International Journal of Engineering, Mathematical and Physical Sciences

ISSN:

2517-9934

Vol:4, No:3, 2010

Geometric Operators

In Decision Making with

Minimization of Regret

José M. Merigé, Montserrat Casanovas

obtaining another parameterized family of minimalgnet

Abstract—We study different types of aggregation operatos a methods.

the decision making process with minimization afre¢. We analyze
the original work developed by Savage and the tecgark

developed by Yager that generalizes the MMR metb@dting a
parameterized family of minimal regret methods bing the ordered
weighted averaging (OWA) operator. We suggest a method that
uses different types of geometric operators suchthasweighted
geometric mean or the ordered weighted geometricadpr (OWG)
to generalize the MMR method obtaining a new patarized family

of minimal regret methods. The main result obtaimethis method
is that it allows to aggregate negative numbeithénOWG operator.
Finally, we give an illustrative example.

Keywords—Decision making, Regret, Aggregation operators,

OWA operator, OWG operator.

I. INTRODUCTION

HE Ordered Weighted Geometric (OWG) operator w

introduced by Chiclana et al. [1] and it provides
parameterized family of aggregation operators simib the
Ordered Weighted Averaging (OWA) operator introdlidsy
Yager [2]. Since their appearance, a lot of newmsibns have
been developed about them. For the OWA operatoGomd
mention [3] — [18] and for the OWG operator [19][29].
Basically, the OWG operator uses in the same aggjregthe
OWA operator and the geometric mean.
Among the great variety of extensions developed tifer

OWA and the OWG operator, this work will focus on a

article published recently by Yager [15] consisting

introduce the OWA aggregation in decision makinghwi

minimization of regret. The first methods for démmsmaking
with minimization of regret were introduced by Sged30],
[31] and they consisted in use the paradigm of mization of
maximal regret (MMR). These methods have been géired
by Yager in [15] with the introduction of the OW/Aerators
in the paradigm of MMR creating a parameterizedilfaof
minimal regret methods. In this paper, we proposeethod
that uses the OWG operator for generalize the MM&hod
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In order to do so, this paper is organized a¥al In
Section I, we briefly comment the OWA operator.e th
geometric mean and the OWG operator. In Sectionwé
summarize the main concepts of the traditional MM&thod
and the generalization developed by Yager. In 8edW, we
suggest a new generalization of the MMR method gu#ire
OWG operator in the aggregation step. Finally, éct®n V,
we give an illustrative example in order to see etaally the
results obtained with the new approach.

Il. AGGREGATIONOPERATORS

A. OWA Operator

The OWA operator was introduced in [2] and it pd®s a
garameterized family of aggregation operators whigtve
een used in a wide range of applications [3] .[18 the

a‘/?bollowing, we provide a definition of the OWA opéoa as

introduced by Yager [2].

Definition 1. An OWA operator of dimension is a mapping
OWAR'-R that has an associated weighting vedférof
dimensionn such that the sum of the weights is one and
[0, 1], then:

n
OWA(al, Ay, a,) = ZW]bJ (1)
=1

whereb; is thejth largest of they;.

From a more generalized perspective of the reargestep,
we have to distinguish between the Descending OWA
(DOWA) operator and the Ascending OWA (AOWA)
operator. The weights of these operators are celayeusing
W, =W* 5.1, Wherew, is thejth weight of the OWA andv*, ;.
the jth weight of the AOWA operator. Note that the AOWA
operator is the dual of the DOWA operator as é&iplained in
[8].

The OWA operator is a mean or averaging operatois i5
a reflection of the fact that the operator is cornative,
monotone, bounded and idempotent. It can also be
demonstrated that the OWA operator has as speasgiscthe
maximum, the minimum and the average criteria [2].
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Another issue to consider is the two measuresdoired by In this case, we also get thBAL(W) O [-1, 1]. We also
Yager [2] for characterizing the weighting vectordahe type obtain the same results about the special casds asithe
of aggregation it performs. The first measure, dgttéudinal  maximum withBAL(W) = 1, the minimum wittBAL(W) = -

character, is defined as: the average criteria, the median and the olymparage with
BALW) = 0, and the Arrow-Hurwicz aggregation with
j BA =21-1.
aw)= zw ( 1] OR
B. Geometric Mean

The geometric mean is a traditional aggregationraipe
It can be shown thatr O [0, 1]. The more of the weight which has been used for different applications sagim [32],
located toward the bottom ®¥, the closerr to 0 and the more [33]. It can be defined as follows:
of the weight located near the topWf the closewr to 1. Note
that for the minimuma(W) = 0, for the maximuno(W) = 1, Definition 2. A geometrlc mean operator of dimensioiis a

and for the average criterigW) = 0.5. mappingGM: R* —R’, such that:
The second measure introduced also in [2], is dalle
entropy of dispersion diV and it is used to provide a measure n 1
of the information being used. It is defined as: GM(ay, a,..., &) = [](g)" (6)
n
HW)= - > w; In(w;) (3)whereR’ is the set of positive real numbers. The geometric
j=1

mean is commutative, monotonic, bounded and ideampot
If we consider that the arguments of the geometean are
That is, ifw; = 1h for all j, thenH(W) = In n, and the not equally important, then, we can use the weigpmetric
amount of information used is maximumwf= 1 for somg, mean in the aggregation. The weighted geometricnniga
known as step-OWA [9], theH(W) = 0, and the least amount generalization of the geometric mean as it caruielit as a
of information is used. special case of the formulation. It can be defiasdollows.
Note that it is also possible to study these measwith the
AOWA operator. The main difference is that the desing Definition 3. A weighted geometric mean is a mappitiG M
step used in the analysis is ascendant. R'>R that has an associated weighting ve®tbof dimension

A third measure that could be used for the analgbithe n such that the sum of the weights is onewand [0, 1], then:
weighting vectoW is what Yager called the balance operator

[12]. It is useful to analyse the balance betwesiotiring the n
arguments with high values or the arguments wiih Values. WGMay, a...., &) = [] a" )
It can be defined as follows. =1

+
n+1-2] W (4) geometric mean whew, = 1h for alli.

Note that the weighted geometric mean becomes the
-1 ] y

BAL) = z[
C. OWG Operator

It can be shown thaBAL(W) O [-1, 1]. Note that for the The OWG operator was introdgcgd in [1] and it pdes a
maximum we geBAL(W) = 1, for the minimumBAL(W) = - fam|_ly _of aggregation op_erators similar to Fh_e OWiperator _
and for the average criterBAL(W) = 0. Also note that for the as 't_ includes the maximum and_ the minimum amorsg It
median and the olympic averag@AL(W) = 0. For the Arrow- special cases. It consists in complne the OWA dpp@th
Hurwicz aggregation, assuming that the usual agdiey of the geometric mean. In t_he following, we providdedinition
this method istMax{a} + (1 - A)Min{ &}, BAL(W) = 24 - 1. of the OWG operator as introduced by Xu and Da.[27]

As it can be shown, for an optimistic situation,endl > 0.5,
the balance is positive and for a pessimistic S8itnawhereA
< 0.5, the balance is negative.

If we analyse the balance in the AOWA operator,caa
use a similar formulation.

BALW) = Z( -1- n) j 5) OWQay, a,..., |'| b (8)

Defmmop 4. An OWG operator of dimensiamis a mapping
OWGR' —R’ that has an associated weighting veaof
dimensionn such that the sum of the weights is one and
[0, 1], then:

n-1 j=1 i

wherely; is thejth largest of they, andR’ is the set of positive
real numbers.
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From a more generalized perspective of the reargesiep in As we can see, the OWG operator cannot aggregate
the OWG operator, we have to distinguish betwees tmegative numbers in the aggregation because theltses
Descending OWG (DOWG) operator and the Ascendingecome inconsistent. If we analyse the resultscaveobserve
OWG (AOWG) operator [27]. The weights of these apaers that depending on the number of arguments with thega
are related by using; = w*,.1, wherew, is thejth weight of values, the result will be positive or negativethé sum the

the OWG andv*,5.; the jth weight of the AOWG operator. number of arguments with negative values is evieen,tthe
Note that the AOWG operator is the dual of the DOWG@nal result will be positive. If the sum is oddhen, the final

operator.

As it is seen in [1], the OWG operator is commuigti
monotonic, bounded and idempotent.

By choosing a different manifestation of the weiigit
vector, we are able to obtain different types ofragation
operators [1]. For example, we get the maximum whken 1
andw; = 0 for allj # 1, the minimum whem, = 1 andw; = 0
for all j # n, and the geometric mean when= 1h for all j.
Other examples of aggregations with OWG operatars le
seen in [27].

Other types of aggregations that could be obtawiéu the
OWG operator are the weighted geometric mediartlzed-Z
OWG weights. For the weighted geometric median,wile
use a similar approach than the one used by YagdiOj for
the weighted OWA median. The difference with thediag is
that in this case, we consider the weights asstiaith the
arguments. Then, instead of looking for the argumeéth the
(n/2}th ordered position, we will look for the orderedsjtion
where the sum of the weights is 0.5. That is, wieseiect the
argument OWG&,,..., @) = by where by is the kth largest
argument of they such that the sum of the weights from kto
is equal or higher than 0.5 and the sum of the ltgiffom 1
to k — 1 is less than 0.5. Note that whien i, for all i andj,
wherej is thejth argument ob; andi is theith argument o#;,
it is found the weighted geometric median for theighted
geometric mean.

result will be negative. As we can see, this situmatis
completely inconsistent with the aggregation wheeeshould
expect similar results independently that the numbé
arguments is even or odd. In the following Sectione, are
going to suggest a methodology that is able to deati
negative numbers when using the OWG operator.

I1l.  DECISIONMAKING USING MINIMIZATION OF MAXIMAL
REGRET

The use of minimization of maximal regret in dewisi
making was suggested by Savage in [30], [31]. h be
summarized as follows.

Assume we have a decision problem in which we rave
collection of alternativesA, ..., A} with states of nature$,,
..., S}. ¢ is the payoff to the decision maker if he selects
alternativeA; and the state of nature$s The matrixR whose
components are the, is the regret matrix. The objective of
the problem is to select the alternative which Isasisfies the
payoff to the decision maker. In order to do thee, should
follow the following steps:

Stepl: Calculate the payoff matrix.

Step2: CalculateC; = Max{c;} for eachS.

Step3: Calculatery = C; —¢;; for each paiiy ands.
Step4: CalculateR, = Max{r;} for eachA;.

Step5: Select\- such thaR: = Min{R}.

For the E-Z OWG weights based on the E-Z OWA weight As we can see, once established the regret matis,

[14], we could distinguish between two classesth@ first
class, which has an optimistic point of view, wesigsw, =

(1K) forj = 1 tok andw; = 0 forj > k. In the second class,

which has a pessimistic point of view, we assigr 0 forj =
1ton-kandw = (1k) forj=n-k+ 1 ton.

method uses a pessimistic criteria. Using a similar
methodology, we could use other criteria instead tlugé
pessimistic one. For example, we could use the ageer
criteria, the Hurwicz criteria, the weighted medime OWA
operator or the OWG operator. As the OWA operator

If we use the same methodology in the AOWG Opewto,generalizes a wide range of aggregation operatais as the

we can also obtain different types of aggregatiperators by
using a different manifestation in the weightingcteg. The
weights of these operators are relatedvpy w* .1 j, wherew;
is thejth weight of the DOWG (or OWG) operator amtl,.1
thejth weight of the AOWG operator.

Note that in this case it is also possible to as®lgifferent
measures about the weighting vector such as tlteidénial
character, the entropy of dispersion and the balaperator.
For the attitudinal character, we could use themfdation
explained in [16] when it uses the particular cafeOWG
operators. For the entropy of dispersion and fer lalance
operator, as we are strictly interested in the téig vector,
we could use the same formulation as it has beplaieed in
Section 2.1.

average, the Hurwicz criteria and the weighted meanare
going to consider this case when taking decisioith the
MMR method.

This generalization was suggested by Yager in [HH.
proposed to use the OWA operator in the regretirathen,
all the other criteria could be included in thiggeggation as
particular cases of using an established attitudiharacter
such as the maximum, the minimum, the average aed t
weighted average. Yager called this generalizatierMin-W-
Regret (MWR) procedure. In order to distinguishwestn the
use of the average, the weighted average and theA OW
operator in the regret matrix, we prefer to ca## tase with
OWA operators as the Min-OWA-Regret procedureah be
summarized as follows:

Stepl: Calculate the payoff matrix.
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Step2: CalculateC; = Max{c;} for eachS. = (1h)(2 - p) forj =1ton-1 with 0O [0, 1]. In this type of
Step3: Calculate; = Cj —c;; for each paiiy andS. S-OWA, if 8 = 0 we obtain the average andff= 1, the
Step4: CalculateR = OWA(riy, ..., in) using (1), for each minimum. Finally, the generalized S-OWA operator is
. obtained whenv; = (Ih)(1-(a+ p) + a,w, = (1h)(1 - (o +
Step5: SelectA such thaR. = Min{R}. B) + B, andw; = (1h)(1 - (a + B) forj = 2 ton — 1 wherea, 8

) ) ) B O [0, 1] anda + B< 1. In this case, ifr = 0, the generalized S-

As we can see, by choosing a different manifestatithe  owA operator is transformed in the andlike S-OW/Aexgtor

weighting vector of step 4, we can obtain differenteria gnq jf 5= 0, in the orlike S-OWA operator. Also note tifair

such as the original work developed by Savage [30]; + B =1, the generalized S-OWA operator is transforinetie
. . Hurwicz criteria.

1) Whenw, = 1 andw; = 0,0 j # 1; we get the traditional  apother type of OWA operator is the centered-OWA
Min-Max regret method. Thus, the original workyeights. It has been recently suggested by Yagar dhd it
developed by Savage is a particular case of thigys that an OWA operator is a centered aggregitiris
generalization. _ _ _ symmetric, strongly decaying and inclusive. It ysnmetric if

2) Whenw.n =1 anqv\{j = 0,0]j #n; we associate with each W = W, . It is strongly decaying whein< j < (n + 1)/2, then
alternative the minimal regret. , W, <w; and wheri > > (n + 1)/2, therw; <wj. It is inclusive if

3) Whenw; = 1/n,[ j; we are aggregating the regret matriXy > 0. Note that it is possible to consider a refiaxaof the
with the average criteria. second condition by using; < w; instead ofw; < w;. These

- . . cases are known as softly decaying centered OW fatqre A
Other families of aggregation operators could biaiokd particular case of this situation is the averageabse all its

by using different manifestations of the weightivertor. For weights are equal. Another special case of cerOn

example, whemy, = 1 andw; = 0 for allj # k we are using the 5556415 when the third condition is not accompiistghis

step-OWA [9] in the regret matrix. Note thaki: 1, the step- e s known as non-inclusive centered-OWA operato

OWA is transformed in the maximum andkif= n, the step- particular case of this situation is the OWA-median

OWA becomes the minimum. _ As we can see, the generalized Min-W-Regret method
Whenw; = Iimfork<j<k+m-1andw=0forj>k+m accomplishes the same properties as the original AOW

andj < k, we are using the window-OWA [9] in the regretoperator such as commutativity, monotonicity, idetepcy
matrix. Note thak andm must be positive integers such tkat 50 poundedness.

+m-1<n. Also note that im =k = 1, the window-OWAis  |n order to adequate the generalized Min-W-Regret

transformed in the maximum, fiff = 1 andk = n, the window-  approach to a degree of optimism with the weightiegtor
OWA becomes the minimum and iifi = n andk = 1, the ysed in the regret matrix, Yager defined R-OPT(W)L =
window-OWA is transformed in the average criteria. a(W). Here a(W) represents the attitudinal character intro-

If w; =w, = 0 and for all othere; = 1/(n - 2), we are using duced in [2] for the original OWA operator, and RTW) is
the olympic average [13] in the regret matrix. Ntitet ifn = the adapted version for the Min-W-Regret approatfe. see
3 orn = 4, the olympic average is transformed in the OWAhat forw, = 1 andw = 0,0 #1; a(W) = 1 and hence R-
median [10] and iim = n - 2 andk = 2, the window-OWA is OPT(W) = 0, while fow, = 1 andw; = 0,0 j #n; a(W) = 0
transformed in the olympic average. and hence R-OPT(W) = 1.

Another type of aggregation that could be usedénregret  analysing the attitudinal character, we see thatgera
matrix is the E-Z OWA weights. In this case, we WO geveloped a method that adapted the generalized\Win
distinguish between two classes. In the first clagsassigmw Regret approach to the degree of optimism of thightiag
= (1k) forj = 1 tok andw; = 0 forj >k, and in the second yector but it could be simplified by using the AOVéperator.
class, we assign; = 0 forj = 1 ton —kandw; = (1K) forj =n  Then, the aggregation would reflect automaticallye t
-k+1ton. attitudinal character. The reason for this probkould come

We note that the median and the weighted mediarafsan from a theoretical point of view where we could shgt the
be used in the regret matrix. For the mediam i odd we QWA operator is appropriate to use in situationgoiving
assigmw, + 12 = 1 andw; = 0 for all others, and if is even we penefits while the AOWA operator is appropriateuse in
assign for examplévy, = W) + 1 = 0.5. For the weighted sjtuations involving costs. From a more generalized
median, we follow a different procedure than [1e select perspective, we could say that we should use theAOW
the kth largest argument of the such that the sum of the gperator in situations where the highest valuehef payoff
weights from 1 td is equal or higher than 0.5 and the sum Ofnatrix is the best result while we should use tHBWA
the weights from 1 t& - 1 is less than 0.5. operator in situations where the smallest valughis best

Another interesting family is the S-OWA operatol, [A1]. result.

We can divide it in three types: the orlike, thelldwe and the The procedure to follow with the AOWA operator isry
generalized S-OWA operator. The orlike S-OWA oparas  similar with the difference that now the reorderisgp is
obtained whenv; = (1h)(1 - a) + a, andw;, = (1h)(1 - a) for  developed in ascending order. We can summarizesit a
j = 2 ton with a O [0, 1]. Note that ifad = 0, we obtain the follows:

average and itr = 1, we obtain the maximum. The andlike S-

OWA operator is obtained whem, = (1h)(1 - 8) + S andw, Step 1:Calculate the payoff matrix.

A
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Step 2:CalculateC; = Max{c;} for eachs.

Step 3:Calculater; = G —¢j; for each pai&y andS.
Step 4:CalculateR = AOWA(riy, ..., ), for eachA,.
Step 5:SelectA. such thaR. = Min{R}.

As we can see, by choosing a different manifestatiothe
weighting vector of step 4, we can obtain differenteria
such as the original work developed by Savageigmamum,
the average, etc. Note that the weights of theszabprs are
related byw; = w*.,;4, wherew; is the jth weight of the
DOWG (or OWG) operator ang* ., the jth weight of the
AOWG operator.

In this case, we can see that we obtain direcdydémgree of
optimism. For example, ify, = 1 andw; = 0,0 #n; a(W) =
0; and ifwy = 1 andw; = 0,0 #1; a(W) = 1. If we consider
the properties of this generalized Min-W-Regret hodt with
the AOWA operator, we also find that it is commivat
monotonic, bounded and idempotent.

IV. UsING THEOWG OPERATOR INDECISIONMAKING WITH
MINIMIZATION OF REGRET

2517-9934
No:3, 2010

result obtained is similar as in the previous cashere the
best value of each state of nature did not addregset in the
whole aggregation.

In this case, we could also obtain different aggtiegs in
step 4 by choosing a different weighting vectorhsas the
original regret work developed by Savage:

1) Whenw; = 1 andw; = 0, 0j # 1, we get the traditional
Min-Max regret method with the difference that ntve
result has one unit more. Thus, the original warkedoped
by Savage can be considered as a particular cati@sof
generalization.

2) Whenw, = 1 andw; = 0,0 j #Zn; we associate with each
alternative the minimal regret.

3)Whenw; = 1/n,0 j; we are aggregating the regret matrix
with the geometric mean.

Other families of geometric operators could be inlgid for
the Min-OWG-Regret method by choosing different
manifestations of the weighting vector. For examplbenw

The use of the OWG operator in decision making wit 1 @ndw =0 for allj # k we are using the step-OWG [27] in

minimization of regret is an alternative when takohecisions
with regret methods. It consists in introduce th¥@ operator
in the aggregation step of the regret matrix. Tlotivation for
using the OWG operator is because there are somesc
where we could prefer to aggregate with a geomefrator
instead of the traditional methods used previoudigre, the
procedure will be the same as for the case withQNEA
operator with the difference that now we will use OWG
operator in the aggregation phase. Then, we camsauize the
procedure as follows:

Assume we have a decision problem in which we haveW02) +1=

collection of alternativesA,, ..., A} with states of nature§,

the regret matrix. Note that ik = 1, the step-OWG is
transformed in the maximum and kf = n, the step-OWG
becomes the minimum. Also note that the resultainbt for

Ahe step-OWG are the same than the results obtdareitie

step-OWA.

Other aggregations such as the OWG median and the
weighted OWG median can also be used in the Min-GWG
Regret method. For the OWG median, that it is basethe
OWA median [10], ifn is odd we assigw, + 1> = 1 andw; =
0 for all others, and if is even we assign for examplg, =
0.5. Note that i is odd, the result obtained in the
OWG median is the same than the result found inQWéA

... S} ¢ is the payoff to the decision maker if he selectd'edian.

alternativeA, and the state of nature$s The matrixR whose

For the weighted OWG median, we follow the same

components are thg, is the regret matrix. The objective ofProcedure as used for the weighted OWA median. dkecs

the problem is to select the alternative which Isasisfies the
payoff to the decision maker. In order to do thes, should
follow the following steps:

Step 1:Calculate the payoff matrix.

Step 2:CalculateC; = Max{c;} for eachS.

Step 3:Calculater; = C; / ; for each paiiy andsS.

Step 4:CalculateR = OWG(jy, ..., in) using (8), for each
A.
Step 5:SelectA« such thaR- = Min{R}.

Here, we should note that in the construction ef tiagret
matrix, we divide the values because if we do rathds, we
would not get consistent results as the OWG opeionot
aggregate arguments with value 0. The reason &useovhen
aggregating with 0, the whole aggregation autorabyic
becomes 0. Analysing this change, we see that rfoav

the kth largest argument of the such that the sum of the
weights from 1 t is equal or higher than 0.5 and the sum of
the weights from 1 t& - 1 is less than 0.5.

Another family is the centered-OWG operator. We can
define it in a similar way as Yager [17] define@ tbentered-
OWA operator. An OWG operator is a centered agdiag#
it is symmetric, strongly decaying and inclusive. i
symmetric ifwj = W4, 4. It is strongly decaying when<j < (n
+ 1)/2, therw; <wj and wheri >j = (n + 1)/2, therw;, <w,. It
is inclusive ifw; > 0. Note that it is possible to consider a
relaxation of the second condition by usimg< w; instead of
w; < w. These cases are known as softly decaying centered
OWG operator. A particular case of this situatian the
geometric mean because all the weights are equaithar
special case of centered-OWG appears when the third
condition is not accomplished. This type is knows reon-
tinclusive centered-OWG operator. A particular ca$ehis

aggregation is stable because for the best casksn wsituation is the OWG-median.

multiplying by 1, the result continues to be thmeaThen, the
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If wy =w, = 0 and for all otherg; = 1/(0 - 2), we are using AOWG operator, we find the same properties as Wil
the olympic-OWG operator in the regret matrix. Nttat ifn  original OWG operator.
= 3 orn = 4, the olympic-OWG is transformed in the OWG-

median and ifm = n — 2 andk = 2, the window-OWG is V.

ILLUSTRATIVE EXAMPLE

transformed in the olympic-OWG.

A further family of Min-OWG-Regret methods is theirM
window-OWG-Regret method. This family is found wher=
Imfork<j<k+m-1andw =0 forj >k + mandj <k

In the following, we are going to develop an exanpi
order to understand numerically all the procedemramented
above. We will distinguish between two general sase the
first case, we will construct the regret matrixtire original

Note that in this cask andm must also be positive integersform as it was developed by Savage [30], [31] ared will

such thak + m— 1 < n. Also note that ifn = k = 1, the Min-
window-OWG-Regret is transformed in the maximunmif 1
and k =
minimum and ifm = n andk = 1, the Min-window-OWG-
Regret is transformed in the geometric mean.

A further type of geometric operator that couldused in
the regret matrix is the E-Z OWG weights. In thypd of
aggregation, we find two different classes. Infitet class, we
assignw; = (1k) for j = 1 tok andw; = 0O forj >k, and in the
second class, we assigh= 0 forj = 1 ton — k andw; = (1k)
forj=n-k+ 1 ton.

Another interesting issue to consider is the pridgeof this
type of generalized Min-W-Regret method. As we san, it
accomplishes the same properties than the OWAorersi

1) Commutativity: any permutation of the arguments thees
same evaluation.

2) Monotonicity: If r; > d;
OWG(dy,..., d).

3) Boundedness: Minr{} < OWG(y, ..., ) < Max {r}.

4) Idempotency: If; =r, for alli = OWG(y,..., 1) =T.

for all i = OWG(y,..., k) >

Another alternative that we could use in the agafieg of
the regret matrix is the AOWG operator. The motomtfor
use an ascending order appears in situations whersmallest
value is the best result because then, the weightetor will
consider first the best result and so on. The phoee to
follow with the AOWG operator is very similar witthe
difference that now the reordering step is develope
ascending order. We can summarize it as follows:

Step 1:Calculate the payoff matrix.

Step 2:CalculateC; = Max{c;} for eachS.

Step 3:Calculater; = C; / g; for each pai®y andS.
Step 4:CalculateR = AOWG(j, ..., '), for eachA.
Step 5:SelectA« such thaR- = Min{R}.

Again, in this case we also add one unit in ordekeep
stable the aggregation. By choosing a differentghiing
vector we could also obtain different aggregationstep 4
such as the original regret work developed by Seyvaige
maximum, the average, the median, the step-AOWG,

consider the aggregation with the arithmetic mesiv)( with
the weighted average (WA), with the OWA operatod arith

n, the Min-window-OWG-Regret becomes thethe AOWA operator. In the second case, we will taes the

regret matrix as it has been explained in the MiN® Regret
method and we will consider the aggregation with @GM,
with the WGM, with the OWG and the AOWG operator.
With these eight types of aggregations we will ¢be
different results obtained by using a different reggtion in
the decision. Note that as the geometric constmctif the
regret matrix is completely different than the lametic one,
the results will also be different. The interestipgint to
analyse is to see which results give the sameidacdout the
selection of an alternative. In this example, wik agsume the
following weighting vector: W = (0.1, 0.2, 0.2, 0(B2).

Step 1: Assume that an enterprise wants to increase its
volume of activities. In order to do this, the bidbaf directors
has established five possible investments thatetiterprise
could develop in the future.

(1) A;is afood company called

(2) A,is a chemical company call&d
(3) Asis a car company callexi

(4) A;is a TV company calle¥.

(5) Agis a computer company call&d

After careful review of the information, the exgehave
given the following general information. They have
summarized the information of the investments gjvihe
expected results depending on the five states tof@§ that
could happen in the future. The results are showvtable 1.

TABLE |
PAYOFF MATRIX
S S S S S
A 60 20 10 40 50
Ao 80 50 20 10 20
As 30 40 40 30 40
Ay 20 30 20 30 80
As 70 40 40 10 20

Step 2 — Step JFor the first case, that affects the AM, the
tRVA, the OWA operator and the AOWA operator, we will

window-AOWG, the olympic-AOWG, the centered-AOWG,calculateC; = Max{c;} for each§ andr; = C; — ¢, for each

the E-Z AOWG, the S-AOWG, etc. Analysing the prdijesr
of this type of generalized Min-W-Regret method hwthe

pair A; andS. For the second case, that affects the GM, the
WGM, the OWG operator and the AOWG operator, we wil
calculateC; = Max{c;} for each§ andry = G; / ¢, for each
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pair A; andS. The results for the first case are shown in table Step 5:As we can see, with the AM we cannot select an

Il and the results for the second case are showabie III. alternative as we get the same result for all efrthWith the
WA and with the AOWA operator we select alternatdvas it
TABLE Il gives the lowest expected cost. With the OWA operate
REGRET MATRIX will select alternative 2 as in this case, this gaés the lowest
expected value. For the GM, the WGM, the OWG arel th
S = S S S AOWG operators, we select alternative 3 as in tlvases this
A 20 30 30 0 30 alternative is the one with the lowest value.
A 0 0 20 30 60
A 50 10 0 10 40 VI. CONCLUSION
A 60 20 20 10 0 In this paper, we have suggested the use of the OWG
As 10 10 0 30 60 operator in situations of decision making with miidation of
regret. For doing this, we have made some changedkei
TABLE Il construction of the regret matrix in order to adapto the
REGRET MATRIX FOR THE GEOMETRIC OPERATORS aggregation characteristics of the OWG operatorth\Whis
new construction, we have shown that it is possibleleal
S S S S S . . .
n a3 5 2 1 16 W|th_ qggatlve nur_nbers in the OWG operator by tramsing
the initial results in positive numbers. We havealeped the
A ! ! 2 4 4 decision making process distinguishing in the agaftien step
s 2.66 125 1 133 2 between the use of the OWA operator, the AOWA dpera
A 4 1.66 2 1.33 1 the OWG operator and the AOWG operator. Finally, an
As 1.14 125 1 4 4 illustrative example has been given where we haesvs the

process to follow in a decision making problem with
Step 4:Aggregate the regret matrix with each aggregatiominimization of regret.
operator according to its formulation. For thetficase, we In future research, we expect to develop new amhes
will aggregate table Il with the AM, with the WA, ity the about using different types of aggregation opesatan
OWA and with the AOWA operators. The OWA operatnda decision making problems with minimization of reigaed we
the AOWA operator are defined by (1). Note thatAM is a  will apply it in other decision making problems buas human

special case of the OWA operator when= 1/, for allj. For  resource selection, strategic management, etc.
the WA, we will associate each weighwith its corresponding
regret argumerjt For the second case, we will aggregate table
:Iovwg the G'\{[I’ WItI:lrrt]he(\;/VMGM, (\jNI:h tze bOWGG at?]d wg;l .[1] F. Chiclana, F. Herrera, and E. Herrera-Viedma,e“®rdered weighted

. operators. € IS define y (6), the ! geometric operator: Properties and application”,Piroc. 8th Conf.
defined by (7), and the OWG and the AOWG operayo(8). Inform. Processing and Management of UncertaintyKimowledge-
The results are shown in tables IV and V. based Systems (IPMWladrid, Spain, 2000, pp. 985-991.

[2] R.R. Yager, “On Ordered Weighted Averaging AggremaiOperators
in Multi-Criteria Decision Making”,|IEEE Trans. Systems, Man and
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