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Abstract—Finding the shortest path between two positions is a 

fundamental problem in transportation, routing, and communications 

applications. In robot motion planning, the robot should pass around 

the obstacles touching none of them, i.e. the goal is to find a 

collision-free path from a starting to a target position. This task has 

many specific formulations depending on the shape of obstacles, 

allowable directions of movements, knowledge of the scene, etc. 

Research of path planning has yielded many fundamentally different 

approaches to its solution, mainly based on various decomposition 

and roadmap methods. In this paper, we show a possible use of 

visibility graphs in point-to-point motion planning in the Euclidean 

plane and an alternative approach using Voronoi diagrams that 

decreases the probability of collisions with obstacles. The second 

application area, investigated here, is focused on problems of finding 

minimal networks connecting a set of given points in the plane using 

either only straight connections between pairs of points (minimum 

spanning tree) or allowing the addition of auxiliary points to the set 

to obtain shorter spanning networks (minimum Steiner tree). 

Keywords—motion planning, spanning tree, Steiner tree, 

Delaunay triangulation, Voronoi diagram. 

I. INTRODUCTION

N recent years a number of new data structures and 

algorithmic techniques have been developed that have 

improved and simplified many of the previous approaches 

used in network optimisation [1], robot motion planning [2], 

etc. Geometric data structures defined in computational 

geometry have a surprising variety of uses [3]-[7]. 

Computational geometry emerged from the field of 

algorithm design and analysis in the late 1970s. It has many 

application domains including computer graphics, geographic 

information systems (GIS), robotics, and others in which 

geometric algorithms play a fundamental role. Computational 

geometry deals with specific geometric data structures, the 

most important ones being Voronoi diagrams, Delaunay 

triangulation, visibility graph and convex hull.  

Before we study examples of their applications, we will 

introduce them and summarise the basic definitions.  
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II. BASIC NOTIONS

A Voronoi diagram of a set of points (called sites) in the 

Euclidean plane is a collection of regions that divide up the 

plane. Each region corresponds to one of the sites and all the 

points in one region are closer to the site representing the 

region than to any other site.  

More formally [3]-[6]:   

Definition 1 Let P be a set of n points in the plane. For two 

distinct sites pi, pj P, the dominance of pi over pj is defined 

as the subset of the plane that is at least as close to pi as to pj.

Formally,  

 dom(pi, pj)={x 2 | d(x, pi) d(x, pj)},  (1) 

where d denotes the Euclidean distance. 

Clearly, dom(pi, pj) is a closed half-plane bounded by the 

perpendicular bisector of pi and pj.

Definition 2 Voronoi region (or Voronoi polytope, Voronoi 

cell, Voronoi face, Dirichlet polygon, Thiessen polygon) of a 

site pi P is a close or open area V(pi) of points in the plane 

such that pi V(pi) for each pi, and any point x V(pi) is at 

least as close to pi as to any other sites in P (i.e. V(pi) is the 

area lying in all of the dominances of pi over the remaining 

sites in P).

Formally, 
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Since the Voronoi regions are formed by intersecting n 1

half planes, they are convex polygons. Thus the boundary of a 

region consists of at most n 1 edges (maximal open straight-

line segments) and vertices (their endpoints). Points on the 

boundary of V(pi) and V(pj) are equidistant to pi and pj.

Definition 3 A Voronoi diagram (or Voronoi tessellation) for 

a given set P {p1, p2, … , pn} of points (or sites) is a 

polygonal partition of the plane into Voronoi regions 

V(p1),V(p2), … , V(pn). The vertices of polygons V(pi) are 

called the vertices of the Voronoi diagram, and their edges are 

called the edges of the Voronoi diagram. A Voronoi diagram 

is called degenerate if four or more of its Voronoi edges have 

a common endpoint. 

Clearly, each edge of the Voronoi diagram belongs to just 

two Voronoi regions and 
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Definition 4 A triangulation T is a collection of N triangles 

satisfying the following requirements: 

(i) The interiors of the triangles are pairwise disjoint. 

(ii) Each edge of a triangle in T is either the common 

edge of two triangles in T or else it is on the 

boundary of the union D of all the triangles.  

(iii) D is homeomorphic to a square (this requirement 

rules out holes, pinchpoints where just two triangles 

meet in a single point, and disjoint sets of triangles).  

Definition 5 The graph D(P) on P with an edge (pi , pj) if 

V(pi) and V(pj) share a common side is called a Delaunay 

triangulation.

Fig. 1 (a) A set of points and its Voronoi diagram;  

 (b) Delaunay triangulation (bold) 

Definition 6 Let P {p1, p2, … , pn} be a set of n distinct

points and O {O1, O2, … , Om} be a set of m closed regions 

that represent a set of obstacles that are neither transparent nor 

traversable and do not overlap. Two vertices that can see each 

other are called (mutually) visible, and the segment connecting 

them is called a visibility edge.

Note that endpoints of the same obstacle edge always see 

each other. 

Definition 7 Let O {O1, O2, … , Om}be a set of m obstacles, 

S be a set of their vertices and pstart and ptarget be the starting 

and target positions. A visibility graph is a graph G=(V,E)

whose set of vertices V is given by S  pstart and ptarget and the 

set of edges E is given by the visibility edges on V.

First summarise the time complexity of algorithms for 

constructing Voronoi diagrams and visibility graphs as 

described in the literature.  

The most efficient algorithms for constructing Voronoi 

diagrams, randomised incremental algorithm, divide and 

conquer and plane sweep algorithm, have the same time 

complexity O(n log n)where n  is the number of given points.  

The visibility graph of a set of disjoint polygonal obstacles 

with k edges in total can be computed in O(k2 log k) [4].

Fig. 2  (a) A set of polygonal obstacles and starting and target 

position; (b) visibility graph for (a) 

III. SHORTEST PATH IN THE PLANE WITH OBSTACLES

The shortest path between two points in the plane with 

polygonal obstacles can be easily solved in the corresponding 

visibility graph by the Dijkstra algorithm. Using a binary heap 

implementation, its time complexity is given by O(|E| log |V|), 

where E is the set of edges and V is the set of vertices. Fig. 3 

shows the shortest path between the starting and target 

positions using the visibility graph in Fig. 2.  

IV. ROBOT MOTION PLANNING

The algorithm, described in the previous section, can also 

be used for solving the motion planning problem for a point 
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robot. This approach can be adapted for the case of robot with 

a polygonal projection into the plane. We “add” the size of 

robot to the obstacles using Minkowski sums [4] and thus the 

robot is reduced to a point. 

Now we will describe another approach that does not 

guarantee finding the shortest path but takes into consideration 

motion safety in the sense of minimising possible collisions 

with obstacles.  

Consider a disc-shaped robot as in Fig. 4 (a). If a set of 

obstacles is  only by points, these point obstacles can be 

considered as sites of a Voronoi diagram and the robot can use 

for its tour the shortest path along the Voronoi diagram edges 

that represent passable channels among obstacles. This allows 

us to reduce the robot motion problem to a graph search 

problem again. Fig. 4 (a) demonstrates this approach. 

However, in practice, obstacles very often have more general 

shapes than point ones and thus we must generalise the 

algorithm for constructing Voronoi diagrams. We take the 

vertices of polygonal obstacles to be point obstacles, then 

compute the corresponding Voronoi diagram and, finally, 

remove from the diagram all the edges intersecting the 

obstacles. An example of Voronoi diagram for a plane with 

polygonal obstacles is shown in Fig. 4 (b). 

Fig. 3 The shortest path for the visibility graph in Fig. 2 

If we use the rectilinear metric for a Voronoi diagram, then, 

due to the rectilinearity, each straight-line segment of a 

bisector in the now rectilinear Voronoi diagram will be either 

horizontal, vertical, or inclined at 45° or 135° to the positive 

direction of the x-axis [8], [9]. This finding suggests using the 

rectilinear Voronoi diagram for the 8-directional motion 

planning. This approach avoids all the drawbacks of classical 

plane decomposition methods (combinatorial explosion, low 

boundaries for grid representation and generating many 

infeasible solutions). 

V. EUCLIDEAN MINIMUM SPANNING TREE

Definition 8  Let G = (V,E) be a connected undirected graph 

in which each edge e is assigned a real non-negative weight 

(or cost) w(e).  

  (i)  A spanning tree T is an acyclic connected subgraph of G

containing every vertex of V.   

  (ii)  A minimum spanning tree (MSpT) is a spanning tree of 

minimum weight 

', '

( ) ( )
e E E E

w T w e  (4)  

Fig. 4 (a) Motion planning in a scene with point obstacles; 

 (b)Voronoi diagram for polygonal obstacles 

A frequent practical problem is one of constructing a 

minimum spanning tree in the Euclidean plane (EMSpT). This 

problem can be easily solved by well-known Jarník’s 

(Prim’s), Kruskal’s or Bor vka’s polynomial algorithms for 

the Minimum Spanning Tree Problem in graphs (MSpTG) 

when we construct from the given set of points a complete 

graph whose edges are represented by straight lines between 

each pair of points and their weights correspond to Euclidean 

distances of these points. All these algorithms have the same 

asymptotic running time O((|V|+|E|) log |V|) for a graph 

G=(V,E) [10], but, unfortunately, the time complexity of the 

complete graph construction is higher, it equals O(|V|2) and 

therefore the total running time of the algorithm is O(|V|2).

Another approach to solving the EMSpT problem is based 

on the concept of the Delaunay triangulation. We refer to the 

fact that when searching for a current edge of minimal weight 
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in minimum spanning tree algorithms, it suffices to look over 

the edges of the Delaunay triangulation. It results from the 

following assertions [6], [11]. 

Lemma 1 Let P = P’ P” be an arbitrary partition of a finite 

set P of points of the plane, and assume that e is the shortest 

segment joining the sets P’ and P”. Then e is an edge of the 

Delaunay triangulation for the set P. 

Theorem 2 Let P be an arbitrary finite set of points of a 

plane, and assume that T is some minimum tree spanning P.

Then the edges of T are edges of the Delaunay triangulation 

D(P) for the set P.

Proof. Each step of Jarník’s algorithm for constructing an 

MST spanning P consists of constructing a tree T spanning 

T(P) P, and adding an edge e that joins a vertex in T(P)

with one in P T(P) such that the length of e is the least 

possible among the lengths of the edges of this type. 

Fig. 5 Voronoi diagram, Delaunay triangulation and Euclidean 

mimimum spanning tree 

Using these results, we can construct the minimum 

spanning tree in the Euclidean plane as follows: First, we 

construct a Voronoi diagram from the given set of n points (in 

O(n log n) time), then the corresponding Delaunay 

triangulation (in O(n) time) and finally the EMST (in O(n)

time [12]). Therefore, the Delaunay based approach is more 

efficient than the one based on constructing the complete 

graph consuming O(n2) time. 

Let us note that there are algorithms for constructing the 

Delaunay triangulation directly without precomputing the 

Voronoi diagram [5].  

By traversing the Euclidean minimum spanning tree twice 

(as in Fig. 6) we produce a Euclidean travelling salesman tour 

trough a given set of points. In [6], it is proved that its length 

is less than twice the length of the exact solution. 

Fig. 6 An approximation of the Euclidean travelling salesman 

problem.

VI. EUCLIDEAN MINIMUM STEINER TREE

The Euclidean Steiner tree problem is given by a set of 

fixed points V {v1,v2, ... ,vn} in the Euclidean plane, called 

terminals, and asks for the shortest straight-line spanning V.

The solution takes the form of a tree, called a Euclidean 

Steiner minimum tree (EStMT). Contrary to the minimum 

spanning tree problem, connections in EStMT's are not 

required to be between the terminals only. Additional 

intersections, called Steiner points, can be introduced to obtain 

shorter spanning networks. However, the Steiner tree problem 

is NP-hard and therefore it cannot be solved exactly for larger 

instances by polynomial algorithms as minimum spanning tree 

problem. Therefore, heuristic or approximation methods must 

be used instead. 

Definition 9 The Euclidean Steiner ratio, denoted E, is the 

supremum over the set of all the ratios of the length of the 

Euclidean minimum spanning tree w(EMSpT(V)) to the length 

of the Euclidean Steiner minimum tree w(EStMT(V)), 

2

(EMSpT( ))
sup

(EStMT( ))
E

V

w V

w V
 (5) 

Theorem 3 The Steiner ratio E for the Euclidean problem 

satisfies the following formula [13]: 

2
1.1547

3
E  (6) 

This means that the EMSpT length does not exceed that of 

an EStMT by more than 15.47% (the average excessive length 

is of course smaller). Therefore, the Euclidean minimum 
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spanning tree can be used as an approximation of minimum 

Steiner tree and, naturally, becomes the standard to which 

other approximation algorithms or heuristics are compared. 

If |V| 3 we can directly construct the EStMT as follows: Let 

V {a,b,c}.

1. If one of the angles of abc  is at least 120 , then the 

EStMT consists of simply the two edges subtending the 

obtuse angle. 

2. If all internal angles of abc are less than 120 , then we 

draw an equilateral triangle abc  and circumscribe a circle 

around this triangle. The Steiner point s is given by the 

intersection of line cd with the circle (see Fig. 7 (a)). It can 

be shown that the total length of segments as, bs, cs is equal 

to the length of segment cd, which is known as the Simpson 

line for the FST over terminals a, b, c.

From Fig. 7 (b) it can be easily derived that the Euclidean 

Steiner minimum trees for points lying at the vertices of 

equilateral triangles (Fig. 7 (b)) are 2/ 3-times shorter than 

their corresponding Euclidean minimum spanning trees and 

represent the best improvements with respect to the minimum 

spanning trees. All angles in an equilateral triangle are equal 

to 60  and, obviously, the minimal angle in such a triangle is 

maximised. Since, by [4], any Delaunay triangulation of 

V maximises the minimal angle over all the triangulations of 

V, we begin with the Delaunay triangulation DT(V).

Fig. 7 (a) A 3-point EStMT algorithm;  (b) the EStMT for 3 points 

at vertices of an equilateral triangle. 

As mentioned above, we can use DT(V) for the EMSpT 

enumeration. But we can achieve a better initial 

approximation if we first replace all the triangles that have 

each angle less than 120  by the EStMT’s of the triangle 

vertices and, after this, find EMSpT. The length of the graph 

resulting from this procedure can be still decreased by 

repeated selections of the smallest angle based on the fact that 

the smaller the angle is, the better local improvement is 

reached. Of course this angle must be less than 120 . The 

replacements of such subgraphs by their EStMT’s are the 

same as before.  

The angle between a pair of edges meeting at an end point 

can be easily determined from elementary geometry. If  is an 

angle to be calculated and the Euclidean distances of the end 

points defining the lengths of the triangle edges are denoted 

by a, b, c, as in Fig. 7, we have: 

2 2 2

2 2 2

2 cos

arccos
2

a b c bc

b c a

bc

 (7) 

After previous considerations, the algorithm can be 

described as follows: 

1. Find the Delaunay triangulation for a given set V.

2. Replace all triangles that have each angle less than 120  by 

the EStMT’s of triangle vertices. 

3. Determine the Euclidean minimum spanning tree EMSpT 

for a graph found in Step 2. 

4. For each edge connecting points x, y do

a. Find the edge {y,z} that meets {x,y} at the smallest 

angle. 

b. If this angle is less than 120 then

i. Place a new Steiner point sn on top of y.

ii. Remove the edges {x,y} and {y,z}. These edges 

will no longer be considered for the loop of Step 

4.

iii. Add the edges {x,sn}, {y,sn} and {z,sn}.

5. Remove all Steiner points of degree 1 along with their 

incident edges. 

Step 4 is a slightly modified step from an insertion heuristic 

described in [14]. It systematically inserts Steiner points 

between the edges of the current graph that meet at angles less 

than 120 degrees. However, because of the first three steps in 

our algorithm, we ignore whether the vertices connecting 

edges being terminals or not. The final optimisation in Step 5 

is inspired by a pre-processing rule known from the Steiner 

tree problem in graphs. 

Comparing it to [14], we see that it contains an additional 

step computing Delaunay triangulation and using the fact that 

EStMTs for triangles can be determined very easily. This 

improves the behaviour of the heuristic and the results 

achieved are near-optimal [15]. 

Theorem 4 The proposed algorithm runs in O(n3) time.

Proof. If |V| n, then the Delaunay triangulation can be 

constructed in O(n log n) time [4]. The expected number of 

triangles created is at most 9n 1 [4] and thus Step 2 needs 

O(n) time. Step 3 needs O(n log n) time [3], [4], [16], time 

complexity of Step 4 is O(n3) and, finally, Step 5 is done in 

O(n) time. Since Step 4 is the most expensive, it gives the 

time complexity of the algorithm. 

VII. CONCLUSION

In this paper, two approaches for planning trajectories were 

discussed. Our considerations were restricted to known two-

dimensional scenes with point and polygonal obstacles. Since 

traditional potential field methods and cell decomposition 

methods have many drawbacks such as convergence to local 

minima, and combinatorial explosion, or generating infeasible 

solutions, we focused on roadmap methods using 

computational geometry data structures. It can be said that, for 

scenes with point, straight line and polygonal obstacles, the 

(a) (b) 
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simplest way of finding optimal trajectories is to compute 

ordinary Voronoi diagrams for vertices of obstacles and then 

remove the Voronoi diagram edges that intersect the obstacles. 

While the application of visibility graphs guarantees finding 

the shortest paths between the starting and target positions, 

Voronoi diagrams guarantee increased safety of robot 

movements because the generated collision-free trajectory 

goes midway between pairs of obstacles.  

The algorithm for finding Euclidean minimum spanning 

tree introduced in section V decreases time complexity in 

comparison with the classical complete graph-based approach. 

Finally, it can be shown that the algorithm from section VI 

achieves near-optimal solutions in a reasonable amount of 

time, more precisely, for benchmarks of up to 100 points, less 

than in tens of seconds and, in the case of 500 points, in 10 

minutes.  
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