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Abstract—Genetic Folding (GF) a new class of EA named as is 

introduced for the first time. It is based on chromosomes composed 
of floating genes structurally organized in a parent form and 
separated by dots. Although, the genotype/phenotype system of GF 
generates a kernel expression, which is the objective function of 
superior classifier. In this work the question of the satisfying 
mapping’s rules  in evolving populations is addressed by analyzing 
populations undergoing either Mercer’s or none Mercer’s rule. The 
results presented here show that populations undergoing Mercer’s 
rules improve practically models selection of Support Vector 
Machine (SVM). The experiment is trained multi-classification 
problem and tested on nonlinear Ionosphere dataset. The target of this 
paper is to answer the question of evolving Mercer’s rule in SVM 
addressed using either genetic folding satisfied kernel’s rules or not 
applied to complicated domains and problems.  
 

Keywords—Genetic Folding, GF, Evolutionary Algorithms, 
Support Vector Machine, Genetic Algorithm, Genetic Programming, 
Multi-Classification, Mercer’s Rules  

I. INTRODUCTION 
HIS document The feature mapping space [1] is a 
technique of extending the linear models to produce 

nonlinear models. The complexity of detecting linear relations 
to be learned depends on the way it is represented in the 
feature space. Ideally a representation of linear models that 
matches a specific problem should be chosen in the produced 
feature space. Therefore, one can map a nonlinear problem 
from input space to a new high dimensional space (called 
feature space) using suitable mapping functions to use a linear 
model in the feature space. This mapping function is chosen in 
advance and may be defined as 
 

'
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This step is equivalent to mapping the input space nℜ into a 
new space mℜ .  Such mappings are corresponding the 
positive definite kernels and leads to solving a quadratic 
optimization problem with similar constraints as in H.   
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Figure 1 shows an example of a feature mapping from a two 
dimensional input space to a two dimensional feature space, 
where the data cannot be separated by a linear SVM function 
in the input space, but can be in the feature space. The figure 
also shows the main components of the mapping function 
where the task of choosing the most suitable kernel and its 
parameters is known as model selection problems. 
 

 
Fig. 1 A feature mapping space can simplify the input space 

 
Consider an input data is referred to as the input space T, 

while }:)({ XxxH ∈= φ  is called the feature space. Usually, 
the dimension in H is much higher than in T. In fact, mapping 
data into higher space is simplify the task that has been known 
for a long time in ML, and then raises number of techniques 
for selecting the best representation of models. The decision 
function of mapping data can be expressed as: 
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where w being normal vector  to the hyperplane and b being 

the perpendicular distance of the hyperplane from the origin. 
However, in computational problems, the choice of )(xΦ , 
curse of dimensionality and difficulties of generalization of 
the models can be sensitive when performing such a mapping 
[4, 49]. These problems are avoided in SVM in somehow by 
means of the ‘implicit mapping' described in the next section. 

In this paper, GF is applied for generating new kernel 
functions in SVM. Then, it is compared either undergoing to 
Mercer’s rule techniques or not. The rest of the paper is 
organized as follows: support vector classification is 

Genetic Folding: Analyzing the Mercer’s 
Kernels Effect in Support Vector Machine using 

Genetic Folding
Mohd A. Mezher, Maysam F. Abbod 

T 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

261

 

 

introduced in brief in Section 2. Making kernels structure is 
presented in Section 3. Details of model selection problems 
are shown in Section 4. An introduction of genetic folding 
algorithm is briefed introduced in Section 5. Experimental 
results on benchmark problems are given in Section 6. The 
conclusion of the paper comes later. 

II.  SUPPORT VECTOR CLASSIFICATION 
SVC, class of SVM [1], classifies data by determining a set 

of Support Vectors (SVs) that outline a hyperplane in feature 
space. In general, produced classifier has the properties of 
maximizing the margin and minimizing the generalization 
error, based on a chosen kernel. Kernel functions improve the 
classifier's generalization capability, and it may affect the 
classification accuracy. However, finding a kernel function to 
fit a problem is not an easy mission.  Therefore, diverse 
mechanisms have been investigated; some used predefined 
kernel functions such as Radial Base Function (RBF), others 
used Evolutionary Algorithm (EA) mechanisms. For a 
problem in binary classification let 
 

 )),)...(,(( 11 nn lxlxT =  Since, }1,1{, +−∈ℜ∈ lx m        (3) 

 
Suppose ix  is n-dimensional input data and il   corresponds 

to the class associated with ix . The task of classification 

function )(xf  is to learn mapping ii lx → using the training 

data ( x , l ) in T. SVM classifies data by constructing a 
hyperplane satisfies 0. =+>< bxw . SVM classifier finds SV 
points where are lying on l+  and l−  hyperplane with 
maximum margin and minimum classification errors between 
them. On the other hand, non-linearly separable dataset, SVM 
introduces a slack variable ξ  to accept some errors and C is a 
cost parameter controls the compromise between training error 
and classifier complexity. Formally, the following primal 
optimization problem to be solved 
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To transform this optimisation problem into its 
corresponding dual Lagrangian problem,  
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where α  is Lagrange multiplier. Consider z is a new sample 
to be classified. Therefore, the discriminate function will be: 
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SVM proved to be a promising classification algorithm in 
different fields. However, SVM has a risk in selecting 
optimum kernel function to be fitted to the problem in hand. 

III. MAKING KERNELS 
In general, decision function cannot expect to obtain a very 

firm hyperplane i.e. tight to SV’s points. Normally, real-world 
data are not linearly separable, even when the most outlying 
attributes are ignored [21]. However, SVM is stated 
completely in terms of inner products between vectors, and 
then the inner products can be replaced by a kernel function to 
be more flexible and stable. The kernel >< ji xxK , again, 

maps the attributes implicitly into some feature space and then 
a suitable feature space is obtained. Since no explicit mapping 
is required, the problem is expressed completely in terms of 
finding fitted kernel function and its parameters in that feature 
space. Selecting proper kernel functions and free parameters to 
be fitted to the problem is very common problem in SVM. 

 

 
Fig. 2 Making kernels functions 

 
 Since the kernels have characterizations are required to be 

satisfied. The Figure 2 shows a cycle of the kernel’s life are 
needed to testify the rules. The figure also shows that 
published works have been dedicated recently by using the 
cycle’s component to develop new kernels function with their 
models. Some of the published work have used symmetric 
kernel matrix to produce a classifier in the feature space 
without satisfying other rules [6] especially Mercer’s rule [3-
5]. However, these approaches are developed EAs to combine 
standard SVM with either Genetic Algorithm [2, 8-9] or 
Genetic Programming [3-7] to produce new kernels. Some of 
these works have been recombined predefined kernels with 
either arithmetic or logical operators. Furthermore, in this 
paper, kernel functions that have been experimented satisfying 
all the rules shown in Figure 2, and it has been transferable 
easily to none satisfied rules. 

In practical, the only information available to the in hand 
experiment is about the training data. The use of kernels is to 
map these data implicitly into a feature space and to train a 
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linear machine in such a space. The key to this approach is to 
find a kernel function that can be evaluated efficiently in that 
space. Once we computed the inner product 〉〈 ji xx , in 

feature space, it becomes possible to build a non-linear 
learning machine. A direct computation method is called 
kernel matrix. 

Definition 1.Kernel Matrix (Gram Matrix) [1] given a 
function K to evaluate the inner products in a feature space 
with feature map φ such that for all mmRK ×∈ and mXx ∈  

a kernel matrix is defined for a set of vectors },...,{ 1 mxx  as: 
 

),()(),(][ , jijiji xxkxxK == φφ                         (7) 

 
Moreover, the mapping function must be symmetric, and 

positive definite. Consider a finite input space 
},...,{ 1 mxxX = and suppose ),( ji xxk is a symmetric function 

on X, then the Mercer’s theorem is defined as in definition 2. 
Definition 2. Mercer’s Rule [22] is a series of 

representation for kernels used to describe the corresponding 
Reproducing Kernel Hilbert Space (RKHS) for a symmetric 
function ),( ji xxK  on X, then there exists a kernel function 

such that >=< jiji xxxxK ,),(  if and only if the matrix is 

positive semi-definite: 
 

n
jijiji xxKK 1,, )),((][ ==                                             (8) 

 
This means for all mR∈α  there are non-negative 

eigenvalues such as: 
 

0, ≥〉〈 αα K                                                                 (9) 
 

IV. MODEL SELECTION 
The reformulation of kernels is critical to generalize a 

classifier that maximizing the margin and minimizing the 
test’s error. For example; the polynomial kernel and its degree 
are effected the classifier generalization and the performance’s 
results. This is due to the fact that different feature space 
results from different kernel functions and parameters in the 
original input space [2]. The downside of this, however, is that 
choosing kernel function and its parameters may be difficult or 
impossible. The large number of selection for a specific 
classifier causes problems both for requiring long memory and 
computational time due to the complexity of determining an 
obtainable model of a priori high dimensional dataset. In 
particular, in SVM, the learning of approximating functions is 
expressed as a specific model selection task which has to be 
found for a desired classifier. 

In order to obtain an accurate classifier, SVM provides a 
number of control parameters that have to be tuned through 
given problems. The efficiency of a classifier is affected by 

the non-linear kernel function and their parameters [20]. 
Therefore, the control of fitting model selection in SVM is 
combined by a specific kernel and its parameters. However, 
the kernel-parameters are the few tunable settings in SVMs 
controlling the complexity of the resulting hypothesis [2]. In 
[12], stated that the selection models play a crucial role in 
building a prediction model with high accuracy and stability. 
In general, the aim of EA is to tune the hyper-parameters of 
SVM in order to achieve highest fitness value. The recent 
approaches for model selection can be distinguished into two 
common methodologies. First approach is the re-sampling 
techniques such as cross-validation search [12, 19], while 
second approach is involved by using one of the EAs 
algorithms [1, 3-9]. 

However, some works incorporate a priori fixed model 
selection into the learning method. Some has been used a 
polynomial kernel, RBF kernel and a Gaussian kernel widely. 
There is also another estimation method for model selection 
called grid search [19]. In [18], Vapnik mentioned that a 
different degree of values a different feature is computed and 
influenced. Although such model selection problem has got 
researchers’ attention, new frameworks to analysis such these 
rules is still a challenging problem as mentioned. 

V.  GENETIC FOLDING ALGORITHM 
Genetic Folding (GF) [16-17] is a novel algorithm inspired 

by the folding mechanism in the RNA sequence. GF can 
represent an NP problem using a simple array of floating 
number instead of using a tree structure. GF starts with 
generating an initial population of randomly compound of 
arithmetic operations. Then, valid chromosomes (expression) 
will be evaluated. In this case, each chromosome has a fitness 
value depends on the fitness function we develop. The 
chromosome is then selected by the roulette wheel. After that, 
the fittest chromosome is subjected to the genetic operators to 
generate new populations in an independent way. In each 
population, the chromosomes are also subjected to a filter to 
check the validity of the chromosome. The genetic operators 
we used are the one-point crossover and the swap mutation 
operators. The whole process is repeated waiting for the 
optimum chromosome (kernel) to be achieved. 

The chromosomes in GF are considered as the main 
distinguished structure in the algorithm. The chromosome can 
be represented as an individual (solution) in the search space. 
The main components of the GF chromosome are that each 
gene has three parts to be considered. The three parts are: an 
index number of the gene in the chromosome (father) and two 
points inside the gene (children). However, in the GF 
algorithm we included seven arithmetic operators to be 
conducted in our search [16-17]. The arithmetic operators are 
both one operand operator (sine, cosine, tanh, log) and two 
operands operator (plus, minus, multiply).  

In general, GF encodes any equation by dividing it to two 
sides (left and right sides) and every time each side is divided 
into other divisions until a chromosome formed. This process 
depends on the property of the arithmetic operations used. The 
chromosome is formed by starting with the high property term 
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(e.g. the division operator) to end up with the less property 
values (terminals). In the meantime, the gene’s structure has 
two components to be considered; the left side (ls) number and 
the right side (rs) number which represents the left and the 
right child respectively. However, there are three types of 
father’s relationships; two children (two operands), one child 
(one operand) and no child (terminal).  

In the meantime, to decode a chromosome, take the first 
gene which has two divisions. Suppose, the first father is an 
operator, therefore, it has two children. The children have 
operands; ls child and rs child. This process is defined as 
folding, for the way of folding the ls child (minus) and the rs 
child (multiply) over the father cell (plus). Repeatedly, for 
each father, one has a number of children to be called every 
time. However, GF encoding/decoding [16-17] is continuing 
until a kernel function is represented. Even though GF may 
use different genetic operators [14, 16-17], this work presents 
two types of operators to create new solutions in the search 
space; one point crossover and swap mutation operator. The 
new valid expression formulates the SVM kernel function 
using the arithmetic operators were conducted shown better 
results for valid expression satisfied the kernel’s rules. 

VI. EXPERIMENTAL DESIGN 
This section provides a detailed description of our 

experimental design. The experiments were conducted to 
analysis the efficiency/accuracy of satisfying the kernel’s rules 
or without. The experimental results of SVM employs GF 
undergoes into either satisfied rules or not have been 
compared. The Ionosphere dataset considered in this 
experiment is appropriate to investigation the GF system since 
intermediate number of samples and high number of features 
(351×34). Leave N out of five cross-validations was used. In 
this case, we defined N as 10% for the testing data and 90% 
for the training data. Each time of the training/testing datasets, 
independently set of GF individuals conducted and evaluated. 

The GF experiments utilize some functions from GPLAB 
toolbox [10]. The toolbox employs different types of 
arithmetic operators. Even though, GPLAB toolbox is not 
introduced for SVM and kernel function satisfied Mercer’s 
rule for new solutions, the toolbox is developed to include GF 
concepts to draws GP’s tree structure. Then, the proposed 
algorithm is compared by using the rules or without.  

By the way, GF draws numbers of GF chromosomes have 
been found using SAMR operator [14]. Several parameters of 
values may be considered here, however, the main purpose 
here is to show a comparison between chromosomes have 
been defined either by using basic math’s operator or with 
trigonometric operators undergo to either with kernel’s rules 
or not. Table II shows complex chromosomes were folded 
with high accuracy values. The examination in the table shows 
also the importance of the operators which may affect the 
quality of solutions in GF chromosomes.  

However, GF is compared by either using Mercer’s rule or 
none Mercer’s rule and it is experienced with Ionosphere 
dataset. GF methods used here is the palindrome method [15] 

which depends on numbering the terminals with their proper 
indices. Here, in this experiment is comparisons between GF 
algorithm satisfied Mercer’s rules or not satisfied Mercer’s 
rule is conducted. However, for comparison purposes, each 
GF chromosome was represented in GP tree structure by using 
GPLab package. The experiment shows different levels of 
comparisons have been included: fitness values, population 
diversity, Pareto front and the final produced kernel function. 
However, 50 generations with 20 individuals are built-in with 
basic and advanced math operators. In general, GF using 
Mercer’s rule was able to converge more rapidly than without 
satisfied Mercer’s rule. In addition, GF has obtained on 
optimum kernel function with less number of diversity (Figure 
3(a)) and nodes (Figure 4(a)).  

However, the accuracy values have been converging earlier 
in Figure 3(a) and better than without rules satisfied as in 
Figure 3(b). GF using Mercer’s rule have drawn optimum 
kernel functions in Figure 6(a) with small number of diversity 
in the chromosomes over generations as shown in Figure 4(a). 
Figure 4 shows a good started accuracy value but with a better 
value in Figure 4(a). 

 
TABLE I 

GF CHROMOSOME OF IONOSPHERE DATASET USING ALL MATH OPERATORS 
No GP Sequence/ GF Sequence Accuracy 

1 sine(tanh(X,minus_s(Y,X)),minus_v(sine(Y,X),tanh(

X,Y))) 

 

1 2.7    3.4      0.2    5.6     0.4     0.4    8.11    9.10      

0.8       0.8   12.13        0.12         0.12      0.12 

64.52 

5 sine(tanh(X,minus_s(Y,X)),minus_v(sine(X,Y),tanh(

X,Y))) 

 

5 2.7    3.4      0.2    5.6     0.4     0.4    8.11    9.10      

0.8       0.8   12.13        0.12         0.12      0.12 

64.52 

10 sine(tanh(X,minus_s(Y,X)),Y)  

10 2.7    3.4       0.2    5.6         0.4         0.4         0.1   84.90 

15 sine(tanh(X,minus_s(Y,X)),Y)  

15 2.7    3.4       0.2    5.6         0.4         0.4         0.1     84.90 

20 sine(tanh(X,minus_s(Y,X)),Y)  

20 2.7    3.4       0.2    5.6         0.4         0.4         0.1   84.90 

25 sine(tanh(X,minus_s(Y,X)),Y)  

25 2.7    3.4       0.2    5.6         0.4         0.4         0.1   84.90 

30 sine(X,Y)  

30 2.3   0.1   0.1 87.17 

35 sine(X,Y)  

35 2.3   0.1   0.1 87.17 

40 sine(X,Y)  

40 2.3   0.1   0.1 87.17 

50 sine(X,Y)  

50 2.3   0.1   0.1 88.60 
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(a) GF with Mercer’s Rule                            (b) GF without Mercer’s Rule 

Fig 3 GF using Mercer’s Rule or without Comparison to the Fitness Values 
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(a) GF with Mercer’s Rule           (b) GF without Mercer’s Rule 

Fig 4 GF using Mercer’s Rule or without Comparison to the Diversity 
 

        
(a) GF with Mercer’s Rule             (b) GF without Mercer’s Rule 

Fig 5 GF using Mercer’s rule or without Comparison to the Pareto Front 
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(a) GF with Mercer’s Rule 

 
    (b) GF without Mercer’s Rule 

Fig 6 GF using Mercer’s Rule or without Comparison the Predicted 
Optimum Tree Structure 

 

VII. CONCLUSION 
The question of evolving Mercer’s rule in SVM was 

addressed using genetic folding. Due to the varied set of 
Math’s operators and the high efficiency of the algorithm, it 
was possible to compare dissimilarly performing systems such 
as implementing kernels under Mercer’s rule and seven 
Math’s operators. The capability to introduce new kernel 
function allows GF to produce an accurate classifier for multi-
classification problems. As most existing solutions either 
search evolutionary for models rely either on kernels or 
parameters, this analysis can help understand the different of 
applying kernel’s rules satisfied Mercer’s rule or not. 

GF comes with many advantages state as; dynamic 
chromosomes, energetic GF operators also saving time and 
space of the memory. However, one main advantage shown 
here is the ability to predict new solutions early. The standard 
SVM has been conducted using GF algorithm for analyzing 
kernel’s rules satisfied or not. The experimentation results 
show a promising outcome of GF in Ionosphere classification 
datasets in comparison to GP algorithms without satisfying the 
rules. Future improvements will involve the kernel’s 
parameters instead of just using the involved produced kernels 
in the input space. GF for other multi-classification and 
regression datasets would be our next implementation 
research. 
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