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Abstract— We present a method for fast volume rendering using
graphics hardware (GPU). To our knowledge, it is the first imple-
mentation on the GPU. Based on the Shear-Warp algorithm, our
GPU-based method provides real-time frame rates and outperforms
the CPU-based implementation. When the number of slices is not
sufficient, we add in-between slices computed by interpolation. This
improves then the quality of the rendered images. We have also
implemented the ray marching algorithm on the GPU. The results
generated by the three algorithms (CPU-based and GPU-based Shear-
Warp, GPU-based Ray Marching) for two test models has proved that
the ray marching algorithm outperforms the shear-warp methods in
terms of speed up and image quality.
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I. INTRODUCTION

Direct volume rendering methods [1] generate images of
3D volumetric data sets without knowing any geometrical
information about the objects captured, such as human organs,
skull, etc. These methods make use of an optical model to
assign optical properties (color and opacity) to the data. When
rendering the data sets optical properties are accumulated
along each viewing ray. The volumetric data set is represented
by a uniform 3D array of samples. The optical properties are
either specified by the data values directly or computed using
a transfer function that is applied to the data.

Two kinds of direct volume rendering techniques have been
proposed in the literature : CPU-based and GPU-based.

The CPU-based approaches do not make use of the GPU,
so they are implemented entirely on the CPU. For acceleration
purposes, these methods resort to hierarchical data structures
such kD-trees [2] and octrees [1], [3]. These data structures
are well suited to skipping empty regions. The most efficient
CPU-based direct volume rendering method is the Shear-Warp
algorithm [3].

As for the the GPU-based methods, they can be divided into
two categories. The methods of the first category make use of
2D or 3D textures. Indeed, they consider the data (a discrete
3D scalar field) as a stack of 2D texture slices or as a single 3D
texture [4], [5], [6], [7]. The common principle of the methods
is the visualization of a high number of semi-transparent 2D
slices (2D textures or textured proxy geometries) extracted
from the 3D scalar field. The polygons corresponding to these
slices are geometric primitives that have to be rendered. These
primitives represent only a proxy geometry. The problems of
slice-based volume rendering are: it is limited to rasterization,
it has difficulties to make use of acceleration methods, it is
inflexible.

Regarding the methods of the second category, they are
based on ray casting (also called ray marching) [8], [9], [6].

H. Bentoumi is with . e-mail: hbentoumi@wissal.dz
P. Gautron is with the IRISA/INRIA Rennes. e-mail: pgautron@irisa.fr
K. Bouatouch is with the IRISA/INRIA Rennes. e-mail: kadi@irisa.fr

The principle of ray casting consists in casting rays from the
center of projection of the camera toward the volume data
and compute the volume rendering integral along these rays.
In contrast to slice-based rendering, ray casting is capable of
addressing the problems encountered by slice-based volume
rendering. One of the advantages of ray casting is that the
cast rays are processed independently from each other. This
allows for optimizations strategies such as: early termination,
adaptive sampling and empty space skipping.

The objective of this paper is twofold. First, we propose a
GPU-based implementation of the Shear-Warp algorithm [3].
To our knowledge, it is the first implementation on the GPU.
Second, we compare it to a CPU-based Shear-Warp algorithm
and to a GPU-based ray casting in terms of flexibility, frame
rate and quality of the rendered images.

The rest of this paper is structured as follows. Section
2 outlines the Shear-Warp algorithm followed by a CPU-
based implementation depicted in section 3. A GPU-based
implementation of Shear-Warp is described in Section 4.
Section 5 briefly presents our GPU-based ray casting method.
A comparison of the three methods as well as other results
are given in Section 6 before concluding in Section 7.

II. SHEAR-WARP ALGORITHM: AN OVERVIEW

The Shear-Warp algorithm [3] relies on a factorization of
the viewing transformation. This method can be split into
two steps (Fig. 1). In the first step, the volume slices are
sheared according to the viewing direction. This operation
yields an intermediate image, containing a distorted image
of the volume as seen from the viewpoint (Fig. 2(a)). This
distortion is compensated by warping the intermediate image
(Fig. 2(b)).

Fig. 1. The Shear-Warp algorithm. Rendering a sliced volume is replaced by
shearing the volume slices according to a given viewing direction, yielding
a distorted intermediate image. This image is then warped to obtain the final
image of the volume as seen from this direction.
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For the sake of clarity, this paper only considers parallel
projection. However, the extension of our method to perspec-
tive projection is straightforward.

The starting point of the Shear-Warp algorithm is the
viewing transformation matrix Mview, which transforms points
from object space to image space. Lacroute decomposes this
matrix into shearing and warping matrices:

Mview = Mwarp2D ·Mshear3D (1)

(a) Intermediate image (b) Final (warped) image

Fig. 2. In the Shear-Warp algorithm, the volume slices are first sheared and
combined, yielding an distorted intermediate image (a). The final image (b)
is obtained by warping the intermediate image.

The following subsections describe the derivation of those
matrices from the view transformation matrix.

A. Shearing

The matrix Mshear3D transforms the object space to the
sheared object space, by shearing the coordinate system until
the viewing direction becomes perpendicular to the slices of
the volume. In image space, the viewing direction vector is
always vi = (0, 0, 1). Therefore, the actual view direction vo

is defined as:
vi = Mview,3×3 · vo (2)

where Mview,3×3 is the upper-left 3× 3 submatrix of Mview.
Hence, vo is defined as:

vo =

⎡
⎣
m12m23 −m22m13

m21m13 −m11m23

m11m22 −m21m12

⎤
⎦ (3)

where the mij are the elements of Mview. In the following, we
assume that vo is mostly parallel to the +z axis (i.e. v0.z >
v0.x ∧ v0.z > v0.y). In the x − z (resp. y − z) plane the
slope sx (resp. sy) of vo is the ratio of the x (resp. y) and
z components of vo. Therefore, the shear necessary in the x
(resp. y) direction is the negative of this slope:

sx = −v0.x

v0.z
(4)

sy = −v0.y

v0.z
(5)

The shearing matrix is then defined as:

Mshear3D =

⎛
⎜⎜⎝

1 0 sx 0
0 1 sy 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (6)

The volume slices transformed by this matrix can be com-
posited together along the +z axis, yielding the distorted
intermediate image. The final image is obtained by warping
this intermediate image.

B. Warping

Lacroute [3] defines the warping matrix as:

Mwarp2D = Mview ·M−1
shear3D (7)

= Mview ·

⎛
⎜⎜⎝

1 0 −sx 0
0 1 −sy 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (8)

This algorithm is originally designed for interactive ren-
dering of volume data on the CPU. However, this algorithm
can benefit from the versatility and computational power of
graphics hardware for improved performance.

III. CPU-BASED SHEAR-WARP

We have implemented the Shear-Warp method on the CPU.
The volume data have been compressed using the RLE scheme
as follows. For each coordinate axis (corresponding to a
principal view direction) and for each slice, we compress each
scan line of voxels once having classified the voxels using
the Hounsfield [10] scale (quantitative scale for describing
radiodensity) and a transfer function (linear curve with a
lower and an upper bounds) wich converts the input data into
opacities. As a result, for each scan line of voxels we get a list
of runs. There are two types of run: completely transparent
(considered as subsets of empty voxels) and not completely
transparent. This process results in 3 data structures, one for
each coordinate axis. Each data structure is a set of lists of
runs, each list corresponds to one scan line of one slice. During
volume rendering, these data structures are traversed slice by
slice and line by line, and the completely transparent runs are
ignored (empty voxels are skipped), which speeds up rendering
drastically. The algorithm does not make use of any 3D data
structure such as octree as suggested in the original paper on
Shear-Warp [3].

IV. GPU-BASED SHEAR-WARP

Our aim is to use the computational power of graphics
processors to speed up the rendering process of the Shear-Warp
algorithm. The power of the graphics processors comes from
a highly parallel structure, along with built-in mathematical
operations such as matrix product and texture filtering. Re-
cently, the graphics processors have become more versatile by
allowing the user to customize the operations performed at the
vertex level (vertex shader) and at the fragment level (fragment
shader). Those user-defined programs are then executed in
parallel, yielding high quality results in realtime.
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Our approach uses the programmability of graphics hard-
ware to render volume data using the Shear-Warp algorithm.
To this end, we first store the volume data into a 3D texture,
and we generate a set of n quadrilaterals along the z axis,
where n is the number of slices (Fig. 3). The texture coordi-
nates of each vertex of each slice are defined as shown in Fig.
4. Using those coordinates, the nth quadrilateral represents the
nth slice.

Fig. 3. In a preprocessing step, our algorithm loads the opacity images from
the hard disk, and estimates the normals for each voxel. Finally, the opacity
and normals are stored within the GPU memory as a 3D texture.

Fig. 4. Each slice is rendered as a textured quadrilateral, where the texture
coordinates of each vertex contains a value d = sliceNumber/sliceCount,
representing the slice index in the 3D texture.

In OpenGL, the view transformation matrix Mview is the
product of the modelview and projection matrices:

Mview = MGLModelV iew ·MGLProjection (9)

Using Mview, the shearing matrix Mshear3D can be obtained
as described in the previous section. This matrix is sent to the
GPU Vertex Shader for shearing each slice according to the
view direction. Then, the fragment shader fetches the opacity
corresponding to each voxel of each slice from the 3D texture.
The compositing of slices can then be obtained by drawing

each slice from back to front using hardware alpha-blending
(Fig. 5).

Fig. 5. The first rendering pass consists in applying the shear matrix to the
volume slices (represented as a set of quadrilaterals) using the GPU vertex
shader. Then, each fragment of those quadrilaterals is shaded on the GPU
using the Phong model (Fig. 7), according to the corresponding opacity and
normal. The output of the fragment shader is the intermediate, distorted image.

This step yields the distorted, intermediate image. The
warping step is performed by applying the warping matrix
Mwarp to a textured quadrilateral representing the intermediate
image (Fig. 6).

The volume data used in our work comes from medical
imaging systems, providing an opacity value for each voxel.
Even though this opacity could be used directly to generate
images of the volume (Fig. 8(a)), the volumetric appearance
can be enhanced by properly shading the volume according
to a virtual light source. Our volume renderer uses the Phong
[11] model to compute the outgoing radiance at a given point
p with normal n (Fig. 7):

Lo(p, ωo) = ka+
kd

π
Li(p, ωi)ωi ·n+ks(R(ωi,n)·ωo)n (10)

where:

• ωi and ωo are the incoming and outgoing directions
• ka is the ambient lighting
• kd and ks are respectively the diffuse and specular terms

of the reflectance function
• R(ωi,n) is the direction of perfect reflection of ωi with

respect to n.

However, the evaluation of this model requires the knowl-
edge of the normal at each point. As a precomputation, we
extract the normal at a voxel (x, y, z) from the neighboring
opacity values op(x± 1, y± 1, z± 1) using a simple gradient
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Fig. 6. In the second rendering pass, the intermediate image is warped
to eliminate the distortions. This task is performed by applying the warping
matrix to a single quadrilateral in the GPU vertex shader. Then, the GPU
fragment shader maps the intermediate image onto the warped quadrilateral,
yielding the final image.

(a) (b)

Fig. 7. (a) The notations used in the Phong lighting model. (b) A sphere
rendered using this model.

approach:

n(x, y, z) =
1
2

⎛
⎝

op(x+ 1, y, z)− op(x− 1, y, z)
op(x, y + 1, z)− op(x, y − 1, z)
op(x, y, z + 1)− op(x, y, z − 1)

⎞
⎠ (11)

Using this simple normal estimation along with the Phong
lighting model, the obtained results exhibit a more convincing
volumetric appearance (Fig. 8(b)).

V. GPU-BASED RAY MARCHING

Unlike the Shear-Warp method, the ray marching algorithm
generates the final image in a single pass. Due to the versatility
of recent graphics hardware, the costly ray marching can
be performed very efficiently within the fragment shader, as
described below.

In a preprocessing step, the volume data are read from the
hard disk, and the normals are estimated as in the previous
section. However, this method do not rely on volume slicing
any more. Instead, the volume is represented by a simple cube
(Fig. 10) and considered as a 3D texture.

(a) Opacity only (b) Phong shading

Fig. 8. Compared to the direct visualization of the opacity values (a), the
Phong shading drastically improves the visual perception of volumes (b).

Fig. 9. As for the Shear-Warp algorithm the opacity values are read from
the hard disk and the normals are estimated. This data is stored within 3D
textures. However, for ray marching the volume is no longer represented by
slices, but by a simple cube.

The ray marching algorithm then works as follows: for each
pixel covered by the cube in the final image, the fragment
shader traverses the 3D texture to determine the location
of a point with a sufficient opacity (Fig. 10). To maintain
performance, the fragment shader samples the volume data
uniformly at a fixed sampling rate from front to back. If
the opacity at a sample point is above a given threshold,
the traversal is terminated and the lighting at this point is
returned. However, as point sampling along the ray is uniform,
aliasing artifacts may appear when the sampling rate is too low
(Section VI-C).

The overall algorithm for GPU ray marching is illustrated in
Fig. 11. The computational load is completely moved onto the
GPU, and provides interactive frame rates even with several
hundreds of samples. Furthermore, the reader should note
that the ray marching does not require the definition of a
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Fig. 10. Ray Marching algorithm on the GPU: for a given direction, the
fragment shader uniformly samples the volume data to determine the closest
point with sufficient opacity. The voxels of actual evaluation of the opacity
are filled in green in this figure. The red voxels represent voxels traversed by
the ray, but where the opacity is not evaluated due to an insufficient sampling
rate. The resulting aliasing artifacts are clearly visible in Section VI-C.

particular projection axis. Therefore unlike with the Shear-
Warp algorithm, the user can rotate smoothly around the object
without seeing “popping” artifacts.

Fig. 11. The Ray Marching algorithm is entirely implemented on graphics
hardware. Provided a camera position the vertex shader transforms the cube
accordingly. For each pixel covered by the cube, the fragment shader traverses
the volume data as shown in Fig. 10. The output of the fragment shader is
the final image of the volume.

VI. RESULTS

We have experimented with our 3 volume rendering meth-
ods (CPU-based and GPU-based Shear-Warp, GPU-based Ray
Marching) on a 3.8Ghz Pentium 4 equipped with 2GB RAM
and two nVidia GeForce FX7950 GX2 512Mb running in split
frame SLI mode.

The input images are of scanner type (TDM) and saved in
files in DICOM format. The input data files are read using

the DCMTK library. Details on DICOM format and DCMTK
can be found in [12]. The conversion of the input data into
opacities is performed using the Hounsfield scale [10] and a
transfer function which is linear and bounded by two lower
and upper values.

A. GPU-Based Shear-Warp

1) Skull: (320×320×46 voxels). Our GPU-based renderer
renders this volume (made up of 46 slices) at 95 fps. However,
the slices are clearly visible (Fig. 13(a)). To overcome this
problem, we increase the sampling rate of the volume by
virtually inserting slices by interpolation (Fig. 12). In other
words, we compute a certain number of additional slices
between two successive input slices using linear interpolation.
This number is called, from now on, sampling rate. Even
though this decreases the frame rate (Table I), the volumetric
appearance of the model is clearly improved. Furthermore, the
model can still be rendered interactively even with 20 times
more slices, which corresponds to the rendering of a virtual
model composed of 920 slices.

(a) s = 1 (b) s = 2 (c) s = 5

(d) s = 10 (e) s = 15 (f) s = 20

Fig. 12. Rendering of the Skull model, where s is the sampling rate. The
image quality is significantly improved by applying a sampling rate of 5.
However, the quality improvement is hardly noticeable using higher sampling
rates.

2) Knee: (512 × 512 × 73) This volume is rendered by
our system at 134 fps with Phong shading (Fig. 13). As in
the previous example, the frame rate drops linearly with the
number of additional slices.
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TABLE I
FRAME RATES PER SECOND OBTAINED WITH THE GPU-BASED METHOD

FOR THE SKULL MODEL (46 SLICES) AND USING SEVERAL SAMPLING

RATES.

Sampling rate Opacity only Phong shading
1 199 fps 95 fps
2 104 fps 49 fps
5 43 fps 20 fps
10 22 fps 10 fps
15 15 fps 7 fps
20 11 fps 5 fps

(a) s = 1,
134 fps

(b) s = 2,
70 fps

(c) s = 5,
29 fps

(d) s = 10,
15 fps

(e) s = 15,
10 fps

(f) s = 20,
7 fps

Fig. 13. Rendering of the Knee model, where s is the sampling rate.

B. CPU-Based Shear-Warp

We used the same models as in VI-A. Phong model has been
used for direct lighting. The results obtained with the CPU-
based Shear-Warp method are given in table II. This table
shows volume rendering times rather than frames per second
because the method is from far slower than the GPU-based
method. This is why we used only a maximum sampling rate
equal to 5. It is clear that the GPU-based method outperforms
the CPU-based one.

C. GPU-Based Ray Marching

The same models were rendered using the GPU Ray
Marching algorithm described in the previous Section. Even
though the models have different complexities (320 × 320 ×
46 =4.5MVoxels for the Skull model, and 512 × 512 ×
73 =18.25MVoxels), the rendering times only depend on the

TABLE II
RENDERING TIMES IN SECONDS FOR THE SKULL AND KNEE MODELS

OBTAINED WITH THE CPU-BASED METHOD AND USING UP TO 5

SAMPLING RATE VALUES.

Sampling rate Skull Knee
1 22 110
2 43 155
3 64 226
4 86 300
5 107 370

number of marching steps (that is the number of sample points
along a viewing ray) in the volume (Table III). Furthermore,
the high performances are due to the efficient support of
dynamic branching in the fragment shader: for a given ray,
its traversal is terminated as soon as the target opacity is
reached. Due to the high spatial coherency of the 3D volumes
(two neighboring voxels are likely to have a similar opacity),
the rays corresponding to neighboring pixels in the image are
likely to terminate after a similar number of steps. Therefore,
the dynamic branching in the fragment shader can be used ef-
ficiently without harming the parallel performance of graphics
hardware.

(a) 50 steps (b) 100 steps (c) 300 steps

Fig. 14. The Skull and Knee models rendered using Ray Marching on
graphics hardware with several numbers of marching steps.

VII. CONCLUSION

In this paper, we presented a method for efficient volume
rendering using the shear-warp algorithm on the GPU. To
our knowledge, this is the first implementation on the GPU.
The volume data at our disposal contain no more than 46
slices for the Skull volume data set and 73 for the Knee
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TABLE III
FRAME RATES OBTAINED BY GPU RAY MARCHING OF THE Skull AND

Knee MODELS.

Marching steps Skull Knee
50 308 fps 311 fps

100 175 fps 175 fps
200 95 fps 94 fps
300 64 fps 64 fps
400 48 fps 48 fps
500 44 fps 44 fps

model, say few slices. As shown in Fig. 12(a), these slice
numbers are not sufficient for getting an acceptable quality
of the rendered images. To overcome this problem, we have
proposed to add in-between slices computed by interpolation.
This has provided better results as shown in Fig. 12(b-f). When
the sampling rate is equal to 10, the total number of slices is
420 and the frame rate is 10 fps for the Skull model illuminated
using the Phong model (Table I). It has clearly been shown that
the GPU-based Shear-Warp is far faster than the CPU-based
Shear-Warp.

We have also implemented on the GPU the ray marching
algorithm. To cope with the problem of insufficient volume
slices, one can increase the number of marching steps (sample
points along a viewing ray) as shown in Fig. 14. If this number
is equal to 400, the obtained frame rate is 48 fps for the
Skull model illuminated using the Phong model (Table III).
A number of marching steps equalling 400 corresponds to a
total number of 400 slices (input and interpolated slices) for a
shear-warp algorithm. Consequently, it is clear that GPU-based
ray-marching (48 fps) is faster than the shear-warp algorithm
(10 fps).

We think that the GPU-based ray-marching algorithm out-
performs the shear-warp algorithm in terms of speed-up and
image quality. Indeed, as it is based on ray tracing, more so-
phisticated reflection and scattering models could be straight-
forwardly used to increase the quality and the interpretation
of the rendered images of the volume data.
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