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Abstract—We study different types of aggregation operators and 

the decision making process with minimization of regret. We analyze 
the original work developed by Savage and the recent work 
developed by Yager that generalizes the MMR method creating a 
parameterized family of minimal regret methods by using the ordered 
weighted averaging (OWA) operator. We suggest a new method that 
uses different types of geometric operators such as the weighted 
geometric mean or the ordered weighted geometric operator (OWG) 
to generalize the MMR method obtaining a new parameterized family 
of minimal regret methods. The main result obtained in this method 
is that it allows to aggregate negative numbers in the OWG operator. 
Finally, we give an illustrative example. 
 

Keywords—Decision making, Regret, Aggregation operators, 
OWA operator, OWG operator.  

I. INTRODUCTION 

HE Ordered Weighted Geometric (OWG) operator was 
introduced by Chiclana et al. [1] and it provides a 

parameterized family of aggregation operators similar to the 
Ordered Weighted Averaging (OWA) operator introduced by 
Yager [2]. Since their appearance, a lot of new extensions have 
been developed about them. For the OWA operator, we could 
mention [3] – [18] and for the OWG operator [19] – [29]. 
Basically, the OWG operator uses in the same aggregation the 
OWA operator and the geometric mean.  

Among the great variety of extensions developed for the 
OWA and the OWG operator, this work will focus on an 
article published recently by Yager [15] consisting in 
introduce the OWA aggregation in decision making with 
minimization of regret. The first methods for decision making 
with minimization of regret were introduced by Savage [30], 
[31] and they consisted in use the paradigm of minimization of 
maximal regret (MMR). These methods have been generalized 
by Yager in [15] with the introduction of the OWA operators 
in the paradigm of MMR creating a parameterized family of 
minimal regret methods. In this paper, we propose a method 
that uses the OWG operator for generalize the MMR method 
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obtaining another parameterized family of minimal regret 
methods. 

 In order to do so, this paper is organized as follows. In 
Section II, we briefly comment the OWA operator, the 
geometric mean and the OWG operator. In Section III, we 
summarize the main concepts of the traditional MMR method 
and the generalization developed by Yager. In Section IV, we 
suggest a new generalization of the MMR method using the 
OWG operator in the aggregation step. Finally, in Section V, 
we give an illustrative example in order to see numerically the 
results obtained with the new approach.  

II. AGGREGATION OPERATORS 

A. OWA Operator 

The OWA operator was introduced in [2] and it provides a 
parameterized family of aggregation operators which have 
been used in a wide range of applications [3] – [18]. In the 
following, we provide a definition of the OWA operator as 
introduced by Yager [2]. 

 
Definition 1. An OWA operator of dimension n is a mapping 
OWA:Rn

→R that has an associated weighting vector W of 
dimension n such that the sum of the weights is one and wj ∈ 
[0, 1], then: 

                                        

 OWA(a1, a2,…, an) = j

n

j
bwj∑

=1
                                           (1) 

 
where bj is the jth largest of the ai.  

From a more generalized perspective of the reordering step, 
we have to distinguish between the Descending OWA 
(DOWA) operator and the Ascending OWA (AOWA) 
operator. The weights of these operators are related by using 
wj = w*n−j+1, where wj is the jth weight of the OWA and w*n−j+1 
the jth weight of the AOWA operator. Note that the AOWA 
operator is the dual of the DOWA operator as it is explained in 
[8]. 

The OWA operator is a mean or averaging operator. This is 
a reflection of the fact that the operator is commutative, 
monotone, bounded and idempotent. It can also be 
demonstrated that the OWA operator has as special cases the 
maximum, the minimum and the average criteria [2]. 
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Another issue to consider is the two measures introduced by 
Yager [2] for characterizing the weighting vector and the type 
of aggregation it performs. The first measure, the attitudinal 
character, is defined as:  

 

        α(W) = ∑
=










−
−n

j
j n

jn
w

1 1
                                              (2) 

 
It can be shown that α ∈ [0, 1]. The more of the weight 

located toward the bottom of W, the closer α to 0 and the more 
of the weight located near the top of W, the closer α to 1. Note 
that for the minimum α(W) = 0, for the maximum α(W) = 1, 
and for the average criteria α(W) = 0.5.  

The second measure introduced also in [2], is called the 
entropy of dispersion of W and it is used to provide a measure 
of the information being used. It is defined as:  

 

    H(W) = ∑
=

−
n

j
jj ww

1
)ln(                                               (3)   

 
That is, if wj = 1/n for all j, then H(W) = ln n, and the 

amount of information used is maximum. If wj = 1 for some j, 
known as step-OWA [9], then H(W) = 0, and the least amount 
of information is used. 

Note that it is also possible to study these measures with the 
AOWA operator. The main difference is that the reordering 
step used in the analysis is ascendant. 

A third measure that could be used for the analysis of the 
weighting vector W is what Yager called the balance operator 
[12]. It is useful to analyse the balance between favouring the 
arguments with high values or the arguments with low values. 
It can be defined as follows. 

 

BAL(W) = ∑
=










−
−+n

j
jw

n

jn

1 1

21
                                      (4)  

 
It can be shown that BAL(W) ∈ [−1, 1]. Note that for the 

maximum we get BAL(W) = 1, for the minimum, BAL(W) = −1 
and for the average criteria, BAL(W) = 0. Also note that for the 
median and the olympic average, BAL(W) = 0. For the Arrow-
Hurwicz aggregation, assuming that the usual aggregation of 
this method is λMax{ai} + (1 − λ)Min{ ai}, BAL(W) = 2λ − 1. 
As it can be shown, for an optimistic situation, where λ > 0.5, 
the balance is positive and for a pessimistic situation, where λ 
< 0.5, the balance is negative. 

If we analyse the balance in the AOWA operator, we can 
use a similar formulation. 

 

BAL(W) = ∑
=










−
−−n

j
jw

n

nj

1 1

12
                                     (5) 

 

In this case, we also get that BAL(W) ∈ [−1, 1]. We also 
obtain the same results about the special cases such as the 
maximum with BAL(W) = 1, the minimum with BAL(W) = −1, 
the average criteria, the median and the olympic average with 
BAL(W) = 0, and the Arrow-Hurwicz aggregation with 
BAL(W) = 2λ − 1.  

B. Geometric Mean 

The geometric mean is a traditional aggregation operator 
which has been used for different applications such as in [32], 
[33]. It can be defined as follows: 

 
Definition 2. A geometric mean operator of dimension n is a 
mapping GM: R

+ n

→R
+
, such that: 

 

     GM(a1, a2,…, an) =   ∏
=

n

i

n
ia

1

1

)(                                      (6) 

 
where R

+
 is the set of positive real numbers. The geometric 

mean is commutative, monotonic, bounded and idempotent. 
If we consider that the arguments of the geometric mean are 

not equally important, then, we can use the weighted geometric 
mean in the aggregation. The weighted geometric mean is a 
generalization of the geometric mean as it can include it as a 
special case of the formulation. It can be defined as follows. 

 
Definition 3. A weighted geometric mean is a mapping WGM: 
Rn
→R that has an associated weighting vector W of dimension 

n such that the sum of the weights is one and wi ∈ [0, 1], then: 
 

  WGM(a1, a2,…, an) = ∏
=

n

i

w
i

ia
1

                                      (7) 

 
Note that the weighted geometric mean becomes the 

geometric mean when wi = 1/n for all i.  

C. OWG Operator 

The OWG operator was introduced in [1] and it provides a 
family of aggregation operators similar to the OWA operator 
as it includes the maximum and the minimum among its 
special cases. It consists in combine the OWA operator with 
the geometric mean. In the following, we provide a definition 
of the OWG operator as introduced by Xu and Da [27]. 

 
Definition 4. An OWG operator of dimension n is a mapping 
OWG:R

+ n

→R
+
 that has an associated weighting vector W of 

dimension n such that the sum of the weights is one and wj ∈ 
[0, 1], then: 

 

       OWG(a1, a2,…, an) =   ∏
=

n

j

w j

j
b

1
                                 (8) 

 
where bj is the jth largest of the ai, and R

+
 is the set of positive 

real numbers. 
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From a more generalized perspective of the reordering step in 
the OWG operator, we have to distinguish between the 
Descending OWG (DOWG) operator and the Ascending 
OWG (AOWG) operator [27]. The weights of these operators 
are related by using wj = w*n−j+1, where wj is the jth weight of 
the OWG and w*n−j+1 the jth weight of the AOWG operator. 
Note that the AOWG operator is the dual of the DOWG 
operator. 

As it is seen in [1], the OWG operator is commutative, 
monotonic, bounded and idempotent.  

By choosing a different manifestation of the weighting 
vector, we are able to obtain different types of aggregation 
operators [1]. For example, we get the maximum when w1 = 1 
and wj = 0 for all j ≠ 1, the minimum when wn = 1 and wj = 0 
for all j ≠ n, and the geometric mean when wj = 1/n for all j. 
Other examples of aggregations with OWG operators can be 
seen in [27]. 

Other types of aggregations that could be obtained with the 
OWG operator are the weighted geometric median and the E-Z 
OWG weights. For the weighted geometric median, we will 
use a similar approach than the one used by Yager in [10] for 
the weighted OWA median. The difference with the median is 
that in this case, we consider the weights associated with the 
arguments. Then, instead of looking for the argument with the 
(n/2)th ordered position, we will look for the ordered position 
where the sum of the weights is 0.5. That is, we will select the 
argument OWG(a1,…, an) = bk where bk is the kth largest 
argument of the ai such that the sum of the weights from 1 to k 
is equal or higher than 0.5 and the sum of the weights from 1 
to k − 1 is less than 0.5. Note that when j = i, for all i and j, 
where j is the jth argument of bj and i is the ith argument of ai, 
it is found the weighted geometric median for the weighted 
geometric mean. 

For the E-Z OWG weights based on the E-Z OWA weights 
[14], we could distinguish between two classes. In the first 
class, which has an optimistic point of view, we assign wj = 
(1/k) for j = 1 to k and wj = 0 for j > k. In the second class, 
which has a pessimistic point of view, we assign wj = 0 for j = 
1 to n − k and wj = (1/k) for j = n − k + 1 to n. 

If we use the same methodology in the AOWG operators, 
we can also obtain different types of aggregation operators by 
using a different manifestation in the weighting vector. The 
weights of these operators are related by wj = w*n+1−j, where wj 
is the jth weight of the DOWG (or OWG) operator and w*n+1−j 
the jth weight of the AOWG operator.  

Note that in this case it is also possible to analyse different 
measures about the weighting vector such as the attitudinal 
character, the entropy of dispersion and the balance operator. 
For the attitudinal character, we could use the formulation 
explained in [16] when it uses the particular case of OWG 
operators. For the entropy of dispersion and for the balance 
operator, as we are strictly interested in the weighting vector, 
we could use the same formulation as it has been explained in 
Section 2.1. 

As we can see, the OWG operator cannot aggregate 
negative numbers in the aggregation because the results 
become inconsistent. If we analyse the results, we can observe 
that depending on the number of arguments with negative 
values, the result will be positive or negative. If the sum the 
number of arguments with negative values is even, then, the 
final result will be positive. If the sum is odd, then, the final 
result will be negative. As we can see, this situation is 
completely inconsistent with the aggregation where we should 
expect similar results independently that the number of 
arguments is even or odd. In the following Section, we are 
going to suggest a methodology that is able to deal with 
negative numbers when using the OWG operator. 

III.  DECISION MAKING USING MINIMIZATION OF MAXIMAL 

REGRET 

The use of minimization of maximal regret in decision 
making was suggested by Savage in [30], [31]. It can be 
summarized as follows.  

Assume we have a decision problem in which we have a 
collection of alternatives {A1, …, Aq} with states of nature {S1, 
…, Sn}. cij is the payoff to the decision maker if he selects 
alternative Ai and the state of nature is Sj. The matrix R whose 
components are the r ij, is the regret matrix. The objective of 
the problem is to select the alternative which best satisfies the 
payoff to the decision maker. In order to do that, we should 
follow the following steps: 

 
Step 1: Calculate the payoff matrix.  
Step 2: Calculate Cj = Max{cij} for each Sj. 
Step 3: Calculate r ij = Cj – cij; for each pair Ai and Sj. 
Step 4: Calculate Ri = Max{r ij} for each Ai. 
Step 5: Select Ai*  such that Ri*  = Min{Ri}. 
 
As we can see, once established the regret matrix, this 

method uses a pessimistic criteria. Using a similar 
methodology, we could use other criteria instead of the 
pessimistic one. For example, we could use the average 
criteria, the Hurwicz criteria, the weighted mean, the OWA 
operator or the OWG operator. As the OWA operator 
generalizes a wide range of aggregation operators such as the 
average, the Hurwicz criteria and the weighted mean, we are 
going to consider this case when taking decisions with the 
MMR method. 

This generalization was suggested by Yager in [15]. He 
proposed to use the OWA operator in the regret matrix. Then, 
all the other criteria could be included in this aggregation as 
particular cases of using an established attitudinal character 
such as the maximum, the minimum, the average and the 
weighted average. Yager called this generalization the Min-W-
Regret (MWR) procedure. In order to distinguish between the 
use of the average, the weighted average and the OWA 
operator in the regret matrix, we prefer to call the case with 
OWA operators as the Min-OWA-Regret procedure. It can be 
summarized as follows: 

 
Step 1: Calculate the payoff matrix.  
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Step 2: Calculate Cj = Max{cij} for each Sj. 
Step 3: Calculate r ij = Cj – cij; for each pair Ai and Sj. 
Step 4: Calculate Ri = OWA(r i1, …, r in) using (1), for each 

Ai. 
Step 5: Select Ai*  such that Ri*  = Min{Ri}. 
 
As we can see, by choosing a different manifestation in the 

weighting vector of step 4, we can obtain different criteria 
such as the original work developed by Savage [30], [31]: 

 
1) When w1 = 1 and wj = 0, ∀ j ≠ 1; we get the traditional 

Min-Max regret method. Thus, the original work 
developed by Savage is a particular case of this 
generalization. 

2) When wn = 1 and wj = 0, ∀ j ≠ n; we associate with each 
alternative the minimal regret. 

3) When wj = 1/n, ∀ j; we are aggregating the regret matrix 
with the average criteria. 

 
Other families of aggregation operators could be obtained 

by using different manifestations of the weighting vector. For 
example, when wk = 1 and wj = 0 for all j ≠ k we are using the 
step-OWA [9] in the regret matrix. Note that if k = 1, the step-
OWA is transformed in the maximum and if k = n, the step-
OWA becomes the minimum.  

When wj = 1/m for k ≤ j ≤ k + m − 1 and wj = 0 for j > k + m 
and j < k, we are using the window-OWA [9] in the regret 
matrix. Note that k and m must be positive integers such that k 
+ m − 1 ≤ n. Also note that if m = k = 1, the window-OWA is 
transformed in the maximum, if m = 1 and k = n, the window-
OWA becomes the minimum and if m = n and k = 1, the 
window-OWA is transformed in the average criteria. 

If w1 = wn = 0 and for all others wj = 1/(n − 2), we are using 
the olympic average [13] in the regret matrix. Note that if n = 
3 or n = 4, the olympic average is transformed in the OWA 
median [10] and if m = n − 2 and k = 2, the window-OWA is 
transformed in the olympic average.  

Another type of aggregation that could be used in the regret 
matrix is the E-Z OWA weights. In this case, we should 
distinguish between two classes. In the first class, we assign wj 
= (1/k) for j = 1 to k and wj = 0 for j > k, and in the second 
class, we assign wj = 0 for j = 1 to n − k and wj = (1/k) for j = n 
− k + 1 to n. 

We note that the median and the weighted median can also 
be used in the regret matrix. For the median, if n is odd we 
assign w(n + 1)/2 = 1 and wj = 0 for all others, and if n is even we 
assign for example wn/2 = w(n/2) + 1 = 0.5. For the weighted 
median, we follow a different procedure than [10]. We select 
the kth largest argument of the r i such that the sum of the 
weights from 1 to k is equal or higher than 0.5 and the sum of 
the weights from 1 to k − 1 is less than 0.5. 

Another interesting family is the S-OWA operator [9], [11]. 
We can divide it in three types: the orlike, the andlike and the 
generalized S-OWA operator. The orlike S-OWA operator is 
obtained when w1 = (1/n)(1 − α) + α, and wj = (1/n)(1 − α) for 
j = 2 to n with α ∈ [0, 1]. Note that if α = 0, we obtain the 
average and if α = 1, we obtain the maximum. The andlike S-
OWA operator is obtained when wn = (1/n)(1 − β) + β and wj 

= (1/n)(1 − β) for j = 1 to n − 1 with β ∈ [0, 1]. In this type of 
S-OWA, if β = 0 we obtain the average and if β = 1, the 
minimum. Finally, the generalized S-OWA operator is 
obtained when w1 = (1/n)(1 − (α + β) + α, wn = (1/n)(1 − (α + 
β) + β, and wj = (1/n)(1 − (α + β) for j = 2 to n − 1 where α, β 
∈ [0, 1] and α + β ≤ 1. In this case, if α = 0, the generalized S-
OWA operator is transformed in the andlike S-OWA operator 
and if β = 0, in the orlike S-OWA operator. Also note that if α 
+ β = 1, the generalized S-OWA operator is transformed in the 
Hurwicz criteria. 

Another type of OWA operator is the centered-OWA 
weights. It has been recently suggested by Yager [17] and it 
says that an OWA operator is a centered aggregation if it is 
symmetric, strongly decaying and inclusive. It is symmetric if 
wj = wj+n−1. It is strongly decaying when i < j ≤ (n + 1)/2, then 
wi < wj and when i > j ≥ (n + 1)/2, then wi < wj. It is inclusive if 
wj > 0. Note that it is possible to consider a relaxation of the 
second condition by using wi ≤ wj instead of wi < wj. These 
cases are known as softly decaying centered OWA operator. A 
particular case of this situation is the average because all its 
weights are equal. Another special case of centered-OWA 
appears when the third condition is not accomplished. This 
type is known as non-inclusive centered-OWA operator. A 
particular case of this situation is the OWA-median.  

As we can see, the generalized Min-W-Regret method 
accomplishes the same properties as the original OWA 
operator such as commutativity, monotonicity, idempotency 
and boundedness. 

In order to adequate the generalized Min-W-Regret 
approach to a degree of optimism with the weighting vector 
used in the regret matrix, Yager defined R-OPT(W) = 1 – 
α(W). Here α(W) represents the attitudinal character intro-
duced in [2] for the original OWA operator, and R-OPT(W) is 
the adapted version for the Min-W-Regret approach. We see 
that for w1 = 1 and wj = 0, ∀ j ≠ 1; α(W) = 1 and hence R-
OPT(W) = 0, while for wn = 1 and wj = 0, ∀ j ≠ n; α(W) = 0 
and hence R-OPT(W) = 1. 

Analysing the attitudinal character, we see that Yager 
developed a method that adapted the generalized Min-W-
Regret approach to the degree of optimism of the weighting 
vector but it could be simplified by using the AOWA operator. 
Then, the aggregation would reflect automatically the 
attitudinal character. The reason for this problem could come 
from a theoretical point of view where we could say that the 
OWA operator is appropriate to use in situations involving 
benefits while the AOWA operator is appropriate to use in 
situations involving costs. From a more generalized 
perspective, we could say that we should use the OWA 
operator in situations where the highest value of the payoff 
matrix is the best result while we should use the AOWA 
operator in situations where the smallest value is the best 
result.   

The procedure to follow with the AOWA operator is very 
similar with the difference that now the reordering step is 
developed in ascending order. We can summarize it as 
follows: 

 
Step 1: Calculate the payoff matrix.  
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Step 2: Calculate Cj = Max{cij} for each Sj. 
Step 3: Calculate r ij = Cj – cij; for each pair Ai and Sj. 
Step 4: Calculate Ri = AOWA(r i1, …, r in), for each Ai. 
Step 5: Select Ai*  such that Ri*  = Min{Ri}. 
 
As we can see, by choosing a different manifestation in the 

weighting vector of step 4, we can obtain different criteria 
such as the original work developed by Savage, the maximum, 
the average, etc. Note that the weights of these operators are 
related by wj = w*n+1−j, where wj is the jth weight of the 
DOWG (or OWG) operator and w*n+1−j the jth weight of the 
AOWG operator.  

In this case, we can see that we obtain directly the degree of 
optimism. For example, if wn = 1 and wj = 0, ∀ j ≠ n; α(W) = 
0; and if w1 = 1 and wj = 0, ∀ j ≠ 1; α(W) = 1. If we consider 
the properties of this generalized Min-W-Regret method with 
the AOWA operator, we also find that it is commutative, 
monotonic, bounded and idempotent. 

IV.  USING THE OWG OPERATOR IN DECISION MAKING WITH 

MINIMIZATION OF REGRET 

The use of the OWG operator in decision making with 
minimization of regret is an alternative when taking decisions 
with regret methods. It consists in introduce the OWG operator 
in the aggregation step of the regret matrix. The motivation for 
using the OWG operator is because there are some cases 
where we could prefer to aggregate with a geometric operator 
instead of the traditional methods used previously. Here, the 
procedure will be the same as for the case with the OWA 
operator with the difference that now we will use the OWG 
operator in the aggregation phase. Then, we can summarize the 
procedure as follows: 

Assume we have a decision problem in which we have a 
collection of alternatives {A1, …, Aq} with states of nature {S1, 
…, Sn}. cij is the payoff to the decision maker if he selects 
alternative Ai and the state of nature is Sj. The matrix R whose 
components are the r ij, is the regret matrix. The objective of 
the problem is to select the alternative which best satisfies the 
payoff to the decision maker. In order to do that, we should 
follow the following steps: 

 
Step 1: Calculate the payoff matrix.  
Step 2: Calculate Cj = Max{cij} for each Sj. 
Step 3: Calculate r ij = Cj / cij for each pair Ai and Sj. 
Step 4: Calculate Ri = OWG(r i1, …, r in) using (8), for each 

Ai. 
Step 5: Select Ai*  such that Ri*  = Min{Ri}. 
 
Here, we should note that in the construction of the regret 

matrix, we divide the values because if we do not do this, we 
would not get consistent results as the OWG operator cannot 
aggregate arguments with value 0. The reason is because when 
aggregating with 0, the whole aggregation automatically 
becomes 0. Analysing this change, we see that now the 
aggregation is stable because for the best cases, when 
multiplying by 1, the result continues to be the same. Then, the 

result obtained is similar as in the previous cases where the 
best value of each state of nature did not add any regret in the 
whole aggregation. 

In this case, we could also obtain different aggregations in 
step 4 by choosing a different weighting vector such as the 
original regret work developed by Savage: 

 
1) When w1 = 1 and wj = 0, ∀ j ≠ 1; we get the traditional 

Min-Max regret method with the difference that now the 
result has one unit more. Thus, the original work developed 
by Savage can be considered as a particular case of this 
generalization. 

2) When wn = 1 and wj = 0, ∀ j ≠ n; we associate with each 
alternative the minimal regret. 

3) When wj = 1/n, ∀ j; we are aggregating the regret matrix 
with the geometric mean. 

 
Other families of geometric operators could be obtained for 

the Min-OWG-Regret method by choosing different 
manifestations of the weighting vector. For example, when wk 
= 1 and wj = 0 for all j ≠ k we are using the step-OWG [27] in 
the regret matrix. Note that if k = 1, the step-OWG is 
transformed in the maximum and if k = n, the step-OWG 
becomes the minimum. Also note that the results obtained for 
the step-OWG are the same than the results obtained for the 
step-OWA.  

Other aggregations such as the OWG median and the 
weighted OWG median can also be used in the Min-OWG-
Regret method. For the OWG median, that it is based on the 
OWA median [10], if n is odd we assign w(n + 1)/2 = 1 and wj = 
0 for all others, and if n is even we assign for example wn/2 = 
w(n/2) + 1 = 0.5. Note that if n is odd, the result obtained in the 
OWG median is the same than the result found in the OWA 
median.  

For the weighted OWG median, we follow the same 
procedure as used for the weighted OWA median. We select 
the kth largest argument of the r i such that the sum of the 
weights from 1 to k is equal or higher than 0.5 and the sum of 
the weights from 1 to k − 1 is less than 0.5. 

Another family is the centered-OWG operator. We can 
define it in a similar way as Yager [17] defined the centered-
OWA operator. An OWG operator is a centered aggregation if 
it is symmetric, strongly decaying and inclusive. It is 
symmetric if wj = wj+n−1. It is strongly decaying when i < j ≤ (n 
+ 1)/2, then wi < wj and when i > j ≥ (n + 1)/2, then wi < wj. It 
is inclusive if wj > 0. Note that it is possible to consider a 
relaxation of the second condition by using wi ≤ wj instead of 
wi < wj. These cases are known as softly decaying centered-
OWG operator. A particular case of this situation is the 
geometric mean because all the weights are equal. Another 
special case of centered-OWG appears when the third 
condition is not accomplished. This type is known as non-
inclusive centered-OWG operator. A particular case of this 
situation is the OWG-median.  
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If w1 = wn = 0 and for all others wj = 1/(n − 2), we are using 
the olympic-OWG operator in the regret matrix. Note that if n 
= 3 or n = 4, the olympic-OWG is transformed in the OWG-
median and if m = n − 2 and k = 2, the window-OWG is 
transformed in the olympic-OWG.  

A further family of Min-OWG-Regret methods is the Min-
window-OWG-Regret method. This family is found when wj = 
1/m for k ≤ j ≤ k + m − 1 and wj = 0 for j > k + m and j < k. 
Note that in this case k and m must also be positive integers 
such that k + m − 1 ≤ n. Also note that if m = k = 1, the Min-
window-OWG-Regret is transformed in the maximum, if m = 1 
and k = n, the Min-window-OWG-Regret becomes the 
minimum and if m = n and k = 1, the Min-window-OWG-
Regret is transformed in the geometric mean. 

A further type of geometric operator that could be used in 
the regret matrix is the E-Z OWG weights. In this type of 
aggregation, we find two different classes. In the first class, we 
assign wj = (1/k) for j = 1 to k and wj = 0 for j > k, and in the 
second class, we assign wj = 0 for j = 1 to n − k and wj = (1/k) 
for j = n − k + 1 to n. 

Another interesting issue to consider is the properties of this 
type of generalized Min-W-Regret method. As we can see, it 
accomplishes the same properties than the OWA version. 

 
1) Commutativity: any permutation of the arguments has the 

same evaluation. 
2) Monotonicity: If r i ≥ di  for all i ⇒ OWG(r1,…, rn) ≥ 

OWG(d1,…, dn). 
3) Boundedness: Min {r i} ≤ OWG(r1,…, rn) ≤ Max {r i}. 
4) Idempotency: If r i = r, for all i  ⇒  OWG(r1,…, rn) = r. 

 
Another alternative that we could use in the aggregation of 

the regret matrix is the AOWG operator. The motivation for 
use an ascending order appears in situations where the smallest 
value is the best result because then, the weighting vector will 
consider first the best result and so on. The procedure to 
follow with the AOWG operator is very similar with the 
difference that now the reordering step is developed in 
ascending order. We can summarize it as follows: 

 
Step 1: Calculate the payoff matrix.  
Step 2: Calculate Cj = Max{cij} for each Sj. 
Step 3: Calculate r ij = Cj / cij for each pair Ai and Sj. 
Step 4: Calculate Ri = AOWG(r i1, …, r in), for each Ai. 
Step 5: Select Ai*  such that Ri*  = Min{Ri}. 
 
Again, in this case we also add one unit in order to keep 

stable the aggregation. By choosing a different weighting 
vector we could also obtain different aggregations in step 4 
such as the original regret work developed by Savage, the 
maximum, the average, the median, the step-AOWG, the 
window-AOWG, the olympic-AOWG, the centered-AOWG, 
the E-Z AOWG, the S-AOWG, etc. Analysing the properties 
of this type of generalized Min-W-Regret method with the 

AOWG operator, we find the same properties as with the 
original OWG operator. 

V. ILLUSTRATIVE EXAMPLE 

In the following, we are going to develop an example in 
order to understand numerically all the procedures commented 
above. We will distinguish between two general cases. In the 
first case, we will construct the regret matrix in the original 
form as it was developed by Savage [30], [31] and we will 
consider the aggregation with the arithmetic mean (AM), with 
the weighted average (WA), with the OWA operator and with 
the AOWA operator. In the second case, we will construct the 
regret matrix as it has been explained in the Min-OWG-Regret 
method and we will consider the aggregation with the GM, 
with the WGM, with the OWG and the AOWG operator.  

With these eight types of aggregations we will see the 
different results obtained by using a different aggregation in 
the decision. Note that as the geometric construction of the 
regret matrix is completely different than the arithmetic one, 
the results will also be different. The interesting point to 
analyse is to see which results give the same decision about the 
selection of an alternative. In this example, we will assume the 
following weighting vector: W = (0.1, 0.2, 0.2, 0.3, 0.2).  

 
Step 1: Assume that an enterprise wants to increase its 

volume of activities. In order to do this, the board of directors 
has established five possible investments that the enterprise 
could develop in the future.  
 

(1) A1 is a food company called V. 
(2) A2 is a chemical company called W. 
(3) A3 is a car company called X. 
(4) A4 is a TV company called Y. 
(5) A5 is a computer company called Z. 

 
After careful review of the information, the experts have 

given the following general information. They have 
summarized the information of the investments giving the 
expected results depending on the five states of nature Sj that 
could happen in the future. The results are shown in table I. 
 

TABLE I 
PAYOFF MATRIX 

 S1 S2 S3 S4 S5 

A1 60 20 10 40 50 

A2 80 50 20 10 20 

A3 30 40 40 30 40 

A4 20 30 20 30 80 

A5 70 40 40 10 20 

 
Step 2 – Step 3: For the first case, that affects the AM, the 

WA, the OWA operator and the AOWA operator, we will 
calculate Cj = Max{cij} for each Sj and r ij = Cj – cij, for each 
pair Ai and Sj. For the second case, that affects the GM, the 
WGM, the OWG operator and the AOWG operator, we will 
calculate Cj = Max{cij} for each Sj and rij = Cj / cij, for each 
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pair Ai and Sj. The results for the first case are shown in table 
II and the results for the second case are shown in table III. 
 

TABLE II 
REGRET MATRIX 

 S1 S2 S3 S4 S5 

A1 20 30 30 0 30 

A2 0 0 20 30 60 

A3 50 10 0 10 40 

A4 60 20 20 10 0 

A5 10 10 0 30 60 

 

TABLE III 
REGRET MATRIX FOR THE GEOMETRIC OPERATORS 

 S1 S2 S3 S4 S5 

A1 1.33 2.5 4 1 1.6 

A2 1 1 2 4 4 

A3 2.66 1.25 1 1.33 2 

A4 4 1.66 2 1.33 1 

A5 1.14 1.25 1 4 4 

 
Step 4: Aggregate the regret matrix with each aggregation 

operator according to its formulation. For the first case, we 
will aggregate table II with the AM, with the WA, with the 
OWA and with the AOWA operators. The OWA operator and 
the AOWA operator are defined by (1). Note that the AM is a 
special case of the OWA operator when wj = 1/n, for all j. For 
the WA, we will associate each weight j with its corresponding 
regret argument j. For the second case, we will aggregate table 
III with the GM, with the WGM, with the OWG and with the 
AOWG operators. The GM is defined by (6), the WGM is 
defined by (7), and the OWG and the AOWG operator by (8). 
The results are shown in tables IV and V. 
 

TABLE IV 
AGGREGATED REGRET FOR THE FIRST CASE 

 AM WA OWA AOWA 

A1 22 20 21 25 

A2 22 25 16 25 

A3 22 18 18 26 

A4 22 17 17 24 

A5 22 24 17 25 

 
TABLE V 

AGGREGATED REGRET FOR THE SECOND CASE 

 GM WGM OWG AOWG 

A1 1.84 1.79 1.65 2.02 

A2 2 2.29 1.74 2.29 

A3 1.54 1.44 1.43 1.65 

A4 1.77 1.59 1.59 1.90 

A5 1.86 2.11 1.64 2.14 

 

Step 5: As we can see, with the AM we cannot select an 
alternative as we get the same result for all of them. With the 
WA and with the AOWA operator we select alternative 4 as it 
gives the lowest expected cost. With the OWA operator we 
will select alternative 2 as in this case, this one gets the lowest 
expected value. For the GM, the WGM, the OWG and the 
AOWG operators, we select alternative 3 as in these cases this 
alternative is the one with the lowest value.  

VI.  CONCLUSION 

In this paper, we have suggested the use of the OWG 
operator in situations of decision making with minimization of 
regret. For doing this, we have made some changes in the 
construction of the regret matrix in order to adapt it to the 
aggregation characteristics of the OWG operator. With this 
new construction, we have shown that it is possible to deal 
with negative numbers in the OWG operator by transforming 
the initial results in positive numbers. We have developed the 
decision making process distinguishing in the aggregation step 
between the use of the OWA operator, the AOWA operator, 
the OWG operator and the AOWG operator. Finally, an 
illustrative example has been given where we have shown the 
process to follow in a decision making problem with 
minimization of regret. 

In future research, we expect to develop new approaches 
about using different types of aggregation operators in 
decision making problems with minimization of regret and we 
will apply it in other decision making problems such as human 
resource selection, strategic management, etc.  
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