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Ginzburg-Landau Model for Curved Two-Phase
Shallow Mixing Layers

Irina Eglite, Andrei A. Kolyshkin

Abstract—Method of multiple scales is used in the paperiteo
to derive an amplitude evolution equation for thestrunstable mode
from two-dimensional shallow water equations unttes rigid-lid
assumption. It is assumed that shallow mixing layetightly curved
in the longitudinal direction and contains smalttigées. Dynamic
interaction between carrier fluid and particlesnisglected. It is
shown that the evolution equation is the complemz8iurg-Landau
equation. Explicit formulas for the computationtbé coefficients of
the equation are obtained.
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|. INTRODUCTION

weakly

In the present paper we derive the complex Ginzburg
Landau equation from the shallow water equatiordeurhe
rigid-lid assumption for the case of two-phasetsligcurved
mixing layers. The coefficients of the equation abtained in
closed form in terms of the linear stability chadeaistics of the
flow.

Il. MATHEMATICAL FORMULATION OF THE PROBLEM

Consider the two-dimensional shallow water equation
under the rigid-lid assumption

HALLOW mixing layers are widespread in nature and 0X 0y

engineering. Examples include flows at river juoet and
flows in composite and compound channels. Therettaee
basic methods which are used to analyze the dewelopof a
mixing layer in shallow water: experimental anadysi
numerical modeling and stability analysis [1]. Twwajor
conclusions follow from experimental investigati@}[5]: (a)
bottom friction and shallowness of water layer segp the
growth of perturbations and (b) shallow mixing lageows at
a smaller rate than free mixing layer. Severaleps5]-[9]
are devoted to linear stability analysis of shallowixing
layers. Theoretical analyses in [5]-[9] confirmétatt bottom
friction stabilizes the flow and reduces the growdle of a
shallow mixing layer. If a carrier fluid containslil particles
one should use two-phase flow model in order t@iiles the
development of instability. Stability of two-phalews under
several simplifying assumptions is analyzed in [f01]. It is
shown in [10], [11] that higher particle conceritatin the
fluid has a stabilizing influence on the flow.

Linear stability analysis is the first step in amahg
behavior of complex flows. The evolution of the mosstable
mode when the bed-friction number (introduced by @hal.
[6]) is slightly smaller than the critical valuercaée analyzed
by means of weakly nonlinear theories. Such modedsused
in the past in order to analyze spatio-temporaladyios of
complex flows [12]-[17]. It is shown in [12]-[17]h&t the
amplitude evolution equation for the most unstaiiede in

both cases (Navier-Stokes equations and shallowerwat

equations under the rigid-lid assumption) is themplex
Ginzburg-Landau equation.
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where U and V are the depth-averaged velocity components in
the Xand Y directions, respectively,u”and vPare the
components of the particle velocitiex,is the friction
coefficient, his water depth, Ris the radius of curvature
(1/ R << 1) and B is the particle loading parameter (see [10],

[11]).

System (1)-(3) can be reduced to one equation
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A perturbed solution to (4) is sought in the form Here S = ¢, b/ his the stability parameter ( referred to as the
bed-friction number in the literature), wher®is the
— 2 ’
YY) = (y) + e, (X, Y, 1) + 7Y, (X, Y,1) (6) Characteristic length scale (mixing layer width, ésample).
+ 53[/,3 (X, y,t) +..., Note that (10), (11) is an eigenvalue problem @tbmplex

eigenvalues areC = C, +iCi ). Base flow (8) is said to be
where £ is a small parameter which will be defined later.  gigple if all ¢ <0Oand unstable if at least one >0
1 1 )

Let ¢/, =Uy(Y)be the base flow solution. Substitutingyarginal stability of flow (8) is described by thelation

(6) into (4) and linearizing the resulting equatian the ¢ =0. Problem (10), (11) is usually solved numerically

heighborhood of the base flow we obtain (details of numerical algorithm based on collogatmoethod

are given in [17]). Thus, solution of (10), (11)oss one to

Ly, =0, (7) obtain the critical values of the parameters of pineblem
Sc,kc,c . A typical marginal stability curve for shallow
where

water flows is a convex curve with one maximum (the
coordinates of the maximum point in t{&, S) — plane are

Lll/’waxt Ty Tl T oy _l//Oyyyl//X k=k.andS=35))

+
(woyw t oyt Wolyy) ‘//Oy ll. GINZBURG-LANDAU EQUATION

+ B(g[/lxx +i,,,) Assume that the bed-friction number is slightly Berahan
the critical value:

A hyperbolic tangent velocity profile of the form
S=S,(1-¢&%). (12)

Uy ( )=U1+U2+U2_U1tanh (8)
olY. 2 2 y Now the role of the parametefin (6) becomes clear: it

characterizes how close is the paramého the critical value
is often used in practice in order to representotaee flow for ~ S;. In addition, (12) implies that base flow (8) isstable if

the case of a mixing layer. Hetd, and U ,are the velocities the bed-friction number is equal t&. However, since€ is
of undisturbed flow aty = —co0 and y = +oo , respectively. small, the growth rate of the most unstable pestiob is also
small. Hence, one can try to characterize the dgweént of
instability analytically by means of weakly nonlaretheory.
Following [12] we introduce the following “slow” viables

The solution to (7) is sought in the form of a natmode

@, (% y,1) = ¢, (y) explik(x - ct)], (9)
T=¢g%, &=g(x-cy), (13)
where is@, (y) the amplitude of the normal perturbatidgjs

the wave number andis the phase speed of the perturbation. hereC, is th locit
Using (7) and (9) we obtain where Cy is the group velocity.

The stream functioy/, in (9) is replaced by
Ly, =0, (10)
Y (xy.4¢,7) = AS, 1)@, (y) explk(x—ct)],  (14)

where

where @,(Y)is the eigenfunction of the marginally stable
. normal perturbation withS=3S_,k =k, and c=c_. The
+¢ (2u, / R=iSUy, /k) objective is to derive equation for the evolutioh the

+ p(k*c—k2u, Uy, +ikSu /2 +ikB). amplitude functionA(¢&, 7).
Using (13) we replace the derivatives with respeck and
tin (4) by the following expressions

Lp=¢'[u, —c—iSu,/k—iB/k)

The boundary conditions are

4, () =0, 1)
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0 R 0 + 0 O(y),pP (y) and $$? (y) are unknown functions of).

ox ox of’ Substituting (18) into (17) and collecting the tiindependent
terms we obtain the following ordinary differentiedjuation

9 90 _ 0,20 (15) 0

ot ot 998 or for the function @, () :

(0) *(0) (0)
Using (4), (6), (15) and collecting the terms tbamtain g? ZS[UOV (¢ + ¢2 )+ (¢2 + ¢2 )]

we obtain +2B(@,,, O+ ¢2yy )
Litt, = CqWine tWipe) = Wisa — Ut e = 'k(¢1y¢1yy - ¢1*y¢lyy + ¢1¢1W>' ¢ Pryy) (19)
- wlywlm _wlywlyyx - UWl{W + ¢’1x¢’1xxy _g[kz (¢1¢;y + ¢1 ¢1y + +2(¢;y¢lw + ¢;W¢1Y )]

S
+l//1xw1yyy + uowwlg - E[‘/llxxwly + 2uo‘//1xg (16) =0.

+ - +
Wyl = Dy + 2 The function @.” (y)satisfies the following boundary
2 ditions:
—E[uo%gy + Y Wy ] — 2B conditions
92" () =0 (20)

Similarly, collecting the terms that contaé’ we obtain
Substituting (18) into (17) and collecting the term

Ly, = c, (41/2»@' +w2yyf) “Yr — 2¢,Mt containing the first harmonic we obtain the equatio

+2C,Wses ~Wisa ~Wiyr — U oxe —Ulyes

[ u
Uy —C— Uy —)psn + (22—
_wly‘/]ZXXX _&Ulywlxx.{ _wal//lxxx _wawlyyx ( ° 0 k)¢2yy ( R Oy k)¢
_wly‘//Zyyx _wlywl{yy - uowzgyy +l//2x¢/1xxy + (kzc - k2U0 —Up,, + kuoSIE)
oy YWY 2y T U W e TULY
TR T e +B(-i k@ +ikugp?) (21)
+w2xw1yyy +w1¢"//1yyy +‘//2¢'u0yy __[wlxway Iu0
) 2 = _E(Cg - u0)¢1yy ¢1y
+ 1'wlxxwlx /UO + l//2xxw1y + zwlx{l//ly + 2uolil,2><<r |
+ u041/1{{ 'H/Ilyy‘//Zy +‘//2yyl//1y “Us — 2u0y‘//1y + (2ikC—3ikU0 _EUOW + ikcg _UOS_ ZB)¢1
- 2uoéljlyy +w1yyl//2y +l//1y¥/2yy + Zwlx[//ny . .
O 2, e+ 2 ] with the boundary conditions
X7 1&y 22X 1xy 1EF 1xy
2 O (e0) = 0. 22
_E[uowzgy +l//1yl//2xy +l//1yl//1{y +l//2y¢/1xy] 2 ( OO) 0 (22)
- B(2l//2xg +w1{{)_ Finally, using (18) and (17) for the terms that team the

(17)  second harmonic, we obtain

Analyzing the structure of the right-hand side d6) and 8ik3c¢(2) —2ikc¢(2) —8ik%u ¢(2) +2iku ¢(2)
using (14) we conclude thaf/, in (16) should be sought in 0 2w
2 2 2
the form - 2Iku0yy¢( )+ -4k up? + 2Uy, 9, 2

+2u,90 ] + diku gy | R+ B(p), - 4k*6S7) (23)
(18) = Ik(¢1¢1yyy - ¢ly¢1yy)
- S(2¢1y¢lyy - 3k2¢1¢1y) - 2I k¢12y / R

@, = ANB7(y) + Ay’ () explik(x - ct)]
+ A’g;7 (y) explik(x - ct)],

where A’is the complex conjugate of Aand
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The boundary conditions are

¢ (+0) = 0. (24)

Comparing (10) and (21) we see that the left-haddssof
both equations are the same. Thus, (21) has aolifitand
only if the right-hand side of (21) is orthogona ll
eigenfucntions of the corresponding adjoint problésee
[18]). The adjoint operatorL®and adjoint eigenfunction

@. are defined as follows

[7Lgdy = [g,L°020y. (25)
The adjoint problem is

L*¢2 =0, (26)
;' (x0) = 0. (27)

Integrating the left-hand side of (25) by parts arging
boundary conditions (11), (27) we obtain

a —_— a i I
L¢l =¢1W(UO_C_SJOE_BE)
i

a u
+ ¢ly (2u0y - S'I T 2_0)

kK "R (29)

i u

+ @2 (k*c—k2u, +55u0 -2 + Bik).
2 R

Solvability condition for (21) has the form

v a uO

[#:l(c, ~u)y, 220,

+(=2k*c +3k®Uq + Uy,

—k?c, +iku,S+ 2Bik)g,]dy = 0.

(29)

Hence, the group veIocithg can be found from (29).

The evolution equation for the amplitude functio

where
% 522, y=th (31)
4 4 n
and the complex coefficients,, J;, f,and 17 are given by
n= 7, ~K’#)dy, (32)

S +o00 A
g, = > J¢1 (_k2u0¢1 + 2u0y¢51y + 2Uo¢1yy)dy, (33)

+00 a u
6,= | dille, ~u)gs, ~2 0 4%
+ ¢2(l) (—kZCg - 2k20+3k2u0 + U, ~ ikSu, — 2ikB)

+ ¢, (2ike, +ike —3iku, —uog— B)]dy,

(34)
1= (968 ¢y, - 2k, 05,
+3K°0; 85 +ik (95 +45)
~ikg,,, (B + 8,0 +ikgS 4., ~ike; 8%,
+ikgy (95, +d3) +2ikg., 4
(35)

S . .
_E[_k2¢1(¢2(?/)+ 2(y0))+3k2¢1 2(?

3k* . . .
- Z_UO ¢12¢1 + 2¢lyy (¢§3) + ¢2(y0)) + 2¢1yy 2(51)

+20,, (P + 92 + 2058, ]

ik .
- ZE (¢2(§/) ¢1y + ¢2(())/) ¢ly )} dy

The coefficients of the Ginzburg-Landau equatiod) (8an
be computed using formulas (31)-(35). Note thavlider to
perform calculations it is necessary to solve thedr stability

roblem (10)-(11), the corresponding adjoint prable
26)-(28), three boundary value problems (19)-(2h)d

A(¢é,1)is determined from the solvability condition at thenumerically evaluate integrals in (31)-(35). Conagignal

third order. Multiplying the right-hand side of (1By@,,

using (18) and the solutions of the boundary vadteblems
(19)-(24) we obtain the complex Ginzburg-Landau atigun

for the amplitudeA(¢, T) of the form

9%A
A&?

a;A\:UA+5
or

—u| AR A, (30)

procedure for such type of problems is describedetail in
[17].

IV. CONCLUSIONS

Method of multiple scales is used in the paper righeo to
derive an amplitude evolution equation for the masstable
mode. The equation is obtained for the case of alosh
mixing layer which is slightly curved in the longdinal
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direction and contains small particles. It is shothat the
amplitude equation in this case is the complex Ring-
Landau equation. Explicit formulas for the calcidatof the
coefficients of the equation are derived.
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