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Abstract—In this paper we present a GP-based method for 

automatically evolve projections, so that data can be more easily 
classified in the projected spaces. At the same time, our approach can 
reduce dimensionality by constructing more relevant attributes.  
Fitness of each projection measures how easy is to classify the 
dataset after applying the projection. This is quickly computed by a 
Simple Linear Perceptron.  We have tested our approach in three 
domains. The experiments show that it obtains good results, 
compared to other Machine Learning approaches, while reducing 
dimensionality in many cases. 
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I. INTRODUCTION 
HE idea of projecting data spaces into other, more 
relevant, spaces in order to improve classification tasks 

has been widely used under many names. For instance, 
Support Vector Machines implicitly project data into a high 
number of dimensions (even infinite) by means of kernel 
functions, so that they are more easily separable [1]. In other 
cases, projections are used to reduce the number of 
dimensions, and in many cases, to improve classification 
accuracy (Fisher Linear Discriminant, Principal Component 
Analysis,...). Similarly, projections can construct relevant 
attributes from low-level attributes or to reformulate the 
pattern recognition problem by constructing more relevant 
features (feature induction or constructive induction [2, 3, 4]). 
These new features can be either added to the original 
attribute set, or replace them. 

However, most projections are closed-forms (linear, 
polynomic, . . . ). It would be interesting to obtain the most 
appropriate projection for the case at hand, given a set of 
primitives. In this paper, we have used Genetic Programming 
(GP) to do so [5]. GP is a stochastic population-based search 
method devised in 1992 by John R. Koza. It is inspired in 
Genetic Algorithms, being the main difference with them the 
fact that in the later, chromosomes are used for encoding 
possible solutions to a problem and making them evolve until 
converging to a valid solution. GP, nevertheless, proposes the 
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idea of evolving whole computer programs. Within the scope 
of Evolutionary Algorithms, it exists a main reason for using 
GP in this problem: A projection is, in essence, a 
mathematical formula and so, its size and structure are not 
defined in advance. Thus, finding a codification that can fit a 
GA is a difficult problem. GP, nevertheless, does not impose 
restrictions to the size of evolved structures. There is another 
reason for using GP: its results are sometimes surprising, and 
may find some projection a human programmer might not 
think about. Finally, an advantage of GP is that some domain 
knowledge can be injected by selecting relevant primitives, 
whereas other Machine Learning methods use a predefined, 
unmodifiable set (neurons in NN, attribute comparisons in 
ID3,...). 

In this paper, we present a GP-based method for finding 
projections that increase, leave equal, or decrease the data 
space dimensions, so that classification in the projected space 
is improved. Fitness is determined by computing the degree of 
linear separation of data in the projected space. This has been 
implemented as a Linear Perceptron. We believe that, 
although more powerful classification methods (like C4.5, 
SVM, or NN) could be used, choosing a predictor with few 
degrees of freedom is an important decision: if we let GP to 
evolve any projection, and in addition, we use powerful 
classification scheme that can separate the projected data 
using complex surfaces, there is a large risk of overfitting. Of 
course, there are other ways of preventing overfitting, both in 
GP and in the classification method, but we prefer to try the 
simplest approach first. In addition, using simple methods 
means that fitness computation will be fast which is important 
in evolutionary computation. Also, other simple classification 
methods (like nearest neighbor) could be used, and will be 
tested in the future. 

The structure of this paper is as follows. Section II 
describes the approach. Then, Section III applies the method 
to several domains. Next, Section IV reports on the related 
work. And finally, Section V draws some conclusions and 
describes possible future research directions. 

II. DESCRIPTION OF THE METHOD 
We will learn from a set E of n examples expressed in a 

space U of N dimensions. Our objective is to be able to 
represent the examples in the space V, of P (projected) 
dimensions, and in which the examples will be linearly 
separable. P can be larger, equal, or smaller than N. 
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Anyway, the use of projections does not exclude the 
possibility of using this method with a set of examples 
expressed in a space U in which they already are linearly 
separable. In this case, our method can generate projections 
that take the examples to a space V of a smaller number of 
dimensions than U but maintaining linear separability. Thus, 
our method can have two different applications: on one hand, 
the improvement of classification tasks by means of a 
transformation of the dataset (towards higher, equal, or lower 
dimensionality); on the other hand, the reduction of 
dimensionality by constructing new attributes that are as good, 
at least, as the original ones. Of course, any combination of 
both applications fits our approach. 

Our method uses standard GP to evolve individuals made of 
P subtrees (as many as dimensions of the projected space V). 
Fitness is computed by measuring the degree of linear 
separation after applying the individual to the original data (in 
fact, projecting from U to V). The system stops if a 100% 
linear separation has been achieved or if the maximum 
number of generations is reached. Otherwise, the system 
outputs the individual that separated better the training data. 

For the implementation of our application, we have used 
Lilgp 1.1, the software package for Genetic Programming 
developed in Michigan State University by Douglas Zongker 
and Bill Punch, members of the group GARAGe (Genetic 
Algorithms Research and Applications Group) 
(http://garage.cse.msu.edu/). 

1) Terminal and function set. 
In our problem, terminal set will be formed by the attributes 

of the problem expressed in coordinates of U (u0, u1, ..., uN), 
and by the so-called Ephemeral Random Constants, which are 
randomly generated numerical constants that the program can 
use. 

The set of functions to use is difficult to determine: it must 
be sufficient for, along with the set of terminals, being able to 
express the solution to the problem, but, on the other hand, 
they must not be too many as for uselessly increase the search 
space. Of course, for different domains, different terminal and 
function sets will be more appropriate. We consider that the 
fact that they can be chosen is an advantage of GP over other 
methods. At this point, we have tested some generic sets, 
appropriate for numerical attributes: 

• Basic arithmetical functions: +, -, *, and / 
• Trigonometric Functions: sine, cosine, tangent, arcsine, 

arccosine and arctangent. 
• Square and square root. 
2) GP Individuals 

Instead of having individuals work with vectorial data and 
return a vector of P dimensions, every individual will contain 
P subtrees, using the same set of functions and terminals, that 
will be ran independently. Thus, a projection is going to 
consist of a series of trees labeled (v0, v1 ..., vM) that represent 
combinations of all the terminals (u0, u1 ..., uN) and functions. 
Actually, we use the lilgp mechanism for ADF (Automatically 
Defined Functions). That is, an individual is made of P ADF’s 
and no main program. It is the fitness function that calls each 

one of the independent (non-hierarchical) ADFs. It is 
important to remark this issue because crossover is 
homologous, in the sense that subtree vi from individual a will 
cross with subtree vi of individual b. This makes sense, 
because if different features in V are independent and even 
orthogonal, subtrees in vi will not be useful for subtrees in vj, 
and vice versa. If it is suspected that different features might 
share some code, the standard ADF approach (i.e. ADFs 
common to the P main subtrees) would be more efficient [6]. 
We will test the ADF approach in the future, but we believe 
that it is better to separate both approaches conceptually and 
experimentally. 

3) The fitness function 
We already have introduced the basic mechanism of the 

fitness function. It takes the examples expressed in space U, 
projects them using the GP individual, and obtains a point in 
space V with P coordinates. Next, a classification algorithm is 
applied to the projected data. In this case, we have chosen to 
apply a Simple Linear Perceptron. Adaline or a Fisher Linear 
Discriminant could have also be applied, but the SP is fast and 
stable enough. We have preferred to use simple classification 
schemes in order to avoid overfitting: if both GP projections 
and the classification scheme have a lot of degrees of freedom, 
overfitting should be expected. The Perceptron is run for 500 
cycles (experimentally we have checked that this is more than 
enough). If the SP converges, the projection would be 
producing a linear separation of the data and it would be the 
solution to the problem. If the SP does not converge, the 
fitness assigned to the individual is the number of examples 
that the SP has been able to correctly classify in the best cycle: 
if projected data is not linearly separable, the SP will oscillate. 
Storing the best value guarantees stability of the fitness value. 
This way, fitness measure is gradual enough and has the 
resolution necessary to be able to exert a real selective 
pressure. Pseudocode of the implemented fitness function is 
shown next: 
evaluate_fintness (individual) { 

for every instance i in the training data do 
read an instance expressed in U coordinates 
assign values to the terminals u0,u1,..,un 
express the instance in coordinates of V: 

examplesV[i].v0 = evaluate_tree 
(individual.tree[0]); 

examplesV[i].v1 = evaluate_tree 
(individual.tree[1]); 

... 
examplesV[i].vM = evaluate_tree 

(individual.tree[M]); 
classification_hits = perceptron (examplesV); 
fitness = classification_hits; 
return fitness; 

} 

III. EXPERIMENTAL VALIDATION 
In this paper, we have applied the approach to three 

domains: the first one is a simple synthetic domain with a 
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known solution. We have included this domain in this article 
because it helps to check the system and to visualize the 
results. The second one is a synthetic domain, the Ripley data 
set, widely used as a benchmark. Finally, the third one is the 
well-known, real-world domain Pima-Indians diabetes data set 
from UCI database. 

1) Synthetic Domain 
In order to verify the correct operation of our method and to 

make it more comprehensible, we have decided, as a previous 
step, to apply it to a toy domain composed of two datasets. In 
this domain the direct solution is known and the solution 
given by our method can be easily verified. Datasets Ellipse 
and EllipseRT were created with this purpose. Both are two-
class classification problems with 1000 two-dimensional 
points. In dataset Ellipse, the examples belonging to class 0 
are situated inside an ellipse that is centered in the origin, and 
whose focuses are placed at points (-10,0) and (10,0). Class 1 
instances are situated outside the ellipse. Dataset ElipseRT is 
similar, but the ellipse has been rotated and translated, being 
its focuses located at points (10, -10) and (1,7). 

We ran our application on the data set Ellipse with the 
following parameters: G = 500; M = 5000; function set = {+, -
, *, /, SQR, SQRT}. The number of dimensions selected for 
the projected space V is 2 in this case, due to considering 
them sufficient for a so simple problem. 

The graphical representation (not shown here) shows an 
almost perfect linear separability of projected data. A Simple 
Perceptron on the projected data obtains 100% accuracy.  

The same process was followed with dataset ElipseRT. 
Parameters for the execution stay the same, but this time, due 
to the greater complexity of the problem, the dimension of the 
projected space is 3. A Simple Perceptron applied to it obtains 
99,9% accuracy, which means that data has also been 
separated almost linearly. Fig. 1 displays the projected data. 
Points belonging to the inside of the ellipse appear blacker and 
placed in the bottom of the valley-like distribution, whereas 
points belonging to the outside appear grey, in the rest 
(upwards) of the figure. 

 

 
Fig. 1 Projected data for the rotated and translated ellipse. Two 

classes: black circles and grey squares 
 

2) Ripley Data Set 
This artificially generated dataset was used in [7]. Each 

pattern has two real-valued co-ordinates and a class that can 
be 0 or 1. Each class corresponds to a bimodal distribution 
that is a balanced composition of two normal distributions. 
Covariance matrices are identical for all the distributions and 
the centers are different. The training set has 1000 patterns 
and the test set has 250. This domain is interesting because 
there is a big overlap between both classes and the number of 
test examples is much bigger than the number of training 
patterns. On this domain, we have projected the data from its 
original two-dimensional space into a three-dimensional one 
were this data can be more easily classified. Five GP-runs 
were carried out. In all of them, GP has run for 350 
generations. 

TABLE I 
CLASSIFICATION RESULTS ON THE RIPLEY DATA SET 

 
 
Fig. 2 and Fig. 3 Ripley's data before and after applying the 

projection (the projection used is the best GP individual 
obtained in GP-run 2). The projected space has been projected 
itself to 2 dimensions (simply ignoring one coordinate), for 
visualization purposes. It can be observed that data can be, 
almost, linearly separated. 

 

 
Fig. 2 Original Ripley’s Data. Two classes: filled squares and empty 

squares 
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Fig. 3 Projected Ripley’s Data in 2-D. Two classes: filled squares 

and empty squares 
 

For comparison purposes, we have applied to this particular 
domain some well-tested tools from the Weka package. 
Results are displayed in Table 2. In any case, it is known that 
the Bayes error on this problem is 0.08% (that is, a 92% 
accuracy) and that complex Machine Learning techniques 
values around 92%. Thus, our projection method fares well in 
this problem compared to other Machine Learning methods 
(94.81% is definitely an optimistic estimation of the actual 
accuracy). 

 
TABLE II 

 SUMMARY OF EXPERIMENTS CARRIED OUT. 

 
 
3) Pima Indians Diabetes 

The Pima Indians Diabetes data set studies the influence of 
diabetes on the American population of Pima Indians. A 
population of women of Pima Indians was tested for diabetes 
in accordance with World Health Organization criteria. These 
data belongs to the National Institute of Diabetes and 
Digestive and Kidney Diseases and is part of the UCI 
database. The original data set is composed of 768 instances, 
with 8 numeric attributes and a class variable labeled 1 or 0 
showing whether diabetes was present. There are 268 
examples belonging to class 1 and 500 belonging to class 0. 
The original data set has been split into a training set with 576 
examples and a test set with 192 examples, maintaining the 
proportion between the examples of each class. Our method 
will project the data from its original eight-dimension space to 
a new three-dimensional one. Five GP-runs were carried out 
with different population sizes. In Table 3 we can see the 
classification accuracy obtained by the experiments. 

 
 
 
 
 

TABLE III 
CLASSIFICATION RESULTS ON THE PIMA INDIANS DIABETES DATA SET 

 
 
By taking the minimum value from training and test, it 

could be said that our method, with a few number of runs, 
achieves a 78.65% accuracy. In order to compare the method, 
we ran a support vector machine (SMO), the simple logistics 
algorithm, and the Multilayer Perceptron from the Weka tool. 
Results are displayed in Table IV. 

 
TABLE IV 

 SUMMARY OF EXPERIMENTS CARRIED OUT 

 
 
This domain has been very well researched. [8] applied 22 

algorithms, with 12-fold cross validation. The best result is 
77.7%, some other results being even below 70%. Therefore, 
the results obtained by our approach are comparable to other 
results shown in the literature. But it has to be remarked that 
dimensionality has been reduced from 8 to 3, maintaining 
similar results to other methods. 

IV. RELATED WORK 
In [10] the authors use typed GP for building feature 

extractors. Terminals are arithmetic and relational operators. 
Terminals are the original (continuous) attributes of the 
original dataset. Every individual is an attribute and the fitness 
function uses the info gain ratio. Testing results, using C4.5, 
show some improvements in some UCI domains. Our 
approach differs in that our individuals contain as many 
subtrees as new attributes to be constructed and that the fitness 
function measures the degree of linear separation in the 
training data. [11] follows a similar approach to ours, where 
every individual contains several subtrees, one per feature. 
C4.5 is used to classify in feature-space instead of the simple 
scheme (linear separation) we prefer here. Although the 
author reports very good results in some domains, we believe 
that allowing GP to find a projection and then using powerful 
classification schemes can lead rapidly to overfitting. Of 
course, there are other ways to reduce overfitting, both in GP 
and in the machine learning scheme. Also, in our experiments 
we do not limit ourselves to constructing new features and 
reducing dimensionality. Rather, our intent is to improve 
classification accuracy, and this can be done by reducing but 
also by increasing the number of dimensions, in the spirit of 
Support Vector Machines. Finally, their work allows to cross 
over subtrees from different features, whereas we use 
homologous crossover so that only subtrees from the same 
features from two individuals can be crossed over. We believe 
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that it would be desirable for constructed features to be 
independent and, even, orthogonal. Therefore, they should 
evolve independently and not allow to share code between 
features via crossover, as we do. This assumption might not 
work in all domains, but in any case, differences in empirical 
results should be expected with our approach. 

In [12], GP is used to evolve kernels for Support Vector 
Machines. Both scalar and vector operations are used in the 
function set. Fitness is computed from SVM performance 
using the GP-evolved kernel. The hyperplane margin is used 
as tiebreaker to avoid overfitting. No attempt is made so that 
kernel satisfies standard properties (like Mercer’s) but results 
in testing datasets are very good, compared to standard 
kernels. Instead of evolving distance or kernel functions, we 
evolve projections to spaces with larger, equal, or smaller 
number of dimensions. We believe that evolving actual 
distance functions or kernels is difficult, because some 
properties (like transitivity or Mercer’s) are not easy to impose 
in the fitness computation. 

In [13], Genetic Programming was used to construct 
features to classify time series. Individuals were made of 
several subtrees returning scalars (one per feature). The 
function set contained typical signal processing primitives 
(like convolution), statistical, and arithmetic operations. SVM 
was then used for classification in feature-space. Cross 
validation on training data was used as fitness function. The 
system did not outperform the SVM, but managed to reduce 
dimensionality. This means that it constructed good features to 
classify time series. However, only some specific time-series 
domains have been tested. Similarly, [14, 15] assembles 
image-processing primitives (edge-detectors, ...) to extract 
multiple features from the same scene to classify terrains 
containing objects of interest (golf courses, forests, etc.). 
Linear fixed-length representations for the GP trees are used. 
A Fisher Linear Discriminant is used for fitness computation. 
Results are quite encouraging but they restrict themselves to 
image-processing domains. 

Results from the bibliography show that, in general, the 
GP-projection approach has merit and obtains reasonable 
results, but more research in the subject is needed. New 
variations of the idea and more domains should be tested. 

 

V. CONCLUSIONS 
In this paper we have presented a GP-based method of 

automatically evolving projections, so that data can be more 
easily classified in the projected space. Every individual 
contains as many subtrees as dimensions in the projected 
space and are evolved independently. This is on purpose, as 
we want to evolve independent, and possibly orthogonal 
features, so we believe that they should not share code via 
crossover. Our approach can reduce dimensionality by 
constructing more relevant attributes, but also allows to 
increase dimensionality, in case classification is more feasible 
in higher dimensional spaces (in the spirit of Support Vector 

Machines). The fitness function projects the training data and 
computes the degree of linear separability by running a Simple 
Linear Perceptron. We have chosen a simple classification 
scheme because if GP is allow to evolve any projection, a 
complex classification scheme would add too many more 
degrees of freedom and lead easily to overfitting. Also, in 
evolutionary computation, it is desirable that the fitness 
function be fast to compute. 

We have tested our approach in three domains: a toy ellipse 
classification domain, the overlapping Ripley’s data and the 
UCI diabetes data. Some experiments reduced dimensionality, 
and some others increased it. Our method has obtained results 
comparable to other Machine Learning algorithms cited in the 
literature in most of the domains. In many cases, results are 
comparable, but dimensionality is greatly reduced. So, our 
method constructs good attributes from raw ones. 

In the future, we would like to automate most parameter 
adjustment tasks so that the user need only introduce the 
examples and he receives them expressed in a space V where 
classification accuracy is as good as possible. In particular, the 
system itself should decide the dimension (higher or lower) of 
the projected space. 

Clearly, overfitting is still a problem and we should modify 
the fitness function so that more realistic estimates are 
computed. Also, new ways of computing the fitness could be 
tested, by using other simple classification approaches like 
ADALINE, or nearest neighbor. In addition, we believe that 
more complex Machine Learning approaches could be used on 
the projected data, after evolution took place. That is, if near 
linear separability is achieved, it is likely that if a Neural 
Network is applied on the projected data, even better 
accuracies could be achieved. This was not the case on the 
domains tested here, probably because we were already on the 
limit of what could be obtained. But in other domains, this 
approach could work. We believe that this is better, with 
respect to overfitting, than using more complex classification 
schemes directly in the fitness function. 
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