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Abstract—Hydrological modelling plays a crucial role in the 

planning and management of water resources, most especially in 
water stressed regions where the need to effectively manage the 
available water resources is of critical importance. However, due to 
the complex, nonlinear and dynamic behaviour of hydro-climatic 
interactions, achieving reliable modelling of water resource systems 
and accurate projection of hydrological parameters are extremely 
challenging. Although a significant number of modelling techniques 
(process-based and data-driven) have been developed and adopted in 
that regard, the field of hydrological modelling is still considered as 
one that has sluggishly progressed over the past decades. This is 
majorly as a result of the identification of some degree of uncertainty 
in the methodologies and results of techniques adopted. In recent 
times, evolutionary computation (EC) techniques have been 
developed and introduced in response to the search for efficient and 
reliable means of providing accurate solutions to hydrological related 
problems. This paper presents a comprehensive review of the 
underlying principles, methodological needs and applications of a 
promising evolutionary computation modelling technique – genetic 
programming (GP). It examines the specific characteristics of the 
technique which makes it suitable to solving hydrological modelling 
problems. It discusses the opportunities inherent in the application of 
GP in water related-studies such as rainfall estimation, rainfall-runoff 
modelling, streamflow forecasting, sediment transport modelling, 
water quality modelling and groundwater modelling among others. 
Furthermore, the means by which such opportunities could be 
harnessed in the near future are discussed. In all, a case for total 
embracement of GP and its variants in hydrological modelling studies 
is made so as to put in place strategies that would translate into 
achieving meaningful progress as it relates to modelling of water 
resource systems, and also positively influence decision-making by 
relevant stakeholders. 
 

Keywords—Computational modelling, evolutionary algorithms, 
genetic programming, hydrological modelling.  

I. INTRODUCTION 
ENETIC programming (GP), developed by Koza [1] 
belongs to the class of evolutionary algorithms (EA), 

which is based on the “principle of survival of the fittest”, 
adopted from the process of natural evolution and genetics. 
GP is however a relatively new addition to the group of other 
EA techniques such as evolutionary programming (EP), 
genetic algorithms (GA) and evolution strategies (ES) [2]. GP 
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however differs from GA in that its solution is a computer 
program or an equation as against a set of binary strings in the 
GA [3]. GP is a data-driven modelling technique which 
performs its operation via a population-based search, in which 
computer programs or equations that are perceived to be 
candidate solutions to a given problem are randomly generated 
and bred using specific genetic operators. GP differs from 
other data-driven models (DDMs) such as artificial neural 
networks (ANNs), fuzzy rule-based systems (FRBS) and 
model trees (MTs) in that it provides mathematically 
meaningful structures (with optimum parameters) while 
relating input-output variables of the system [4]. GP has found 
application mostly in the area of symbolic regression, where 
the aim is to find a functional relationship between input and 
output variables. These functional relationships may either be 
linear, quadratic or higher order polynomial. GP however 
defines the relationships by optimizing the model structure 
and the numerical coefficients of the model simultaneously. 
The GP algorithm is characterized by two major components, 
which are the terminal and function sets. These two sets 
contain the major building blocks used to construct the 
population members of the GP search space.  

A. Representation of GP 
GP programs are usually expressed as syntax trees, 

consisting of terminal and function sets. The terminal set, 
generally referred to as “Terminals”, consists of the 
independent variables and constants (known as the “tree 
leaves”) which are inputs to the problem [5]. For instance, the 
terminal set may simply consists of causative variables of a 
particular hydrological process. Following that the GP 
algorithm is being used as a regression technique, the 
numerical constants (coefficients) that match the chosen 
model structure to the target output are thereafter determined. 
Thus, the input variables and numerical constants constitute 
the terminal set. This is achieved with the aim of searching for 
a formula that uses the input variables to produce the target 
output [2]. The function set consists of a number of domain-
specific functions that are combined with the terminal set to 
enable the algorithm generate candidate solutions to the 
problem. The function set may consist of basic arithmetic 
operators, mathematical functions (sin, cos, tan, log, ln, ex), 
Boolean operators (AND, OR, NOT), logical expressions (IF-
THEN-ELSE), iterative functions (DO-UNTIL), and any other 
user-defined function. The program can however be 
represented linearly or in an explicit tree representation. Fig. 1 
demonstrates a syntax tree notation of a mathematical model,

132 )sin(' xxxy += which is a combination of function and 
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terminal points (where y’ is the predicted output).  
 

 
Fig. 1 Tree-representation of the mathematical expression 

 
The set of permissible functions and terminals together 

constitute the primitive set and a major part of the search 
space of the GP system. Babovic and Keijzer [2] noted that the 
primitive set of a GP program must exhibit two properties 
namely, a “closure” property and a “sufficiency” property. A 
closure property is a property of a function set which enables 
it to swap any sub-tree to another location in the tree. The 
closure property also ensures that all functions can accept all 
possible inputs from the terminals, so as to return a well-
defined value. For example, the use of a division function was 
presented with “illegal inputs” such as a zero value will return 
an undefined value, which may distort the operation of the 
algorithm [1]. Thus, protection is usually given to such 
functions by allowing them to return a specific value when 
confronted with such illegal inputs. Following the above 
example, the division function may be set to return a value of 
1 when confronted with a zero value. i.e. division (x) = 1. The 
sufficiency property, however, ensures that elements of the 
primitive set are able to express a solution to the given 
problem. Poli et al. [5] stated that “when a primitive set is 
insufficient, GP can only develop programs that approximate 
the desired one”. It was however added that such an 
approximation, in many cases, can be very close and good for 
the user’s purpose. 

Having established the process of constructing the primitive 
set of the GP program, it is important to determine how good 
the elements of the population space are. Thus, a “fitness 
function” (also referred to as “objective function”) is assigned 
to each population member in order to measure the 
performance of each individual program. The objective 
function measures the accuracy of each computer program by 
computing the difference between the actual and the predicted 
values. The error measures may be in form of root mean-
square error (RMSE), mean square error (MSE), etc. [2]. This 
function can either be minimized or maximized depending on 
the objective of the modelling problem. Furthermore, a 
number of “hits” can also be employed to evaluate 
performance of each program. The number of hits is a function 
of the number of data points correctly predicted within some 
frequency interval of tolerance. A major limitation to this 
approach is that each data point is classified as a “hit” or a 
“miss”, thus, making it possible for one model to be inaccurate 
than another but still share the same objective function. 

B. Initialization of GP 
The first step in implementing GP is to randomly create an 

initial population for a given population size. The initial 
population is often randomly created to provide for a 
satisfactory initial coverage of the search space. In addition, it 
is a cheap computational process that requires no a priori 
knowledge from the modeller. Different methods are 
employed to randomly generate the initial population of the 
search space.  

These methods include the full method, the grow method 
and the ramped half-and-half method. In the full method, the 
tree nodes are generated only from the function set until a pre-
assigned maximum tree depth is reached, where only terminals 
can be chosen. The method is referred to as full method, 
because it generates full trees, with all the leaves at the same 
depth. Unlike the full method, the grow method gives room 
for creation of trees with variable sizes or shapes. The grow 
method also allows for selection of nodes from the whole 
primitive set, until the pre-defined depth limit is reached, 
where only terminals can be selected.  

The ramped half-and-half method however is a combination 
of the full and grow method, which allows for the creation of 
trees with various sizes and shapes, but also with equal 
number of trees for the specified depth. The ramped half-and-
half method was preferred by Koza [1] due to its easy 
implementation and usage, as well as its good coverage of the 
search space. Poli et al. [5], however, noted that whenever the 
ramped half-and-half method is employed, high difficulty is 
often experienced in controlling the statistical distribution of 
the important properties such as size and shape of the 
generated syntax trees. 

Once the initial population is randomly created, the next 
step is to create the next generation of population, which 
involves selecting better program solutions. 

C. Selection 
From the principles of genetics, better individuals are more 

likely to produce more offspring than inferior individuals. 
Thus, GP employs a selection process (an optimization force 
in EA), to focus on worthwhile regions of the search space by 
mapping the objective function values to the number of 
offspring produced [2]. Selection involves the use of genetic 
operators to probabilistically pick individuals based on their 
performance, as evaluated using the objective function. The 
better the fitness of an individual, the greater the chance of 
that individual being carried over into the next generation. 
Although, different selection methods are being used within 
the EA domain such as truncation selection and fitness 
proportionate selection; the most popular selection method 
employed in GP is the “tournament” selection method. 

Tournament selection involves choosing two individual 
programs randomly from the population, and comparing them 
to one another. The “fitter” program wins the tournament. A 
major characteristic of the tournament method is that it only 
looks at which program is better than another, and not how 
much better [5]. This is done in order to ensure that extra-
ordinary programs do not outshine others throughout the 
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selection process, and thereafter populate the entire search 
space with its offspring. Hence, it gives programs with 
average quality the opportunity to produce offspring. The 
advantages of the tournament selection over other methods 
are: (i) it is easier to implement, and (ii) it provides automatic 
fitness rescaling, and hence, it’s wide acceptance in GP. 

D. Population Structures in GP 
In GP, different structural configurations are used to 

populate the search space with candidate solutions. According 
to [2], the population structures can be classified as: (i) 
Steady-state population; (ii) Generational population (iii) 
Panmictic and distributed populations. 

In the steady-state population structure, the population size 
remains unchanged during the GP run. However, in a 
generational population structure, an intermediate mating pool 
is created for the selected programs to occupy so as to form 
the next generation of offspring. The generation population 
structure may or may not ensure the reproduction of some 
programs into the next generation. When a population 
structure ensures that some programs in the mating pool are 
reproduced to the next generation, such a structure is referred 
to as an “Elitist” population model [2]. Elitism ensures that the 
best program individuals survive the selection process in order 
to preserve the best-so-far individual programs in the new 
generation. 

A panmictic population structure entails an extremely 
mixed population which considers the fitness of the entire 
population. Therefore, selection process is performed on a 
global scale. A distributed population structure involves the 
spatial distribution of the population of candidate solutions 
into multiple semi-independent subpopulations called “demes” 
[5]. This gives room for the execution of selection process on 
a local scale. The distributed structure also allows for 
occasional migration of individuals majorly between adjacent 
demes for exchange of genetic material as illustrated in Fig. 2. 

 

 
Fig. 2 Distribution of the population space into demes, allowing for 

exchange of genetic material 
 

This genetically inspired mechanism is usually referred to 
as “Island model” [2], [6]. A major advantage of the 
distributed population over other methods is that the 
distribution of the population space into demes facilitates the 
occurrence of parallel evolution. The parallel evolution 
consequently makes the GP algorithm less susceptible to 
convergence to local optima [2], as a local optima in one deme 
might be overcome by other demes with better search 

direction. Furthermore, the distributed population structure 
ensures that the evolution progresses faster than in a single 
population structure [6]. 

E. Genetic Operators 
In GP, two genetic operators namely, crossover and 

mutation are often used to transform selected best programs 
into a new generation of programs. These genetic operators 
operate by applying slight modifications to the structure of 
selected programs in order to achieve better or fitter programs 
(Fig. 3). The purpose of the crossover operator is to generate 
new programs which did not exist in the old population, to 
allow for thorough sampling of the search space. Crossover is 
performed by selecting two parent programs from the mating 
pool and swapping some corresponding sections across a 
randomly chosen point to produce two different offspring 
programs of different characteristics. The number of programs 
experiencing crossover is dependent on a predefined 
probability of crossover, Pc.  

The mutation operation however involves random 
modification of a structural member of a selected parent 
program to create a new offspring program. The modification 
is also performed based on a probability of mutation, Pm. The 
evolution process is performed over successive generations 
until a preset termination criterion is met, and the program 
generated upon termination of the run is finally selected as the 
best program that gives the most accurate description of the 
modelled system. 
 

 
Fig. 3 Crossover and mutation being performed on parent programs. 

 
Generally, GP evolve models in two different forms. These 

models can either be evolved in form of computer programs or 
in form of equations [7]. Program-based models consists of 
codes that may be written in different programming languages 
such as Assembly, Java, C or C++, which enables the source 
files to be called and new data sent to them. On the other hand, 
in equation-based approach, the input-output relationships are 
defined by evolving models in form of mathematical formulae. 
Some good examples of program-based and equation-based 
GP implementation kits include Discipulus™ [8] and 
GPKernel respectively. 

II.  APPLICATION OF GP IN HYDROLOGICAL MODELING 
Regardless of its status of being a relatively young and 

growing branch of EA, GP has been successfully applied to 
solve a wide range of water-related problems. Thus, literature 
on its applications is multifaceted. Presented in Table I below 
are some representative examples of major applications of GP. 
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TABLE I 
APPLICATION OF GP IN VARIOUS FIELDS OF HYDROLOGICAL MODELLING 

S/N Authors & 
Year Application Area Input Variables Location Forecast 

Interval Comparisons Remarks on GP 

1. Khu et al. [9] Real-time runoff 
forecasting Rainfall 

Orgeval 
Catchment, 

France 
+1 AR, Kalman 

Filter 
GP was found to be a better updating tool when 

compared to AR and Kalman filter method 

2. 
Sheta and 
Mahmoud 

[10] 

River flow 
forecasting Previous flow Nile River, 

Sudan +1 AR GP produced simpler models with less error 
estimates 

3. Babovic and 
Keijzer [11] 

Hourly Rainfall-
runoff modeling Rainfall & Runoff 

Orgeval 
Catchment, 

France 
+1 

NAM 
Conceptual 

model 

Better forecasting accuracy produced by GP. 
Integration of both models suggested 

4. Whigham and 
Crapper [12] 

Rainfall-runoff 
modelling Rainfall 

Teifi & Namoi 
Basin (Wales & 

Australia) 

Function 
Approx. 

IHACRES 
(Deterministic 

model) 

GP produced an impressive performance just as 
IHACRES, but without requiring any causal 

relationship 

5. Liong et al. 
[13] 

Rainfall-runoff 
modelling 

Runoff & Rainfall 
intensity 

UBT Catchment, 
Singapore 

+15, +30, 
+45 

(minutes) 

Naïve Rainfall-
runoff model 

GP induced R-R relationship was seen as 
viable alternaive to the naïve model 

6. Dorado et al. 
[14] 

Rainfall-runoff 
prediction Rainfall Old Victoria 

Catchment, Spain N/A 

Traditional SCS 
Unit 

Hydrograph, 
NARMAX 

Combination of GP & ANN performed better 
than the ARMAX & traditional models 

7. Jayawardena 
et al. [15] 

Rainfall-runoff 
modelling Rainfall & Runoff 

Hok Tau Basin, 
Hong Kong; 
Shanqio & 

Shunhan Basin, 
China 

+1 N/A 
GP performance was not very satisfactory, as it 

was unable to capture high peak discharge 
magnitudes. 

8. Muttil and 
Lee [16] 

Daily prediction 
of algal blooms 

Chlorophyll, 
dissolved oxygen, 
water temp, sola 
radiation & wind 

speed 

Kat O Station & 
Tolo Harbour, 

Hong Kong 
+1 ANN, ARMA 

GP results was in agreement with that of ANN, 
but was able to identify key input variables. 

The GP performance was also better than that 
of the ARMA models 

9. Bautu and 
Bautu [17] 

Weather 
prediction 

Temperature, 
Precipitation & 

Pressure 

Rennes, France 
& Froson 
Sweden 

+2 AR, ANN 
GP exhibited its self-adaptive nature when 

unsupervised; producing better input-output 
relationships than other models 

10. Makkeasorn 
et al. [18] 

Daily Streamflow 
forecasting 

NEXRAD rainfall, 
SST & Met. data 

Choke Canyon 
Watershed 

+30, +7, +3 
days ANN GP-derived models performed better than the 

ANN models 

11. 
Elshorbagy 

and El-
Baroudy [19] 

Prediction of Soil 
moisture content 

Net radiation, 
Precipitation, Air 

temp. & Soil temp. 

Mildred Lake 
Mine Site, 

Canada 
N/A 

Evolutionary 
Polynomial 
Regression 

(EPR) 

A program-based GP tool (Discipulus™) 
performed comparably with EPR, but better 

than an equation-based GP tool (GPLAB). Tool 
uncertainty was identified. 

12. Maity and 
Kashid [20] 

Streamflow 
prediction 

Streamflow, ENSO 
& EQUINOO 

indices 

Narmada River 
Basin +1 N/A 

Satisfactory performance was recorded by GP-
derived models, as they were able to provide 

significant impacts of various input 
combinations 

13. Wang et al. 
[21] 

Forecasting of 
monthly 

discharge time 
series 

Previous flows Lancangjiang 
River, Asia N/A ARMA, ANN, 

ANFIS, SVM 

Best performance was obtained by GP, ANFIS 
& SVM models with GP producing better 

results in the validation phase 

14. Londhe and 
Charhate [3] 

Daily streamflow 
forecasting 

Previous 
streamflows 

Narmada Basin, 
India +1 ANN, MTs GP performed marginally better than ANN & 

MTs, especially in normal & extreme events 

15. Ni et al. [22] 
Annual 

streamflow 
prediction 

Precipitation & ET West Malian 
River 

Function 
Approx. 

MLP, Grey 
system theory, 

MLR 

GP performed better than other models under 
limited availability of datasets 

16. Selle and 
Muttil [23] 

Testing structure 
of hydro. Models N/A Southeastern 

Australia N/A Conceptual 
model 

GP predictions supported the dominant 
processes contributing to deep percolation in 

conceptual models 

17. Guven [24] Modelling of 
daily flow rate Previous flows Schuylkill River, 

USA +1 ANN (MLP, 
GRNN), AR 

GP results were fairly better than the ANN & 
AR models 

18. Guven and 
Kişi [25] 

Daily susp. 
sediment 
modelling 

Streamflow & 
Suspended 
Sediment 

Two stations in 
the Tongue 
River, USA 

+1 GEP, ANN LGP performed better than ANN & GEP 
models, producing simple & explicit models 

19. Sivapragasam 
et al. [26] 

Long term inflow 
forecasting Rainfall & Inflows Tamarabarami 

Basin, India Multiple N/A 
GP-derived models generated improved inflow 
forecasts, especially when rainfall values from 
neighbouring stations were included as inputs 

20. Oyebode et 
al. [27] 

Monthly 
Streamflow 
Prediction 

Rainfall, 
Temperature & 

Streamflows 

Upper Mkomazi 
River, South 

Africa 
+1 N/A 

GP-derived models provided accurate 
representation of streamflows in the river, 

while also producing adequate generalization 
with limited datasets. 

21. 
Zahiri and 

Azamathulla 
[28] 

Flow discharge 
Prediction 

Depth ratio, 
coherence 

parameter & 
discharge rate 

Mulitple number 
of Rivers N/A 

M5 model trees, 
Vertical divided 
channel method 

Better accuracy produced by GP compared to 
other methods 
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A. Areas of Concern 
Researchers have pointed out some important issues 

pertaining to the application of GP in water-related studies. 
Some criticisms have trailed the generation of mathematical 
formulations by GP, as its combination of multiple elementary 
functions often result in extremely complex models which 
may be too difficult to interpret [29], [30]. Keijzer and 
Babovic [29] argued that the complexity of these formulae 
may result in GP producing models with accurate syntax but 
meaningless semantics. A case was thereafter made for the 
introduction of dimension into the GP paradigm.  

Another major challenge faced by modellers in the use of 
GP is the selection of appropriate parameter settings to control 
the algorithm run. The convergence of the GP algorithm to 
global optimum is dependent on the parameters that govern 
the evolution process [4]. However, precaution needs to be 
taken while setting these parameters, as optimum settings vary 
from application to application. Thus, for a given problem, 
multiple runs using different parameter settings are often 
carried out and the solutions compared. This task is often 
considered as highly laborious, and also demands for higher 
computational resources.  

The ability of GP to find the optimal solution at higher 
forecast horizons have also generated some concern to GP 
users, as forecast accuracy tends to deteriorate with increase in 
forecast horizon. Jayawardena et al. [15] in their study, 
observed the inability of GP to capture complex rainfall-runoff 
transformation when applied to a steep-sloped catchment, 
characterized by high peak discharge magnitudes with steep 
rising and recession limbs. However, they acknowledged the 
satisfactory performance of GP when applied to two other 
catchments at smaller time intervals. Furthermore, Babovic 
and Keijzer [2] earlier noted that the ability of GP to find the 
optimal solution depend on the magnitude of the numerical 
values and its dimensions. Thus, difference in the magnitude 
and dimensions of input variables often makes it difficult for 
GP to scale the variables to workable values. 

Finally, the generalization ability of GP solutions is 
influenced by the phenomena of bloat and overfittting, which 
means over-growing of programs without limits and without 
any improvement in the fitness of the population. The increase 
in code size is an effect of so-called introns, parts of the tree 
that do not affect the solution’s functionality. Towards the end 
of a GP run introns grow rapidly and comprise almost all of 
the code while the optimization process stagnates [31]. This 
consequently leads to an excessive use of CPU time and 
memory coupled with inadequate generalization. This is an 
important issue which is of concern to the GP research 
community and continues to steer up further studies. 

B. Performance Improvement Methods 
A major improvement to the GP approach was suggested by 

Babovic and Keijzer [2]. They proposed a “dimensionally 
aware GP”, which requires the scaling of inputs and outputs to 
cast in dimensionless and proportionate terms. A dimension-
based brood selection method was also introduced, which 
involves the use of a “culling function” to measure the 

goodness-of-dimension of candidate solutions. This ensures 
the selection of best solutions in terms of goodness-of-
dimension, and thus results in the development of solutions 
with improved goodness-of-fit and less complexity.  

Deschaine and Francone [32] also introduced an improved 
version of a program-based GP toolkit which ranks and 
combines the best individual program solutions called 
“program models” into teams of solutions referred to as “team 
models”. This combination ensures better predictive accuracy 
in the team models than any of the individual program models. 
Thus, the ability of the GP model to generalize and converge 
towards global optimum is improved. 

Bleuler et al. [31] in a study aimed at evolving compact 
solutions and to reduce the effects caused by bloating 
proposed an approach with objective not only based on 
program functionality, but also on program size. The program 
size was incorporated as an additional, but independent 
objective. This approach was used conjunctively with a multi-
objective optimization algorithm for develop a Strength Pareto 
Evolutionary Algorithm (SPEA2). The ability of the SPEA2 in 
evolving compact programs in fewer generations was 
investigated comparatively against existing approaches such 
as Standard GP with tree depth limitation, Constant Parsimony 
Pressure, Adaptive Parsimony Pressure, and a Two-stage 
ranking method. Results found that SPEA2 produced average 
tree size lower than any of the other methods, while also 
evolving more compact solutions. Furthermore, SPEA2 was 
slightly faster in finding solutions than any other of the tested 
methods, although the Constant Parsimony approach provided 
the overall best performance. It was concluded that a Pareto-
based multi-objective approach is a promising way of 
reducing bloat in GP. 

In a recent study, Naik and Dabhi [33] tested the 
performance of four bloat control techniques namely Tarpeian, 
double tournament, lexicographic parsimony pressure with 
direct bucketing and ratio bucketing on six different problems. 
The double tournament (selection method) and Tarpeian 
method were combined and results obtained compared with 
the individual performance of other methods. It was found that 
the combination of the two methods was able to avoid bloated 
solutions and thus produced better generalization than the 
individual methods. 

C. Advantages and Disadvantages 
GP has been found to exhibit several advantages over other 

DDMs. Its major advantage is in its ability to generate 
programs that can efficiently simulate complex processes 
using symbolic expressions [19]. Another advantage of GP 
over other robust methods such as ANN is that it generates a 
transparent and structured representation of the system being 
modelled, without requiring a priori identification of the 
model structure [34]. This is unlike the ANN approach where 
the structure of the network and training algorithm have to be 
defined in advance, and only the optimization of the network 
parameters (weights and biases) are performed. However, in 
GP both the model structure and its parameters are being 
optimized, as they are both part of the search process [11]. 
This gives GP the ability to automatically identify the input 
variables that contribute beneficially to the model and 
disregard those that do not [15], thus reducing the 
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dimensionality of the model. Besides, GP evolves models 
capable of giving physical insight into the input-output 
interactions inherent in the modelled system, in contrast to the 
ANNs where difficulty still exists in extracting knowledge 
from the network parameters [35].  

On the other hand, GP has its own limitations. Principally, 
GP is not very powerful in finding constants, and more 
importantly, it tends to produce more complex functions as the 
forecast horizon increases [34]. 

III. CONCLUSION 
An extensive review of the principles and techniques for 

implementing the GP technique has been presented in this 
paper. Diverse applications of GP as it relates to the 
hydrological domain have also been showcased. It is evident 
from the applications presented that GP is capable of the 
solving complex hydrological modelling problems. GP has 
also been found to produce better prediction performance 
when investigated comparatively with other DDMs. As a 
result, the hydrological modelling community stands to benefit 
from the ample opportunities GP presents. Such opportunities 
include easy integration into other DDMs (model 
hybridization) for the purpose of complimentary modelling, 
coupling with process-based models to achieve uncertainty 
reduction and mitigation against sensitivity challenges as well 
as improvement of generalization ability of models under 
limited availability of datasets. Although some areas of 
concern have been identified in the implementation of GP in 
this review, the advantages derivable from its application, 
however, outweighs the drawbacks. These areas of concern 
will however give research direction to the hydrological 
modelling community and will continue to attract discussion 
in various spheres of soft computing; from the perspectives of 
IT experts to that of hydrological modellers.  
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