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Abstract—In chaos synchronization, the main goal is to design 

such controller(s) that synchronizes the states of master and slave 

system asymptotically globally. This paper studied and investigated 

the synchronization problem of two identical Chen, and identical 

Tigan chaotic systems and two non-identical Chen and Tigan chaotic 

systems using Non-linear active control algorithm. In this study, 

based on Lyapunov stability theory and using non-linear active 

control algorithm, it has been shown that the proposed schemes have 

excellent transient performance using only two nonlinear controllers 

and have shown analytically as well as graphically that 

synchronization is asymptotically globally stable.  

 

Keywords—Nonlinear Active Control, Chen and Tigan Chaotic 

systems, Lyapunov Stability theory,  Synchronization.      

I. INTRODUCTION 

N 1960s, Edward Lorenz discovered a simple three 

dimensional mathematical model for atmospheric 

convections [1]. In his studies, Lorenz revealed that, a simple 

3-D ordinary differential equations with a small changes in 

initial conditions can result a huge differences in future time. 

This sensitive dependence on initial conditions is known as 

butterfly effect. After the pioneering work of Lorenz on 

chaotic attractor, chaos has become a hot issue among many 

researchers. For the last three decades, immense researches 

have been studied on chaos which has divulged features and 

characteristics of it. 

Chaos has another very fascinating phenomenon which is 

known as chaos synchronization. Synchronization of two 

chaotic (identical or nonidentical) oscillators is a process 

where the trajectories of the two chaotic oscillators adjust a 

common behavior in all future states due to coupling or 

forcing [2]. This ranges from absolute agreement of 

trajectories to interlocking of phases. This idea of 

synchronization was first introduced by Pacora and Carroll 

[2], since then, synchronization of chaotic dynamical systems 

has received a great deal of interest among scientists from 

almost all nonlinear sciences [2]-[8] for more than last two 

decades. 

A wide range of synchronization techniques have been 

proposed [2], [8]-[14] and are applied theoretically as well as 
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experimentally to achieve the control and synchronize of 

chaotic systems. Notable among these methods, chaos 

synchronization using Non-linear active control technique has 

recently been widely accepted as one of the efficient technique 

used both for synchronization and anti-synchronization [10]-

[15] of chaotic systems. Since Lyapunov exponents are not 

required for numerical calculations, the nonlinear active 

algorithm is an effective technique to synchronize two 

identical as well as non-identical chaotic systems. Non-linear 

active control algorithm in order to achieve stable 

synchronization has been applied to many practical systems 

successfully. 

The main objective of this study is to investigate new 

results for the global chaos synchronization for identical Tigan 

and unified Chen systems and non-identical Tigan and Chen 

chaotic systems. This study can be considered as an 

improvement to the existing results in [16] and [17].  

Based on the Lyapunov stability theory and using the 

approach in [10], a class of non-linear control schemes will be 

designed to achieve the synchronization between two identical 

Chen and two identical Tigan chaotic systems and two non-

identical Chen and Tigan chaotic systems with less control 

efforts and enough transient speed. We will establish our 

results using Lyapunov Stability theory [18] and will achieve 

asymptotically globally synchronization.  

Numerical simulations and graphs will be furnished to show 

the efficiency and effectiveness of the propose approaches. 

The rest of the paper is organized as follows: In Unit II, the 

problem statement and methodology for nonlinear control is 

introduced. Unit III discusses the chaos synchronization of 

identical Chen chaotic system. Unit IV presents the 

synchronization of identical Tigan chaotic systems. Unit V 

describes the synchronization of two different Tigan and Chen 

chaotic systems. In Unit VI numerical simulations are 

provided and finally in Unit VII, we finished this paper with 

some conclusion.  

II.  DESIGNING OF NONLINEAR CONTROLLER 

Most of the synchronization procedures belong to the 

master-slave system arrangement. By master-slave system 

configuration means that two systems are coupled in the way 

in which the deportment of the second (slave) system 

dependent on the first (master) system and the first system is 

not affected by the action of the second system. 

Let us consider a (master-slave) systems configuration for a 

chaotic system as, 
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where x, y ϵ R
n
 are the corresponding state vectors,

1 2,  n nA A R ×∈  

are the (n×n) matrices of system parameters and 

, : n nf h R R→  are the continuous nonlinear sequence 

functions and η  is a nonlinear state feedback controller to be 

designed later. 

If A1 = A2 and/or ( )  )  (f h=i i , then x and y are the states of 

two identical chaotic systems. 

If A1 ≠ A2 and/or ( ) ( )f h≠i i , then x and y are the states of 

two different chaotic systems.  

The synchronization problem is to design a controller 'η ', 

which synchronize the states of both the drive and response 

(master and slave) systems. 

The dynamics of synchronization errors can be defined as; 

 

2 1 ( ) ( )e A y A x h y f x η= − + − +ɺ        (2) 

 

where, 
i i ie y x= −  . 

In the absence of a suitable controller (
iη = 0), the 

trajectories of two chaotic systems with different initial 

conditions, ( )1 1 1 2 2 2(0), (0), (0) (0), (0), (0)x y z x y z≠  will quickly 

bifurcate from each other in future time and will become 

uncorrelated. Thus the aim of synchronization problem is 

essentially to find such a feedback controller 'η ' that 

stabilizes the error dynamics for all initial conditions [11] in 

future time. 

i.e., lim ( ) lim ( ) ( ) 0i i i
t t

e t y t x t
→∞ →∞

= − = , for all ei(0) ϵ R
n
, then the 

two systems in (1) are said to be synchronized. Let if we select 

a candidate Lyapunov error function as, 

 

( ) TV e e Me=  

 

where the matrix M is a positive definite matrix [10]. 

We notice that, : n nV R R→  is a positive definite function 

by construction. We further assume that the parameters of the 

master and slave systems are known and the states of both 

chaotic systems are measurable.  

We may achieve a stable synchronization by selecting a 

non-linear controller 'η ' to make ( ) TV e e Ne= −ɺ  be a positive 

definite matrix (i.e., the matrix N is also a positive definite 

matrix), then by Lyapunov stability theory [18], the states of 

the master and slave chaotic systems will be globally 

asymptotically synchronized.  

III. CHAOS SYNCHRONIZATION OF TWO IDENTICAL CHEN 

CHAOTIC SYSTEMS 

This section focuses on applying non-linear controller 

scheme to synchronize two identical Chen systems [20]. For 

this purpose, let us consider a master-slave systems 

configuration for Chen chaotic system is given as follow; 
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  (response system)  (4) 

 

where 
1 1 1, ,x y z  ϵ R

n
 and 

2 2 2, ,x y z  ϵ R
n
 are the corresponding 

state vectors of drive and response systems respectively, a, b 

and c are the system parameters, 
1 2 3[ , , ]Tη η η η= are the non-

linear controllers which have to be designed yet. 

The Chen system (3) exhibits a chaotic attractor when the 

parameter values are taken as, a = 35, b = 3 and c = 28. 

The error dynamics is defined as, 
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ɺ
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where η 1, η 2 and η 3 are the controllers and, 

 

1 2 1

2 2 1

3 2 1

e x x

e y y

e z z

= − 


= − 
= − 

 

 

For the two identical systems (3) and (4) without controller 

( 0)iη =  the trajectories of the two identical systems will 

diverge exponentially with the course of time and will become 

unsynchronized on the initial conditions 

( )1 1 1 2 2 2(0), (0), (0) (0), (0), (0)x y z x y z≠ . Thus the aim of the 

synchronization problem is to design a feedback controller ψ  

such that 
ie  tends to decay to zero as t →∞,  

 

i.e., lim ( ) 0
t

e t
→∞

= ,   for all e(0) ϵ R
n
 . 

 

The aim of this study is, to focus on synchronizing two 

identical chaotic systems by designing a nonlinear controller 

such that when synchronizing the two chaotic systems, the 

effect of nonlinearity of chaotic systems should not be 

neglected and the error dynamics convergence to the origin 

asymptotical globally with less control effort and enough 

transient speed. Therefore, using the approach in [10], 

selecting such a suitable Lyapunov error function candidate 

that will ensure asymptotically globally stability. For this 

purpose, let us assume the following theorem. 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:12, 2013

1708

 

 

Theorem1: The two Systems (3) and (4) will achieve 

asymptotically and   globally synchronization for any initial 

condition with following control law: 

 

1 0η = , 
2 2 1 1 2 22ce x z x zη = − − + , 

3 1 1 2 2x y x yη = −  

 

Proof: Let us construct a Lyapunov error function 

candidate as; 

 

   ( ) TV t e Pe=          (6) 

 

where  
0.1 0 0

0 0.5 0

0 0 1

P

 
 =  
 
   

is a positive definite function.  

 

Now the time derivative of the Lyapunov function is, 

 

2 2 2
1 2 3

7 0 0

( ) 7 28 6 0 28 0 0

0 0 6

T
V t e e e e e

 
 = − − − = −  
 
 

ɺ ≺
 

 

Therefore,  

( ) TV t e Ne− =ɺ   and N = 
7 0 0

0 28 0

0 0 6

 
 
 
 
 

 

 

where N is also a positive definite matrix. 

Hence based on Lyapunov stability theory [18], the error 

dynamics converges to the origin asymptotically. Thus the 

master and slave Chen chaotic systems are asymptotically 

globally synchronized. 

 

 

Fig. 1 Time series of x1 and x2 (Identical Chen systems) 

 

 

 

Fig. 2 Time series of y1 and y2 (Identical Chen systems) 

 

 

Fig. 3 Time series of z1 and z2 (Identical Chen systems) 

 

 

Fig. 4 Time series of errors (Identical Chen systems) 

 

 

Fig. 5 Derivatives of Lyapunov function (Identical Chen systems) 

IV. CHAOS SYNCHRONIZATION OF TWO IDENTICAL TIGAN 

SYSTEMS 

In 2004, G.H. Tigan [21] presented a new 3-D chaotic 

system in the form of the following differential equations, 
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ɺ
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where 
1 1 1, ,x y z  ϵ R

n
 the state vectors, α, β and γ are the 

system parameters. The Tigan system exhibits a chaotic 

attractor when the parameter values are taken as, α =2 .1, β = 

0.6 and γ = 30. 

A master-slave systems configuration for Tigan chaotic 

systems is given as follows; 

 

  
1 1 1

1 1 1 1

1 1 1 1
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  (master system)   (7) 

 

and 
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( )

( )

x y x

y x x z

z x y z

α η
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β η
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ɺ
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   (slave system)  (8) 

 

where 
1 1 1, ,x y z  ϵ R

n
 and 

2 2 2, ,x y z  ϵ R
n
 are the corresponding 

state vectors of drive and response systems respectively, α, β 

and γ are the system parameters, 
1 2 3( ) [ , , ]Ttη η η η= are the 

non-linear controllers that is to be designed yet. 

For chaotic synchronization of the above drive-response 

systems, the error dynamics is described as, 
 

  
1 2 1 1

2 1 2 2 1 1 2

3 3 2 2 1 1 3

( )

( )

e e e

e e x z x z

e e x y x y
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γ α α α η

β η
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ɺ
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          (9) 

 

Let us propose the following theorem. 

Theorem 2: The two Systems (7) and (8) will approach 

global and  asymptotical synchronization for any initial 

condition with  following control law; 

 

1 0η = , 
2 1 2 2 2 1 1( )e e x z x zη γ α= − − + −  , 

3 3 2 2 1 1e x y x yη β= − − +  

 

Proof:  Substituting the proposed controllers in (9), we 

have, 

 

1 2 1

2 1 2

3 3

( )

2

e e e

e e e

e e

α

α

β

= − 


= − − 
= − 

ɺ

ɺ

ɺ

 

 

Let us construct a Lyapunov function candidate as; 

 

( ) TV t e Pe=  

 

where,  0.5 0 0

0 0.5 0

0 0 0.5

P

 
 =  
 
 

is a positive definite function.  

Now the time derivative of the Lyapunov function is, 

 

2 2 2
1 2 3

2.1 0 0

( ) 2.1 1.2 0 1 0 0

0 0 1.2

TV t e e e e e

 
 = − − − = −  
 
 

ɺ ≺  

  

i.e.,  ( ) TV t e Ne− =ɺ  and N = 2.1 0 0

0 1 0

0 0 1.2

 
 
 
 
 

 which is also a 

positive definite matrix. 

We can see that V(e) and ( )V e− ɺ  are positive definite 

functions. Hence the error states , lim ( ) 0i
t

e t
→∞

=  

Thus the drive and response Tigan systems are globally 

asymptotically synchronized. 

 

 

Fig. 6 Time series of x1 and x2 (Identical Tigan system) 

 

 

Fig. 7 Time series of y1 and y2 (Identical Tigan system) 

 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:12, 2013

1710

 

 

 

Fig. 8 Time series of z1 and z2 (Identical Tigan system) 

 

 

Fig. 9 Time series of errors (Identical Tigan system) 

 

 

Fig. 10 Time derivative of Lyapunov function (Identical Tigan 

systems) 

V. SYNCHRONIZATION OF TWO DIFFERENT TIGAN AND CHEN 

CHAOTIC SYSTEMS 

It is assume that the Tigan chaotic system drive the Chen 

chaotic system. Therefore, the master and slave systems 

arrangement is described as; 

 

 
1 1 1

1 1 1 1

1 1 1 1

( )

( )

x y x

y x x z

z x y z

α

γ α α

β

= − 
= − − 
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ɺ

ɺ

ɺ

    (master system)     (10)  

 

and 

      2 2 2 1

2 2 2 2 2 2

2 2 2 2 3

( )

( )

x a y x

y c a x x z cy

z x y bz

η

η

η

= − + 


= − − + + 
= − + 

ɺ

ɺ

ɺ

    (slave system)   (11) 

For chaotic synchronization of the above master-slave 

systems, the error dynamics is described as, 

 

1 1 1 1 2 1

2 2 1 2 2 1 1 2

3 3 1 1 2 2 1 1 3

( )

( ) ( )

e ae a x y ay

e ce cy x c a z z x

e be bz z x y x y

α α η

γ α α η

β η

= − + − − + + 


= + + − − − − − + 
= − − + + − + 

ɺ

ɺ

ɺ

  (12) 

 

The aim of the synchronization problem is to design a 

feedback controller ' ( )tη ' such that 
ie  tends to zero . By 

defining the controller, 
1 2 3[ , , ]Tη η η η= as; 

 

 
1 1 2 1

2 2 1 2 2 1 1

3 1 1 2 2 1 1

( )

2 ( ) ( )

a x ay y

ce cy x c a z z x

bz z x y x y

η α α

η γ α α

η β

= − − + 


= − − − − − + − − 
= − − + 

  (13) 

 

Therefore, the error system (12) becomes, 

 

           
1 1

2 2

3 3

e ae

e ce

e be

= − 


= − 
= − 

ɺ

ɺ

ɺ

            (14) 

 

From (14), one can see that the error system (14) is a linear 

system of the form, e Ae=ɺ .  

Thus by linear control theory, the system matrix A has 

Hurwitz [19], and so the all the eigenvalues of the system 

matrix A are negative, 
 

i.e.,   

35 0 0

0 28 0

0 0 3

A

− 
 = − 
 − 

 is Hurwitz.  

 

Hence the system (14) is asymptotically stable, which 

implies that the two chaotic Tigan and Chen systems are 

synchronized asymptotically globally. 

 

 

Fig. 11 Time series of x1 and x2 (Nonidentical Tigan & Chen chaotic 

systems) 
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Fig. 12 Time series of y1 and y2 (Nonidentical Tigan & Chen chaotic 

systems) 

 

 

Fig. 13 Time series of z1 and z2 (Nonidentical Tigan & Chen chaotic 

systems) 

 

 

Fig. 14 Time series of errors (Nonidentical Tigan & Chen chaotic 

systems) 

VI. NUMERICAL SIMULATIONS 

In this unit, numerical simulations are presented to verify 

the effectiveness of the proposed method. The parameters for 

Chen chaotic systems are selected as, a = 35, b = 3 and c = 28 

with initial conditions are taken as, 

 

1 1 1( (0), (0), (0)) (0.5,1,1)x y z =  

 

and 

2 2 2( (0), (0), (0)) (10.5,1,38)x y z =  

 

The parameters for Tigan chaotic systems are selected as, 

α=2.1, β=0.6 and γ=30, with initial conditions are 

1 1 1( (0), (0), (0)) (12,14,18)x y z =  and 
2 2 2( (0), (0), (0)) (6,21,25)x y z = . 

VII. CONCLUSION 

In this study, it was found that only two controllers and less 

efforts were utilized to achieve the asymptotically globally 

synchronization between two identical and nonidentical 

chaotic systems. This study has shown excellent transient 

performance for identical Chen and identical Tigan chaotic 

systems using only two nonlinear controllers. This study 

focused on selecting such a suitable Lyapunov error function 

candidate that ensured asymptotically globally stability. 

• Fig. 4 shows the synchronization error for Tigan chaotic 

systems when the controls are switched on at t= 0s. It has 

been shown that the synchronization error has already 

achieved at t=1.6s, while the synchronization error was 

achieved at t= 5s for [16], and thus the time delay is 

almost 3.4s and only two controllers and less effort were 

applied to synchronize two identical Tigan chaotic 

systems.  

• Fig. 9 shows the synchronization error for Tigan chaotic 

systems when the controls are switched on at t= 0s. It has 

been shown that the synchronization error has already 

achieved at t=4s, while the synchronization error was 

achieved at t= 4.8s for [17], and thus the time delay is 

almost 0.8s. On the other side, only two controllers were 

applied to synchronize two identical Tigan chaotic 

systems.  

• Fig. 14 shows the synchronization of two nonidentical 

Tigan and Chen chaotic systems. For the two different 

chaotic systems (Tigan and Chen systems), that contain 

parameters mismatch and different structures, the 

controller was used for synchronizing the states of drive 

and response systems asymptotically globally, which 

shows that the investigated controller is more robust to 

accidental mismatch in the transmitter and receiver.  
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