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Abstract—Method of multiple scales is used in the paper in order 

to derive an amplitude evolution equation for the most unstable mode 
from two-dimensional shallow water equations under the rigid-lid 
assumption. It is assumed that shallow mixing layer is slightly curved 
in the longitudinal direction and contains small particles. Dynamic 
interaction between carrier fluid and particles is neglected. It is 
shown that the evolution equation is the complex Ginzburg-Landau 
equation. Explicit formulas for the computation of the coefficients of 
the equation are obtained.  
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I. INTRODUCTION 

HALLOW mixing layers are widespread in nature and 
engineering. Examples include flows at river junctions and 

flows in composite and compound channels. There are three 
basic methods which are used to analyze the development of a 
mixing layer in shallow water: experimental analysis, 
numerical modeling and stability analysis [1]. Two major 
conclusions follow from experimental investigation [2]-[5]: (a) 
bottom friction and shallowness of water layer suppress the 
growth of perturbations and (b) shallow mixing layer grows at 
a smaller rate than free mixing layer.  Several papers [5]-[9] 
are devoted to linear stability analysis of shallow mixing 
layers. Theoretical analyses in [5]-[9] confirmed that bottom 
friction stabilizes the flow and reduces the growth rate of a 
shallow mixing layer. If a carrier fluid contains solid particles 
one should use two-phase flow model in order to describe the 
development of instability. Stability of two-phase flows under 
several simplifying assumptions is analyzed in [10], [11]. It is 
shown in [10], [11] that higher particle concentration in the 
fluid has a stabilizing influence on the flow. 

Linear stability analysis is the first step in analyzing 
behavior of complex flows. The evolution of the most unstable 
mode when the bed-friction number (introduced by Chu et al. 
[6]) is slightly smaller than the critical value can be analyzed 
by means of weakly nonlinear theories. Such models are used 
in the past in order to analyze spatio-temporal dynamics of 
complex flows [12]-[17]. It is shown in [12]-[17] that the 
amplitude evolution equation for the most unstable mode in 
both cases (Navier-Stokes equations and shallow water 
equations under the rigid-lid assumption) is the complex 
Ginzburg-Landau equation.  
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In the present paper we derive the complex Ginzburg-

Landau equation from the shallow water equations under the 
rigid-lid assumption for the case of two-phase slightly curved 
mixing layers. The coefficients of the equation are obtained in 
closed form in terms of the linear stability characteristics of the 
flow. 

II. MATHEMATICAL FORMULATION OF THE PROBLEM 

Consider the two-dimensional shallow water equations 
under the rigid-lid assumption  
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where u and v are the depth-averaged velocity components in 

the x and y directions, respectively, pu and pv are the 

components of the particle velocities, fc is the friction 

coefficient, h is water depth, R is the radius of curvature 

)1/1( <<R and B is the particle loading parameter (see [10], 

[11]).  
System (1)-(3) can be reduced to one equation 
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where the stream function is defined by the relations 
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A perturbed solution to (4) is sought in the form 
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where ε  is a small parameter which will be defined later.  

Let )(00 yuy =ψ be the base flow solution. Substituting 

(6) into (4) and linearizing the resulting equation in the 
neighborhood of the base flow we obtain 

 

,011 =ψL                                                                            (7) 

 
where 
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A hyperbolic tangent velocity profile of the form  
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is often used in practice in order to represent the base flow for 

the case of a mixing layer. Here 1U and 2U are the velocities 

of undisturbed flow at −∞=y and +∞=y , respectively.  

The solution to (7) is sought in the form of a normal mode 
 

)],(exp[)(),,( 11 ctxikytyx −= ϕψ                             (9) 

 

where is )(1 yϕ the amplitude of the normal perturbation, k is 

the wave number and c is the phase speed of the perturbation. 
Using (7) and (9) we obtain 
 

,01 =ϕL                                                                          (10) 

 
where 
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The boundary conditions are 

.0)(1 =±∞ϕ                                                                     (11) 

 

Here hbcS f /= is the stability parameter ( referred to as the 

bed-friction number in the literature), where b is the 
characteristic length scale (mixing layer width, for example).  

Note that (10), (11) is an eigenvalue problem (the complex 

eigenvalues are ir iccc += ). Base flow (8) is said to be 

stable if all 0<ic and unstable if at least one 0>ic . 

Marginal stability of flow (8) is described by the relation 

0=ic . Problem (10), (11) is usually solved numerically 

(details of numerical algorithm based on collocation method 
are given in [17]). Thus, solution of (10), (11) allows one to 
obtain the critical values of the parameters of the problem 

ccc ckS ,, . A typical marginal stability curve for shallow 

water flows is a convex curve with one maximum (the 
coordinates of the maximum point in the −),( Sk  plane are 

ckk = and cSS = ).  

III.  GINZBURG-LANDAU EQUATION 

Assume that the bed-friction number is slightly smaller than 
the critical value: 

 

).1( 2ε−= cSS                                                                (12) 

 
Now the role of the parameter ε in (6) becomes clear: it 

characterizes how close is the parameter S to the critical value 

cS . In addition, (12) implies that base flow (8) is unstable if 

the bed-friction number is equal to S . However, since ε is 
small, the growth rate of the most unstable perturbation is also 
small. Hence, one can try to characterize the development of 
instability analytically by means of weakly nonlinear theory. 

Following [12] we introduce the following “slow” variables 
 

),(,2 tcxt g−== εξετ                                            (13) 

 

where gc is the group velocity.  

The stream function 1ψ in (9) is replaced by 

 

)],(exp[)(),(),,,,( 11 ctxikyAtyx −= ϕτξτξψ     (14) 

 

where )(1 yϕ is the eigenfunction of the marginally stable 

normal perturbation with cc kkSS == , and ccc = . The 

objective is to derive equation for the evolution of the 
amplitude function ),( τξA . 

Using (13) we replace the derivatives with respect to x and 
t in (4) by the following expressions 
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Using (4), (6), (15) and collecting the terms that contain 2ε  
we obtain 
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Similarly, collecting the terms that contain 3ε we obtain 
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Analyzing the structure of the right-hand side of (16) and 

using (14) we conclude that 2ψ  in (16) should be sought in 

the form 
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where *A is the complex conjugate of A and 

)(),( )1(
2

)0(
2 yy ϕϕ  and )()2(

2 yϕ are unknown functions of .y  

Substituting (18) into (17) and collecting the time-independent 
terms we obtain the following ordinary differential equation 

for the function  )()0(
2 yϕ : 
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The function )()0(
2 yϕ satisfies the following boundary 

conditions: 
 

.0)()0(
2 =±∞ϕ                                                                 (20) 

 
Substituting (18) into (17) and collecting the terms 

containing the first harmonic we obtain the equation 
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with the boundary conditions 

 

.0)()1(
2 =±∞ϕ                                                                 (22) 

 
Finally, using (18) and (17) for the terms that contain the 

second harmonic, we obtain  
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The boundary conditions are 
 

.0)()2(
2 =±∞ϕ                                                           (24) 

 
Comparing (10) and (21) we see that the left-hand sides of 

both equations are the same. Thus, (21) has a solution if and 
only if the right-hand side of (21) is orthogonal to all 
eigenfucntions of the corresponding adjoint problem (see 

[18]). The adjoint operator aL and adjoint eigenfunction 
a
1ϕ are defined as follows 
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The adjoint problem is  
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Integrating the left-hand side of (25) by parts and using 

boundary conditions (11), (27) we obtain  
 

).2
2

(

)22(

)(

0
00

22
1

0
001

0011

Bik
R

u
Su

ik
ukck

R

u

k

i
Suu

k

i
B

k

i
SucuL

ya

yy
a
y

a
yy

aa

+−+−+

−−+

−−−≡

ϕ

ϕ

ϕϕ

            (28) 

 
Solvability condition for (21) has the form 
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Hence, the group velocity gc can be found from (29).  

The evolution equation for the amplitude function 

),( τξA is determined from the solvability condition at the 

third order. Multiplying the right-hand side of (17) by a
1ϕ , 

using (18) and the solutions of the boundary value problems 
(19)-(24) we obtain the complex Ginzburg-Landau equation 

for the amplitude ),( τξA of the form 
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and the complex coefficients 111 ,, µδσ and η are given by 

 

,)( 1
2

11 dykyy
a ϕϕϕη −= ∫

+∞

∞−

                                         (32) 

,)22(
2 101010

2
11 dyuuuk

S
yyyy

a ϕϕϕϕσ ++−= ∫
+∞

∞−

   (33) 

,)]
2

32(

)232(

2)[(

001

000
222)1(

2

)1(
2

0)1(
2011

dyB
S

uikuikcikc

ikBikSuuukckck

R

u
uc

g

yyg

yyyg
a

−−−++

−−++−−+

−−= ∫
+∞

∞−

ϕ

ϕ

ϕϕϕδ

 

 (34) 

.)}(2

]2)(2

2)(2
2

3

3)([
2

2)(

)(

)(3

26{

1
)0(

2
*
1

)2(
2

*
1

)2(
2

)0*(
2

)0(
21

)2(
2

*
1

)0*(
2

)0(
21

*
1

2
1

0

4

)2(
2

*
1

2)0*(
2

)0(
21

2

)2(
2

*
1

)0*(
2

)0(
21

)2(
2

*
1

*
1

)2(
2

)0*(
2

)0(
21

)0*(
2

)0(
21

3)2(
2

*
1

3

)2(
2

*
1

*
1

)2(
2

3
11

dy
R

ik

u

k

kk
S

ikik

ikikik

ikik

ikik

yyyy

yyyyyyyy

yyyyyyy

yyy

yyyyyyyyy

yyyyyyyyyy

yyy

yyyy
a

ϕϕϕϕ

ϕϕϕϕϕ

ϕϕϕϕϕϕϕ

ϕϕϕϕϕ

ϕϕϕϕϕ

ϕϕϕϕϕϕϕ

ϕϕϕϕϕ

ϕϕϕϕϕµ

+−

+++

+++−

++−−

+++

−++−

+++

−= ∫
+∞

∞−

      (35) 

 
The coefficients of the Ginzburg-Landau equation (30) can 

be computed using formulas (31)-(35). Note that in order to 
perform calculations it is necessary to solve the linear stability 
problem (10)-(11), the corresponding adjoint problem 
(26)-(28), three boundary value problems (19)-(24) and 
numerically evaluate integrals in (31)-(35). Computational 
procedure for such type of problems is described in detail in 
[17].  

IV. CONCLUSIONS 

Method of multiple scales is used in the paper in order to 
derive an amplitude evolution equation for the most unstable 
mode. The equation is obtained for the case of a shallow 
mixing layer which is slightly curved in the longitudinal 
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direction and contains small particles. It is shown that the 
amplitude equation in this case is the complex Ginzburg-
Landau equation. Explicit formulas for the calculation of the 
coefficients of the equation are derived.  
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