolling and Yawing Compass corresponding to the
information they have to represent and a Map component for a
2-D terrain display. Those Compasses are launched by the
Java objects that are inherited from the same source — the
native View class in Android library. In another case, the Map
— an important component that appears on both the Main and
Flight History Replay window — is implemented by the Open
Street Map (OSM) library except for the native Google Map
library. The most important reason the OSM was chosen is the
offline map feature. To take advantage of this feature, we
downloaded about 1 Gigabyte of map titles and stored them in
the SD card on the Android device, and the Mobile Atlas
Creator is the suitable tool in this case.

The second component — the Flight Data Provider — is
involved in the database. As a child of the native Content
Provider in the Android library, the Flight Data Provider
provides an interface for publishing and consuming data based
on a simple URI addressing model. As a result, it decouples
the application layer from the data layer.

Last but not least, the AsyncTask takes responsibility for
asynchronous tasks in the background. In detail, AsyncTask
handles all of the thread creation, thread management and
synchronization. It offers the event handlers to synchronize the
GUI thread that updates View components and other graphic
elements in order to report progress or publish results when
the task is completed.

GUI Components

I

Preference

Main %Ipf\ddr
Pitching_Yawing_Compass Port
%MapCorgﬂI—ro\ler LA Flight_Histories BconnsctionFlag
& MapView Sparayist Spipaddr_EditText
&GPS Ve AHRS TextView| |vHistView Epport_EditText
== = &rconnect_CheckBox
%onCreate() SonCreate() & 0k_Buttan
SupdateNewLocation() :U”PrEparED‘a‘DQO &Cancel_Button
“updateOrientation() ~DHCTEE1ED\EIDQ()
SupdateFromPreference() .\aadF!\ghtsFromF‘ra\nder() ®onCreate()
addFlightsToAmay() ‘saveF‘references()
——
—— 1
I o
Connection_Loop
& Socket
Flight Data Provider %git‘;agffe"s‘m
%Dnmem_UR\ g\mm:
B_Name Port
- AsyncTz
&~Flight_Data Table ek & connectionFlag
*onCreate() SonPreExecute()
Sinsert() ®dalnBackground()
Squery() “onProgressUpdate()
Supdate() ®onPostExecute()
Pdelete() ®addNewFlightData()

Database Components Background Thread

Fig. 3 The main Java objects of GCS in Android

C.Database Design

In addition to the real-time functions, we also added some
functions that are useful to track and analyze the flight in past
experimentations. With those functions, we can store the data
and display it in the most visual way on a smart Android
device. Thus, the selection of a relational database that can
work with structured data such as SQLite in Android is
necessary in our system.

Because the Ground System Software has to work with nine
floating values of three kinds of data including GPS, IMU and
Velocity in operation, it needs a database to store all of data in
a way in which each value can be retrieved without any
confusion. Our solution is modeled as an E-R diagram in Fig.
4 to satisfy the above requirements. We designed three tables
to store three kinds of data respectively and another — the
Event table — to join all the data into an event with the exact
time when the event occurred.

Event

PK EventID

Date

FK2 [PosID

FK1 [IMUID

FK3 [VecIlD
A 4 A 4 A
IMU Position Velocity

PK [IMUID PK | PosiD PK | VeclD

Rolling Latitude East
Pitching Longitude North
Yawing Height Up

Fig. 4 The E-R diagram of the database in Ground System Software

206

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:7, No:2, 2013

Ground Control System

Location:

37.54509236676396 | 127.08531356538387 | 57.11473352790845

MUz

134.64508185574343 | -4.536979507527935 | 5.463020492472065

Velocity:

395.52528741024054 | 750.554067961575 | 57.11473352790845

7 .l ™ 11:59

Fig. 5 Main window of Ground Station Software on Android device

IVV. RESULTS AND DISCUSSION

A.User Interface

The ground station plays the role of terminal for end users
to monitor the UAV through a wireless communication
channel. Therefore, one of the important tasks of the ground
station is to provide a friendly and realistic interface to display
the data obtained and transferred by the UAV and for the user
to interact with the system.

In our GSS, we divided and displayed the flight information
as many windows that can be switched from the menu instead
of putting everything in one because of the limited space on
the screen of an Android device. The most important window,
which is displayed first as the Main is shown in Fig. 5. It
consists of three graphic components that represent three kinds
of information. At the top of the Main window, we located a
TextView component to display the raw data including nine
64-bit float numbers of Location, IMU and Velocity. In
addition, as mentioned previously, we implemented two
Compasses and a Map view that visualize the information of
the IMU and GPS in the Main window.

The Compasses were made to present the information of
IMU data that is the real state of the UAV in the air. As
demonstrated in Fig. 6, the Rolling-pitching Compass obtains
the pitching and rolling values received from the UAV and
translates them into the visual image of ground and sky with
some marker lines and numeric values, whereas the yawing
state is represented by the Yawing Compass.

(b) Yawing compass

(a) Rolling-pitching Compass

Fig. 6 (a) The Rolling-pitching and (b) Yawing Compass

As implemented from the Open Street Map library, the Map
component, which is used to show the position of the UAV,
supports a mechanism to store and load the offline map in any
level of scale on an Android device. Using the offline map
requires less time and Internet bandwidth than Google Map
API, which requires the map to be downloaded continuously
from the Google Server. Therefore, The Open Street Map is
really a full replacement for the native Google Map in an
Android system although the Open Street Map contains fewer
details than the native Google Map, as shown in Fig. 7.

o B 3137601488 mng\

1
z
=

Neung-dong
&
el

o S ccrsongss Lo
(5]

Guui 1
(ili-dong

Gwangjin-gu

i

Jayanf-Hong

(b) Google Map

Fig. 7 The difference between Open Street Map (a) and Google Map
(b) in the same area of Konkuk University, Seoul, South Korea

207

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:7, No:2, 2013

B. Flight Data Management

As mentioned in Section I, our system stores all flight data
in its own database. Consequently, it needs a function that
retrieves the data from the database and displays it on the
screen. To satisfy that requirement, we offered users two
options. The first option retrieves all flight data as the numbers
and puts them on a ListView. Using this option, users can
view all Location, IMU and Velocity information in the
system’s history, as shown on Fig. 8. In the second option, we
implemented the off-line trajectory function. In detail, if this
mode is turn on, the system will load 50 latest position of the
UAV from GPS data and display them on the map. In Fig. 9,
the UAV’s positions are represented by the red dots.

T all ™ 12:04

Flight History

18/07/2012 12:03:39:
Location:
127.06680432424864 | 37.54174290331217 | 50.41580662433294

18/07/2012 12:03:39%:
Location:
127.066850037517 | 37.5422406000403 | 51.4112000805987

18/07/2012 12:03:38:
Location:
127.06689148898501 | 37.54248711323681 | 51.904226473610294

18/07/2012 12:03:38:
Location:

Fig. 8 The history flight data on the ListView

[(a5 z of @ 12:16
Tracking Map

Sy ¢
/ 3 & %
R ’ /// &.‘“ ’/ e . xﬂ»
/ y /7 \i

Fig. 9 The off-line trajectory replay mode

C.Communication

In our experiment, we chose TCP/IP as the main technology
for the GSS and UAVs to communicate. Unlike UDP, the TCP
guarantees that the receiver receives exactly what the sender
intended to send, which means that data can be transferred in
correct order without any error.

In addition to the connection protocol, the format of the
data that is used to communicate between the Ground Control
Systems and UAVs is also considerable. Our chosen data
format is shown in Fig. 10. The data packet contains a total of
74 bytes including a 2-byte Header at first; the following 74
bytes cover the nine values of GPS, IMU and Velocity.

[FFFE | 8 bytes | § bytes l Sbytes | 8 bytes | 8 bytes | 8 bytes | 8 bytes | 8bytes { 8 bytes
et N W N
Header GPS IMU Velocity

Fig. 10 The format of transferred data

V. CONCLUSION

The Ground Software System for Android devices
presented in this paper includes most of the required basic
functions of a Ground Control System: display function, flight
data acquisition, management, trajectory replay. The display
function was implemented with Android View components
and the Open Street Map. The Open Street Map, which
supports offline map, is a special point in the system because
it reduces the data transferred via Ethernet and the amount of
time to download the map tiles. The data acquisition function
used TCP/IP to establish connections between different types
of UAVs and GCSs. It ensures the reliability of data links with
the capabilities of detecting errors and faults that occur in
transferred data. In the case of data management, the SQL.ite
database was used to reduce external dependencies, minimize
latency, and simplify synchronization.

At this time, our GSS can only support real-time data
acquisition and dynamic flight data display. Our plan in the
future is to add more features such as Real-time Command
Transmission, Video transmission and replay to make the
proposed GSS become not only a data acquisition center but
also a flight planning center for UAVSs.

ACKNOWLEDGMENT

This work was supported by National Research Foundation
of Korea Grant funded by the Korean Government
(K2060100001).

REFERENCES

[1] P. v. Blyenburgh, "UAVs: an Overview " Air & Space Europe, vol. 1,
pp. 43-47, 1999.

[2] "Current and Future UAV Military Users and Applications " Air &
Space Europe, vol. 1, pp. 51-58, 1999.

[3] "Civilian Applications: the Challenges Facing the UAV Industry "
Air & Space Europe, vol. 1, pp. 63-66, 1999.

[4] G. Cai, B. M. Chen, K. Peng, M. Dong, and T. H. Lee, "Modeling and
Control System Design for a UAV Helicopter " presented at the MED
'06, Ancona, 2006.

[5] G. Cai, F. Lin, B. M. Chen, and T. H. Lee, "Development of Fully
Functional Miniature Unmanned Rotorcraft Systems," in CCC 2010,
Beijing, China, 2010, pp. 32-40.

[6] M. Dong and Z. Sun, "A Behavior-based Architecture for Unmanned
Aerial Vehicles," in Intelligent Control, Taipei, Taiwan, 2004, pp. 149-
155.

[71 A. H. Fagg, M. A. Lewis, J. F. Montgomery, and G. A. Bekey, "The
USC autonomous flying vehicle: An experiment in real-time behavior-
based control," in IROS '93, Yokohama, Japan, 1993, pp. 1173-1180.

[8] K. Harbick, J. F. Montgomery, and G. S. Sukhatme, “Planar spline
trajectory following for an autonomous helicopter,” presented at the
Computational Intelligence in Robotics and Automation, 2001, 2001.

[9] M. J. Matari'c, G. S. Sukhatme, and E. H. @Stergaard, "Multi-Robot
Task Allocation in Uncertain Environments,” Autonomous Robots vol.
14, pp. 255-263, March 01 2003.

[10] A. Ollero, S. Lacroix, and L. Merino. (2005, June) Architecture and
Perception Issues in the COMETS Unmanned Air Vehicles Project.
IEEE Robotics & Automation Magazine.

208

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:7, No:2, 2013

[11] S. d. L. Parra and J. Angel, "Low cost navigation system for UAV's,"
Aerosp. Sci. Technol., vol. 9, pp. 504-516, 2005.

[12] E. Theunissen, A. A. H. E. Goossens, O. F. Bleeker, and G. J. M.
Koeners, "UAV Mission Management Functions to Support Integration
in a Strategic and Tactical ATC and C2 Environment," presented at the
AIAA Modeling and Simulation Technologies Conference and Exhibit,
San Francisco, California, 2005.

[13] G. Wang, J. Zhu, and H. Xia, "Model Identification and Control of a
Small-Scale Unmanned Helicopter," presented at the ICCSE 2011,
SuperStar Virgo, Singapore, 2011.

[14] F. Xu, Z. Zhaoying, X. Wei, and G. Qi, "MEMS-Based Low-Cost Flight
Control System for Small UAVs," Tsinghua Sci. Technol., vol. 13, 2008.

[15] Y. Kang and M. Yuan, "Software design for mini-type ground control
station of UAV," presented at the ICEMI '09, Beijing, China 2009.

[16] M. Dong, B. M. Chen, G. Cai, and K. Peng, "Development of a Real-
time Onboard and Ground Station Software System for a UAV
Helicopter,” Journal of Aerospace Computing, Information, and
Communication, vol. 4, pp. 933-955, 2007.

[17] F. Segor, A. Blirkle, T. Partmann, and R. Schonbein, "Mobile Ground
Control Station for Local Surveillance," presented at the ICONS 2010,
French Alps, France, 2010.

[18] M. Lichtenstern, M. Angermann, and M. Frassl, "IMU- and GNSS-
Assisted Single-User Control of a MAV-Swarm for Multiple Perspective
Observation of Outdoor Activities,” in ITM 2011, San Diego, CA, 2011.

[19] AR.Drone 2.0. Parrot new wifi quadricopter. Available:
ardrone2.parrot.com.

Thach D. Do (Vietnam, August 25") received his B.S degrees in Computer
Engineering from Ho Chi Minh city University of Technology, Vietnam in
2011. He is currently a student of the Department of Aerospace Information
Engineering at the Konkuk University, Korea. His current research interests
include embedded real-time systems, real-time operating systems, concurrent
programming.

JuHum Kwon received a Ph.D. degree in the Department of Computer
Science and Engineering from Korea University, Seoul, Republic of Korea in
2005. He received his master's degree in electrical and computer engineering
from Wayne state university, U.S.A in 1999. His research interests include
ontological foundations of knowlege representation with special emphasis on
reasoning on taxonomic structure and ontology integration, Enterprise
Architecture, and Semantic Web. He was a Project Manager at central data
processing center in Korea Air Force.

Chang-Joo Moon received a Ph.D. degree in the Department of Computer
Science from Korea University, Seoul, Republic of Korea, in 2004. He is an
associate professor in the Department of Aerospace Information Engineering,
Konkuk University, Seoul, Republic of Korea. His research areas include real-
time embedded systems, computer security, and system integration.

209

