
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2254

Abstract—In this paper we present a GP-based method for

automatically evolve projections, so that data can be more easily
classified in the projected spaces. At the same time, our approach can
reduce dimensionality by constructing more relevant attributes.
Fitness of each projection measures how easy is to classify the
dataset after applying the projection. This is quickly computed by a
Simple Linear Perceptron. We have tested our approach in three
domains. The experiments show that it obtains good results,
compared to other Machine Learning approaches, while reducing
dimensionality in many cases.

Keywords—Classification, Genetic Programming, projections.

I. INTRODUCTION
HE idea of projecting data spaces into other, more
relevant, spaces in order to improve classification tasks

has been widely used under many names. For instance,
Support Vector Machines implicitly project data into a high
number of dimensions (even infinite) by means of kernel
functions, so that they are more easily separable [1]. In other
cases, projections are used to reduce the number of
dimensions, and in many cases, to improve classification
accuracy (Fisher Linear Discriminant, Principal Component
Analysis,...). Similarly, projections can construct relevant
attributes from low-level attributes or to reformulate the
pattern recognition problem by constructing more relevant
features (feature induction or constructive induction [2, 3, 4]).
These new features can be either added to the original
attribute set, or replace them.

However, most projections are closed-forms (linear,
polynomic, . . .). It would be interesting to obtain the most
appropriate projection for the case at hand, given a set of
primitives. In this paper, we have used Genetic Programming
(GP) to do so [5]. GP is a stochastic population-based search
method devised in 1992 by John R. Koza. It is inspired in
Genetic Algorithms, being the main difference with them the
fact that in the later, chromosomes are used for encoding
possible solutions to a problem and making them evolve until
converging to a valid solution. GP, nevertheless, proposes the

Manuscript received July 15, 2005. This article has been financed by the

Spanish founded research MCyT project TRACER, Ref: TIC2002-04498-
C05-04M.

C. Estebanez, R. Aler and J. M. Valls are with the Department of Computer
Science, Universidad Carlos III de Madrid, Av. de la Universidad 30, 28911,
Leganés (Madrid), (e-mail: cesteban@inf.uc3m.es, aler@inf.uc3m.es,
jvalls@inf.uc3m.es).

idea of evolving whole computer programs. Within the scope
of Evolutionary Algorithms, it exists a main reason for using
GP in this problem: A projection is, in essence, a
mathematical formula and so, its size and structure are not
defined in advance. Thus, finding a codification that can fit a
GA is a difficult problem. GP, nevertheless, does not impose
restrictions to the size of evolved structures. There is another
reason for using GP: its results are sometimes surprising, and
may find some projection a human programmer might not
think about. Finally, an advantage of GP is that some domain
knowledge can be injected by selecting relevant primitives,
whereas other Machine Learning methods use a predefined,
unmodifiable set (neurons in NN, attribute comparisons in
ID3,...).

In this paper, we present a GP-based method for finding
projections that increase, leave equal, or decrease the data
space dimensions, so that classification in the projected space
is improved. Fitness is determined by computing the degree of
linear separation of data in the projected space. This has been
implemented as a Linear Perceptron. We believe that,
although more powerful classification methods (like C4.5,
SVM, or NN) could be used, choosing a predictor with few
degrees of freedom is an important decision: if we let GP to
evolve any projection, and in addition, we use powerful
classification scheme that can separate the projected data
using complex surfaces, there is a large risk of overfitting. Of
course, there are other ways of preventing overfitting, both in
GP and in the classification method, but we prefer to try the
simplest approach first. In addition, using simple methods
means that fitness computation will be fast which is important
in evolutionary computation. Also, other simple classification
methods (like nearest neighbor) could be used, and will be
tested in the future.

The structure of this paper is as follows. Section II
describes the approach. Then, Section III applies the method
to several domains. Next, Section IV reports on the related
work. And finally, Section V draws some conclusions and
describes possible future research directions.

II. DESCRIPTION OF THE METHOD
We will learn from a set E of n examples expressed in a

space U of N dimensions. Our objective is to be able to
represent the examples in the space V, of P (projected)
dimensions, and in which the examples will be linearly
separable. P can be larger, equal, or smaller than N.

Genetic Programming Based Data Projections
for Classification Tasks
César Estébanez, Ricardo Aler, and José M. Valls

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2255

Anyway, the use of projections does not exclude the
possibility of using this method with a set of examples
expressed in a space U in which they already are linearly
separable. In this case, our method can generate projections
that take the examples to a space V of a smaller number of
dimensions than U but maintaining linear separability. Thus,
our method can have two different applications: on one hand,
the improvement of classification tasks by means of a
transformation of the dataset (towards higher, equal, or lower
dimensionality); on the other hand, the reduction of
dimensionality by constructing new attributes that are as good,
at least, as the original ones. Of course, any combination of
both applications fits our approach.

Our method uses standard GP to evolve individuals made of
P subtrees (as many as dimensions of the projected space V).
Fitness is computed by measuring the degree of linear
separation after applying the individual to the original data (in
fact, projecting from U to V). The system stops if a 100%
linear separation has been achieved or if the maximum
number of generations is reached. Otherwise, the system
outputs the individual that separated better the training data.

For the implementation of our application, we have used
Lilgp 1.1, the software package for Genetic Programming
developed in Michigan State University by Douglas Zongker
and Bill Punch, members of the group GARAGe (Genetic
Algorithms Research and Applications Group)
(http://garage.cse.msu.edu/).

1) Terminal and function set.
In our problem, terminal set will be formed by the attributes

of the problem expressed in coordinates of U (u0, u1, ..., uN),
and by the so-called Ephemeral Random Constants, which are
randomly generated numerical constants that the program can
use.

The set of functions to use is difficult to determine: it must
be sufficient for, along with the set of terminals, being able to
express the solution to the problem, but, on the other hand,
they must not be too many as for uselessly increase the search
space. Of course, for different domains, different terminal and
function sets will be more appropriate. We consider that the
fact that they can be chosen is an advantage of GP over other
methods. At this point, we have tested some generic sets,
appropriate for numerical attributes:

• Basic arithmetical functions: +, -, *, and /
• Trigonometric Functions: sine, cosine, tangent, arcsine,

arccosine and arctangent.
• Square and square root.
2) GP Individuals

Instead of having individuals work with vectorial data and
return a vector of P dimensions, every individual will contain
P subtrees, using the same set of functions and terminals, that
will be ran independently. Thus, a projection is going to
consist of a series of trees labeled (v0, v1 ..., vM) that represent
combinations of all the terminals (u0, u1 ..., uN) and functions.
Actually, we use the lilgp mechanism for ADF (Automatically
Defined Functions). That is, an individual is made of P ADF’s
and no main program. It is the fitness function that calls each

one of the independent (non-hierarchical) ADFs. It is
important to remark this issue because crossover is
homologous, in the sense that subtree vi from individual a will
cross with subtree vi of individual b. This makes sense,
because if different features in V are independent and even
orthogonal, subtrees in vi will not be useful for subtrees in vj,
and vice versa. If it is suspected that different features might
share some code, the standard ADF approach (i.e. ADFs
common to the P main subtrees) would be more efficient [6].
We will test the ADF approach in the future, but we believe
that it is better to separate both approaches conceptually and
experimentally.

3) The fitness function
We already have introduced the basic mechanism of the

fitness function. It takes the examples expressed in space U,
projects them using the GP individual, and obtains a point in
space V with P coordinates. Next, a classification algorithm is
applied to the projected data. In this case, we have chosen to
apply a Simple Linear Perceptron. Adaline or a Fisher Linear
Discriminant could have also be applied, but the SP is fast and
stable enough. We have preferred to use simple classification
schemes in order to avoid overfitting: if both GP projections
and the classification scheme have a lot of degrees of freedom,
overfitting should be expected. The Perceptron is run for 500
cycles (experimentally we have checked that this is more than
enough). If the SP converges, the projection would be
producing a linear separation of the data and it would be the
solution to the problem. If the SP does not converge, the
fitness assigned to the individual is the number of examples
that the SP has been able to correctly classify in the best cycle:
if projected data is not linearly separable, the SP will oscillate.
Storing the best value guarantees stability of the fitness value.
This way, fitness measure is gradual enough and has the
resolution necessary to be able to exert a real selective
pressure. Pseudocode of the implemented fitness function is
shown next:
evaluate_fintness (individual) {

for every instance i in the training data do
read an instance expressed in U coordinates
assign values to the terminals u0,u1,..,un
express the instance in coordinates of V:

examplesV[i].v0 = evaluate_tree
(individual.tree[0]);

examplesV[i].v1 = evaluate_tree
(individual.tree[1]);

...
examplesV[i].vM = evaluate_tree

(individual.tree[M]);
classification_hits = perceptron (examplesV);
fitness = classification_hits;
return fitness;

}

III. EXPERIMENTAL VALIDATION
In this paper, we have applied the approach to three

domains: the first one is a simple synthetic domain with a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2256

known solution. We have included this domain in this article
because it helps to check the system and to visualize the
results. The second one is a synthetic domain, the Ripley data
set, widely used as a benchmark. Finally, the third one is the
well-known, real-world domain Pima-Indians diabetes data set
from UCI database.

1) Synthetic Domain
In order to verify the correct operation of our method and to

make it more comprehensible, we have decided, as a previous
step, to apply it to a toy domain composed of two datasets. In
this domain the direct solution is known and the solution
given by our method can be easily verified. Datasets Ellipse
and EllipseRT were created with this purpose. Both are two-
class classification problems with 1000 two-dimensional
points. In dataset Ellipse, the examples belonging to class 0
are situated inside an ellipse that is centered in the origin, and
whose focuses are placed at points (-10,0) and (10,0). Class 1
instances are situated outside the ellipse. Dataset ElipseRT is
similar, but the ellipse has been rotated and translated, being
its focuses located at points (10, -10) and (1,7).

We ran our application on the data set Ellipse with the
following parameters: G = 500; M = 5000; function set = {+, -
, *, /, SQR, SQRT}. The number of dimensions selected for
the projected space V is 2 in this case, due to considering
them sufficient for a so simple problem.

The graphical representation (not shown here) shows an
almost perfect linear separability of projected data. A Simple
Perceptron on the projected data obtains 100% accuracy.

The same process was followed with dataset ElipseRT.
Parameters for the execution stay the same, but this time, due
to the greater complexity of the problem, the dimension of the
projected space is 3. A Simple Perceptron applied to it obtains
99,9% accuracy, which means that data has also been
separated almost linearly. Fig. 1 displays the projected data.
Points belonging to the inside of the ellipse appear blacker and
placed in the bottom of the valley-like distribution, whereas
points belonging to the outside appear grey, in the rest
(upwards) of the figure.

Fig. 1 Projected data for the rotated and translated ellipse. Two

classes: black circles and grey squares

2) Ripley Data Set
This artificially generated dataset was used in [7]. Each

pattern has two real-valued co-ordinates and a class that can
be 0 or 1. Each class corresponds to a bimodal distribution
that is a balanced composition of two normal distributions.
Covariance matrices are identical for all the distributions and
the centers are different. The training set has 1000 patterns
and the test set has 250. This domain is interesting because
there is a big overlap between both classes and the number of
test examples is much bigger than the number of training
patterns. On this domain, we have projected the data from its
original two-dimensional space into a three-dimensional one
were this data can be more easily classified. Five GP-runs
were carried out. In all of them, GP has run for 350
generations.

TABLE I
CLASSIFICATION RESULTS ON THE RIPLEY DATA SET

Fig. 2 and Fig. 3 Ripley's data before and after applying the

projection (the projection used is the best GP individual
obtained in GP-run 2). The projected space has been projected
itself to 2 dimensions (simply ignoring one coordinate), for
visualization purposes. It can be observed that data can be,
almost, linearly separated.

Fig. 2 Original Ripley’s Data. Two classes: filled squares and empty

squares

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2257

Fig. 3 Projected Ripley’s Data in 2-D. Two classes: filled squares

and empty squares

For comparison purposes, we have applied to this particular
domain some well-tested tools from the Weka package.
Results are displayed in Table 2. In any case, it is known that
the Bayes error on this problem is 0.08% (that is, a 92%
accuracy) and that complex Machine Learning techniques
values around 92%. Thus, our projection method fares well in
this problem compared to other Machine Learning methods
(94.81% is definitely an optimistic estimation of the actual
accuracy).

TABLE II

 SUMMARY OF EXPERIMENTS CARRIED OUT.

3) Pima Indians Diabetes

The Pima Indians Diabetes data set studies the influence of
diabetes on the American population of Pima Indians. A
population of women of Pima Indians was tested for diabetes
in accordance with World Health Organization criteria. These
data belongs to the National Institute of Diabetes and
Digestive and Kidney Diseases and is part of the UCI
database. The original data set is composed of 768 instances,
with 8 numeric attributes and a class variable labeled 1 or 0
showing whether diabetes was present. There are 268
examples belonging to class 1 and 500 belonging to class 0.
The original data set has been split into a training set with 576
examples and a test set with 192 examples, maintaining the
proportion between the examples of each class. Our method
will project the data from its original eight-dimension space to
a new three-dimensional one. Five GP-runs were carried out
with different population sizes. In Table 3 we can see the
classification accuracy obtained by the experiments.

TABLE III
CLASSIFICATION RESULTS ON THE PIMA INDIANS DIABETES DATA SET

By taking the minimum value from training and test, it

could be said that our method, with a few number of runs,
achieves a 78.65% accuracy. In order to compare the method,
we ran a support vector machine (SMO), the simple logistics
algorithm, and the Multilayer Perceptron from the Weka tool.
Results are displayed in Table IV.

TABLE IV

 SUMMARY OF EXPERIMENTS CARRIED OUT

This domain has been very well researched. [8] applied 22

algorithms, with 12-fold cross validation. The best result is
77.7%, some other results being even below 70%. Therefore,
the results obtained by our approach are comparable to other
results shown in the literature. But it has to be remarked that
dimensionality has been reduced from 8 to 3, maintaining
similar results to other methods.

IV. RELATED WORK
In [10] the authors use typed GP for building feature

extractors. Terminals are arithmetic and relational operators.
Terminals are the original (continuous) attributes of the
original dataset. Every individual is an attribute and the fitness
function uses the info gain ratio. Testing results, using C4.5,
show some improvements in some UCI domains. Our
approach differs in that our individuals contain as many
subtrees as new attributes to be constructed and that the fitness
function measures the degree of linear separation in the
training data. [11] follows a similar approach to ours, where
every individual contains several subtrees, one per feature.
C4.5 is used to classify in feature-space instead of the simple
scheme (linear separation) we prefer here. Although the
author reports very good results in some domains, we believe
that allowing GP to find a projection and then using powerful
classification schemes can lead rapidly to overfitting. Of
course, there are other ways to reduce overfitting, both in GP
and in the machine learning scheme. Also, in our experiments
we do not limit ourselves to constructing new features and
reducing dimensionality. Rather, our intent is to improve
classification accuracy, and this can be done by reducing but
also by increasing the number of dimensions, in the spirit of
Support Vector Machines. Finally, their work allows to cross
over subtrees from different features, whereas we use
homologous crossover so that only subtrees from the same
features from two individuals can be crossed over. We believe

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2258

that it would be desirable for constructed features to be
independent and, even, orthogonal. Therefore, they should
evolve independently and not allow to share code between
features via crossover, as we do. This assumption might not
work in all domains, but in any case, differences in empirical
results should be expected with our approach.

In [12], GP is used to evolve kernels for Support Vector
Machines. Both scalar and vector operations are used in the
function set. Fitness is computed from SVM performance
using the GP-evolved kernel. The hyperplane margin is used
as tiebreaker to avoid overfitting. No attempt is made so that
kernel satisfies standard properties (like Mercer’s) but results
in testing datasets are very good, compared to standard
kernels. Instead of evolving distance or kernel functions, we
evolve projections to spaces with larger, equal, or smaller
number of dimensions. We believe that evolving actual
distance functions or kernels is difficult, because some
properties (like transitivity or Mercer’s) are not easy to impose
in the fitness computation.

In [13], Genetic Programming was used to construct
features to classify time series. Individuals were made of
several subtrees returning scalars (one per feature). The
function set contained typical signal processing primitives
(like convolution), statistical, and arithmetic operations. SVM
was then used for classification in feature-space. Cross
validation on training data was used as fitness function. The
system did not outperform the SVM, but managed to reduce
dimensionality. This means that it constructed good features to
classify time series. However, only some specific time-series
domains have been tested. Similarly, [14, 15] assembles
image-processing primitives (edge-detectors, ...) to extract
multiple features from the same scene to classify terrains
containing objects of interest (golf courses, forests, etc.).
Linear fixed-length representations for the GP trees are used.
A Fisher Linear Discriminant is used for fitness computation.
Results are quite encouraging but they restrict themselves to
image-processing domains.

Results from the bibliography show that, in general, the
GP-projection approach has merit and obtains reasonable
results, but more research in the subject is needed. New
variations of the idea and more domains should be tested.

V. CONCLUSIONS
In this paper we have presented a GP-based method of

automatically evolving projections, so that data can be more
easily classified in the projected space. Every individual
contains as many subtrees as dimensions in the projected
space and are evolved independently. This is on purpose, as
we want to evolve independent, and possibly orthogonal
features, so we believe that they should not share code via
crossover. Our approach can reduce dimensionality by
constructing more relevant attributes, but also allows to
increase dimensionality, in case classification is more feasible
in higher dimensional spaces (in the spirit of Support Vector

Machines). The fitness function projects the training data and
computes the degree of linear separability by running a Simple
Linear Perceptron. We have chosen a simple classification
scheme because if GP is allow to evolve any projection, a
complex classification scheme would add too many more
degrees of freedom and lead easily to overfitting. Also, in
evolutionary computation, it is desirable that the fitness
function be fast to compute.

We have tested our approach in three domains: a toy ellipse
classification domain, the overlapping Ripley’s data and the
UCI diabetes data. Some experiments reduced dimensionality,
and some others increased it. Our method has obtained results
comparable to other Machine Learning algorithms cited in the
literature in most of the domains. In many cases, results are
comparable, but dimensionality is greatly reduced. So, our
method constructs good attributes from raw ones.

In the future, we would like to automate most parameter
adjustment tasks so that the user need only introduce the
examples and he receives them expressed in a space V where
classification accuracy is as good as possible. In particular, the
system itself should decide the dimension (higher or lower) of
the projected space.

Clearly, overfitting is still a problem and we should modify
the fitness function so that more realistic estimates are
computed. Also, new ways of computing the fitness could be
tested, by using other simple classification approaches like
ADALINE, or nearest neighbor. In addition, we believe that
more complex Machine Learning approaches could be used on
the projected data, after evolution took place. That is, if near
linear separability is achieved, it is likely that if a Neural
Network is applied on the projected data, even better
accuracies could be achieved. This was not the case on the
domains tested here, probably because we were already on the
limit of what could be obtained. But in other domains, this
approach could work. We believe that this is better, with
respect to overfitting, than using more complex classification
schemes directly in the fitness function.

REFERENCES
[1] N. Cristianini and J. Shawe-Taylor. An introduction to Support Vector

Machines (and other kernel-based learning methods). Cambridge
University Press, 2000.

[2] T. Fawcett and P. Utgoff. A hybrid method for feature generation. In
Proceedings of the Eighth International Workshop on Machine Learning,
pages 137– 141, Evanston, IL.

[3] S. Kramer. Cn2-mci: A two-step method for constructive induction. In
Proceedings of ML-COLT’94.

[4] B. Pfahringer. Cipf 2.0: A robust constructive induction system. In
Proceedings of ML-COLT’94, 1994. W. D. Doyle, “Magnetization
reversal in films with biaxial anisotropy,” in 1987 Proc. INTERMAG
Conf., pp. 2.2-1–2.2-6. G. W. Juette and L. E. Zeffanella, “Radio noise
currents n short sections on bundle conductors (Presented Conference
Paper style),” presented at the IEEE Summer power Meeting, Dallas,
TX, June 22–27, 1990, Paper 90 SM 690-0 PWRS.

[5] John R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, Cambridge, MA,
USA, 1992.

[6] John R. Koza. Genetic Programming II: Automatic Discovery of
Reusable Programs. MIT Press, Cambridge Massachusetts, May 1994.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2259

[7] B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge:
Cambridge University Press, 1996.

[8] D. Michie, D. J. Spiegelhalter, and C.C. Taylor. Machine learning,
neural and statistical classification. Ellis Horwood, 1994.

[9] Benjamin Blankertz, Gabriel Curio, and Klaus-Robert M¨uller.
Classifying single trial eeg: Towards brain computer interfacing. In
Advances in Neural Inf. Proc. Systems 14 (NIPS 01), 2002.

[10] Fernando E. B. Otero, Monique M. S. Silva, Alex A. Freitas, and Julio
C. Nievola. Genetic programming for attribute construction in data
mining. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang,
Riccardo Poli, and Ernesto Costa, editors, Genetic Programming,
Proceedings of EuroGP’2003, volume 2610 of LNCS, pages 389–398,
Essex, 14-16 April 2003. Springer-Verlag.

[11] Krzysztof Krawiec. Genetic programming-based construction of features
for machine learning and knowledge discovery tasks. Genetic
Programming and Evolvable Machines, 3(4):329–343, December 2002.

[12] Tom Howley and Michael G. Madden. The genetic kernel support
vector machine: Description and evaluation. Artificial Intelligence
Review, To appear, 2005.

[13] S. Davis S. Perkins J. Ma R. Porter D. Eads, D. Hill and J. Theiler.
Genetic algorithms and support vector machines for time series
classification. In Proceedings SPIE 4787 Conference on Visualization
and Data Analysis, pages 74–85, 2002.

[14] John J. Szymanski, Steven P. Brumby, Paul Pope, Damian Eads, Diana
Esch-Mosher, Mark Galassi, Neal R. Harvey, Hersew D. W. McCulloch,
Simon J. Perkins, Reid Porter, James Theiler, A. Cody Young, Jeffrey J.
Bloch, and Nancy David. Feature extraction from multiple data sources
using genetic programming. In Sylvia S. Shen and Paul E. Lewis,
editors, Algorithms and Technologies for Multispectral, Hyperspectral,
and Ultraspectral Imagery VIII, volume 4725 of SPIE, pages 338–345,
August 2002.

[15] Neal R. Harvey, James Theiler, Steven P. Brumby, Simon Perkins, John
J. Szymanski, Jeffrey J. Bloch, Reid B. Porter, Mark Galassi, and A.
Cody Young. Comparison of GENIE and conventional supervised
classifiers for multispectral image feature extraction. IEEE Transactions
on Geoscience and Remote Sensing, 40(2):393–404, February 2002.

