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Abstract—Nayak et al have discussed in detail the inertial forces
such as Gravitational, Coriolis-Lense-Thirring and Centrifugal forces
in the Kerr-Newman Space-time in the Kerr-Newman Space-time.
The main theme of this paper is to study the Gravitational and
Centrifugal forces in the NUT-Kerr-Newman Space-time.
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I. INTRODUCTION

HAKRABARTI and Prasanna [1] have described

centrifugal forces in the Kerr space-time. They have used
the formalism developed by Abramowicz et al[2], which
considers the forces in the quotient space orthogonal to the
time like killing vector &%, Nayak et al[3] have discussed in
detail the inertial forces in the Kerr-Newman Space-time. In
this paper, the Gravitational and Centrifugal forces in the
NUT- Kerr-Newman Space-time has studied. The NUT- Kerr-
Newman Space-time is the Kerr-Newman black-hole Space-
time with extra magnetic mass parameter. Here, the
expressions for the Gravitational and Centrifugal forces in the
NUT- Kerr-Newman Space-time are obtained.

Il. THE NUT- KERR-NEWMAN SPACE-TIME PROCEDURE

The NUT- Kerr-Newman Space-time can be written in the
form:
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Where M,e ,h and n are the mass, electric charge, angular
momentum per unit mass and NUT(magnetic mass)
parameters respectively.

The NUT- Kerr-Newman Space-time gives the following
results with certain conditions:
(i) Kerr-Newman black-hole Space-time when
n=0
(i) Kerr black-hole Space-time n=e =0
(iii) Reissner-Nordstrom black-hole Space-time if

n=h=0
(iv) Schwarzschild black-hole Space-time when
n=h=e=0

v) NUT-Kerr Space-time when e =0

(vi) NUT Space-time when e =h =0

So the NUT- Kerr-Newman Space-time includes all the
black-hole space-times which are asymptotically flat
are observed.

I1l.  INERTIAL FORCES
The particle 4-velocity is decomposed as

u =y +vr') 3)

In the above, n'isa globally hyper surface orthogonal time

like unit vector 7' is the unit vector orthogonal to it along
which the spatial 3-velocity ‘v’ of the particle is aligned and

¥ is the normalization factor that makes uiui =1. Then the

forces acting on the particle can be written as
Gravitational Force

Gk = ¢ak (4)
Centrifugal force

Z, =-(w)y7'v,z, (5)
Where

$ic=-N"Ny; ©)
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Here 7! is the unit vector along 71 in the conformal space
orthogonal to N’ with the metric

h 20

h, =e (gjk—njnk) @)
One can show that the covariant derivatives in the two spaces
are related by

VT =tV -t V,p-V, ¢ ®)

IV. GRAVITATIONAL AND CENTRIFUGAL FORCES IN THE NUT-
KERR- NEWMAN SPACE-TIME

Inertial forces in the NUT-Kerr-Newman space-time for
circular orbits with fixed but arbitrary values of r, & and @
can be computed by using the formalism summarized in the
previous section. The forces have the following expressions:

Gravitational force

1
Gk ZK(Ov gl’g2’0) 9)
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Centrifugal force
W 2
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For the equatorial plane, take € = E so that the expressions

of the inertial forces in NUT-Kerr-Newman space-time
become

Gravitational force

1
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On the axis of symmetry take @ = 0. So that the expressions
of the inertial forces in the NUT-Kerr-Newman Space-time
become

Gravitational force

1
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Centrifugal force
Z, =0 (19)
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V. GRAVITATIONAL AND CENTRIFUGAL FORCES IN THE KERR-
NEWMAN SPACE-TIME

To find the inertial forces in Kerr-Newman space-time,
substitute in the above expressions N =0 and then find the
following expressions:

Gravitational force

1
G, =-(0,0,,9,.0) (20)

sy
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Centrifugal force

Z = \%(o, 2,,2,,0) (22)

Where
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T
For the equatorial plane, take 9=E so that the

expressions of the inertial forces in Kerr-Newman space-time
become:
Gravitational force
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Centrifugal force
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On the axis of symmetry take @ =0 .so that the expressions
of the inertial forces in the NUT-Kerr-Newman Space-time
become:

Gravitational force
r-m
Gy, = 2 2, .2
r‘—2Mr+h°+e
Centrifugal force
Zk =0 (28)

(0,,0,0) @7)

VI. CONCLUSION

It has derived the expressions for the general relativistic
analogues of inertial forces such as Gravitational and
Centrifugal forces in the NUT-Kerr-Newman Space-time. For
circular orbits the r components and z components of the two

. . T
forces are active. On the equatorial plane [QZEJ r

components and z components of the two forces are active
where as on the axis of symmetry (9 = 0) the gravitational
force is non-zero but the Centrifugal force is zero.
Whenn =0, and get the known result for the case of the
Kerr-Newman Space-time which is obtained by Neyak et al
[3]. In this paper it is observed that the expressions of the
Gravitational and Centrifugal forces for the NUT-Kerr-
Newman Space-time becomes to the expressions for the Kerr-
Newman Space-time when n=0. Due to this observation, it
is claimed that this study encompasses the known result of
Neyak et al [3] in the context of Kerr-Newman Space-time.
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