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Abstract—Discrete search path planning in time-constrained 

uncertain environment relying upon imperfect sensors is known to be 

hard, and current problem-solving techniques proposed so far to 

compute near real-time efficient path plans are mainly bounded to 

provide a few move solutions. A new information-theoretic –based 

open-loop decision model explicitly incorporating false alarm sensor 

readings, to solve a single agent military logistics search-and-delivery 

path planning problem with anticipated feedback is presented. The 

decision model consists in minimizing expected entropy considering 

anticipated possible observation outcomes over a given time horizon. 

The model captures uncertainty associated with observation events 

for all possible scenarios. Entropy represents a measure of 

uncertainty about the searched target location. Feedback information 

resulting from possible sensor observations outcomes along the 

projected path plan is exploited to update anticipated unit target 

occupancy beliefs. For the first time, a compact belief update 

formulation is generalized to explicitly include false positive 

observation events that may occur during plan execution. A novel 

genetic algorithm is then proposed to efficiently solve search path 

planning, providing near-optimal solutions for practical realistic 

problem instances. Given the run-time performance of the algorithm, 

natural extension to a closed-loop environment to progressively 

integrate real visit outcomes on a rolling time horizon can be easily 

envisioned. Computational results show the value of the approach in 

comparison to alternate heuristics. 

 

Keywords—Search path planning, false alarm, search-and-

delivery, entropy, genetic algorithm.  

I. INTRODUCTION 

N combat service support or emergency logistics, the final 

stage of service/supply delivery on the battlefield/devastated 

zone known as the “last tactical mile” is undoubtedly very 

risky. Emerging concepts for military combat service support 

relies on tactical airborne technology such as versatile and 

agile unmanned systems to deliver critical supply. The multi-

role nature of unmanned aerial vehicles (UAV) to support 

cargo transportation, reconnaissance and precise tactical 

delivery tasks in an uncertain hostile and dynamic 

environment is such an example. Tactical mission delivery 

typically consists in a supply vehicle (service provider) 

transporting cargo (tactical supply such as 

commodities/ammunition) from the forward operating base 

(FOB) or Battle group to a military unit destination area. Once 
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in the proximity of final destination, the service provider, must 

locally search and locate the customer unit location to finally 

deliver the requested supply and then safely return to the FOB.  

Military tactical search and delivery mission is roughly 

pictured in Fig. 1. 
 

 

 

Fig. 1 - In-Theatre Military Logistics Search-and-Delivery Path 

Planning 

 

As the situation is dynamic and communication bandwidth is 

limited for security reasons, customer unit location cannot be 

precisely known in advance by the supply vehicle. As a result, 

once in the surroundings of the final destination, the challenge 

is to achieve precise delivery to the targeted unit as precise 

location may possibly change due a dynamic hostile and 

uncertain disruptive environment. However, given latest 
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adversarial actions, intelligence, unit mission plans, expected 

movement, and gross estimate of required travel time in 

Theatre, probability distribution of unit presence over the 

destination area may be derived and exploited by the supply 

vehicle on duty to carry out the “last tactical mile”. Given the 

size, speed and high mobility/agility, endurance and autonomy 

of an unmanned vehicle, the benefits shown by this 

technology clearly outweigh the cost and risk incurred by 

traditional manned vehicles demanding continual human 

expertise and support while operating under stringent temporal 

constraints. This paper focuses on the search component of the 

search-and-delivery problem when detecting the unit target at 

the final destination under imperfect sensing conditions 

involving false positive and negative detections. 

Search path planning work explicitly accounting for false 

alarm detections over realistic time horizons remains largely 

marginal, given the additional computational complexity 

introduced by this source of uncertainty. Other approaches 

simply overlook this intrinsic difficulty. For instance, in basic 

discrete optimal searcher path problems [1], [2], the advocated 

approach tends to unrealistically oversimplify the problematic, 

primarily focusing on false negative (overlook) observations 

only, while ignoring false alarm detections (false positives) to 

conveniently ensure that the searched target be necessarily 

found upon positive observation. The underlying discrete 

optimal searcher path problem involving a stationary target is 

known to be NP-Hard [3]. Unfortunately, the whole 

methodology based on probability of success is no longer 

applicable for false alarm detection problem attributes, as a 

positive observation can no longer guarantee target detection 

with certainty. Contributions on decision models and search 

algorithms focusing more explicitly upon false-positive and 

false-negative detections are reported in [4]-[8]. However, 

proposed approaches mostly exploit specific problem 

characteristics or rely on key constraints relaxation to keep the 

problem tractable. For instance, in [5], the authors aim at 

minimizing detection time assuming constant false alarm 

detection rates for all cells. They do assume a constant false 

positive/negative detection rates over the grid area to be 

searched, disregarding terrain features and condition 

variability. Most importantly, search deadline as an itinerary 

constraint to successfully find the target is overlooked as well, 

which turns out to be unrealistic in our setting due to a 

resource-bounded agent capability (e.g. resource, fuel, flight 

personnel). The relaxation of search/flight time constraints 

proves indeed very convenient, to easily and naturally define a 

simple detection time minimization objective and a stopping 

criterion to interrupt the search effort when updated target 

occupancy belief evolve outside predetermined threshold 

values. However, the approach may require a significant 

search time in practice. Consequently, when a search time 

limit is naturally imposed by problem domain contingencies, 

uncertainty minimization must rather be considered. A similar 

situation occurs for the sequential eliminating procedure 

proposed in [6]. Leaning toward the optimization of detection 

thresholds, the procedure may require a prohibitive run-time, 

and fails to efficiently exploit a pre-set time limit to optimize 

search path planning. In other respect, general search-theoretic 

methods propose procedures mainly inspired from branch and 

bound, [9], [7], [10], [11] variants. More recent work [8] uses 

combinations of various greedy search strategies to further 

reduce complexity. However, despite the development of 

innovative problem-solving techniques, the problem generally 

remains computationally hard to solve in near real-time over 

reasonable or even limited time horizons. Alternatively, 

Markov decision processes (MDP) modeling represents a 

common approach to handle false-negative and false-positive 

observations, resorting to exact and approximate methods to 

manage uncertainty. But the computational complexity of 

exact problem-solving techniques used to support sequential 

decision-making scales exponentially with time horizon. The 

underlying dynamic programming [12]-[15] and tree–based 

search techniques [16] may suitably perform under specific 

constraints but eventually face the curse of dimensionality, 

presenting poor scalability even for modest size problems. 

Recent comprehensive surveys on target search problems from 

search theory and artificial intelligence/ robotic control 

perspectives may be found in [17], [12], [5] and [13] 

respectively. 

In this paper, a new open-loop information-theoretic –based 

decision model formulation explicitly accounting for false 

alarm sensor readings is proposed to solve a single agent 

military logistics search-and-delivery path planning problem 

with anticipated feedback. In this context, ‘open-loop with 

anticipated feedback’ alludes to offline planning while 

incorporating projected agent observations (visit outcome 

projection) as opposed to real sensor readings. Anticipated 

feedback enhances pure open-loop formulations naturally 

ignoring information feedback, to significantly improve 

solution quality, while mitigating computational complexity 

related to costly closed-loop problem formulations. The 

expected entropy minimization decision model captures 

uncertainty associated with anticipated false positive (false 

alarm) observation events over possible scenarios. Projected 

belief update on unit target occupancy is therefore generalized 

to explicitly capture possible false positive observation events 

that could occur during plan execution. In order to efficiently 

solve the search path planning problem, a novel genetic 

algorithm is proposed, providing near-optimal solutions for 

practical realistic problem instances. The algorithm presents 

new recombination and mutation operators exploiting basic 

path reconstruction principles. Run-time performance even 

paves the way to a closed-loop environment extension in 

which real visit outcome from the previous episode can be 

dynamically integrated in real-time to update target occupancy 

belief distribution. In that setting, a complete path solution is 

gradually expanded, exploiting real observation outcomes, by 

solving periodically new problem instances over a rolling 

horizon. Performance comparison over alternate procedures 

demonstrates the value of the approach.  

The remainder of the paper is structured as follows. Section 

II first introduces problem definition, describing the main 

characteristics of the open-loop search path planning problem 

with anticipated feedback. Then a new information-theoretic 
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path planning decision model formulation is presented in 

Section III. It captures path plan uncertainty (entropy) through 

projected future agent visits (plan execution) over possible 

sensor observation outcomes and discusses how path planning 

could be extended to a dynamic setting using a rolling time 

horizon. Section IV describes the genetic algorithm proposed 

to efficiently compute a near-optimal solution. Genetic 

operators inspired from simple path reconstruction principles 

are briefly presented. Computational results comparing the 

value of the proposed method to an alternate myopic problem-

solving technique are reported and discussed in Section V. 

Finally, a conclusion is given in Section VI. 

II.  PROBLEM DEFINITION 

A. General Description 

In a military tactical logistics context, the search and 

delivery path planning problem involves a vehicle supply 

agent (searcher) searching a targeted customer unit (target) in 

a bounded environment over a given time horizon in order to 

deliver supply or services. From a search mission perspective, 

the agent’s goal consists in searching an area (grid) to 

minimize target cell occupancy uncertainty (entropy), given a 

prior cell occupancy probability distribution and imperfect 

sensing capabilities to successfully servicing the unit target. 

Represented through a grid, the search region characterizes an 

area defined as a set of cells N, describing possible target 

locations. Presumably occupying a single cell, the precise 

location of the target is assumed unknown. A prior target 

location probability density distribution for which cell 

occupancy probabilities sum up to one can be derived from 

domain knowledge. It reflects possible individual cell 

occupancy, defining a grid cognitive map or uncertainty grid. 

The cognitive map constitutes a knowledge base describing a 

particular world state, including variables such as target 

occupancy belief distribution, time, agent position and 

orientation. An example of a cognitive map is illustrated in 

Fig. 2 at a specific point in time. 

 

 

Fig. 2 Uncertainty grid /cognitive map at time step t. Belief 

magnitudes are represented through multi-level shaded cell areas. 

Projected agent plans are displayed as possible paths 

 

The duration of a cell visit or service time is assumed 

constant, specifying the period of each episode. An agent can 

legally move toward its neighboring cells offering eight 

alternate possible directions at each time step. A search path 

solution consists in constructing an agent path plan selecting 

base-level control action moves to minimize uncertainty 

about target location on the entire grid in order to finally 

deliver supply or service to the most likely location. 

B.  Observation Model 

Modeling partial world state agent observability, the 

observation model governs agent sensor’s perception. During 

episode t, an agent visits a cell searching for target occupancy. 

A sensor reading zt at time t may then be either positive (zt=1) 

or negative (zt=0)as determined through a probabilistic 

observation model. The latter accounts for uncertainty through 

conditional probability of detection and false alarm, given cell 

target vacancy or occupancy state X∈ {0,1} respectively: 

tz : cell occupancy observation at the end of period t 

)1|1( === Xzpp tc
probability of correct observation 

)0|1( === Xzpp tf
probability of false alarm (false positive) 
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These parameters are understandably cell-dependent 

reflecting specific sensor sensitivity and terrain features and 

conditions (e.g. landscape, obstacles, clutter, visibility, 

luminosity). Agent sensor’s range defining visibility or 

footprint (coverage of observable cells given the current 

sensor position) is limited to the cell being searched. 

C.  Bayesian Filtering 

From a real or anticipated agent sensor observation, local 

cell target occupancy belief (p(X=1)) (real or anticipated) can 

be updated using Bayesian filtering: 
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In (2), pt-1and pt(t> 0) refer to prior and posterior cell target 

occupancy probability (belief) respectively. 

D.  Entropy  

The objective consists in constructing a plan modeled as a 

sequence of moves to minimize entropy (target occupancy 

uncertainty) over the entire grid and horizon T. From 

information theory [18], the entropy function E is defined as: 

 

∑
∈

−=
}1,0{

2 )(log)(
x

xpxpE                  (3) 

 

where p(x) specifies the current probability/belief of cell target 

occupancy, and x a binary cell occupancy state. A cell with a 

zero entropy value means absolute certainty about occupancy 

or vacancy, whereas a maximum entropy value (1) refers to 

complete uncertainty as depicted in Fig. 3. 
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Fig. 3 Entropy defined as a function of probability 

probabilistic uncertainty about a state variable

III. PROBLEM MODEL FORMULATION

A.  Mathematical Modeling 

A mathematical open-loop formulation with anticipated 

feedback is proposed for the discrete stationary target search 

and delivery path planning problem. It is based on expected 

entropy of target cell occupancy over multiple scenarios of 

possible anticipated observation outcomes, resulting from a 

visit agent path across the grid. 

The variables and parameters defining the decision model 

are given as follows: 

N: set of cells defining the grid search area

T: mission time horizon 

V: set of visited cells, composing the path solution

Vi: maximum number of visits on cell i 

Vmmm ls ∈},{ : assuming lm visits on cell 

number of positive sensor observations recorded (number of 

success) by T. 

NlllE ..,21
: objective function defining expected entropy for a 

path solution involving lj visits on cell j ({

negative observations}) for all cells such as

iX : occupancy state of a cell i (1: occupancy, 0: vacancy)

:)},{( VmmmiiT lsXp ∈
 posterior probability of target unit cell 

occupancy by the end of period T: Conditional probability at 

time step T to find cell i in occupancy state

cells V (path) and a specific anticipated scenario/history {

lm} in which sm positive observations out of 

readings on cell m were recorded. 

:)1(00 == jj xpp initial probability of target unit cell 

occupancy 

:))}},{(({ NiVmmmiiTT lsXpE ∈∈
system entropy by the end of 

period T for path cell visits mml ∈}{

Vmmm ls ∈},{  

δ ij: Kronecker delta function (it returns 1 if 

The proposed information-theoretic decision model may be 

formulated as follows: 
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in which entropy is averaged over all possible scenarios 

resulting from anticipated path visit outcomes, that is over all 

sequence of possible positive/negative observations. The 

objective is to determine the best path minimizing expected 

entropy. In (4) the following equivalent notation is implicit:
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The alternate form (5) separates the expression in two 

components considering whether target location is either part 

of the visited cells or not. As a result, the objective may be 

reformulated in terms of visited cells only. The probability of 

a specific scenario for a given path solution (visited cells) is 

the product of probability of individual cell visit scenarios. 

Assuming target location in cell 

involving sk positive detections out of 
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Using the observation model introduced in the previous 

section and conditional independence, one can easily com

the probability for each visited cell scenario. As the target is 

located in a unique cell of the search area, we do exploit the 

following relationships as well:
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Using the observation model introduced in the previous 

section and conditional independence, one can easily compute 

the probability for each visited cell scenario. As the target is 

located in a unique cell of the search area, we do exploit the 

following relationships as well: 
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Belief magnitude increases on positive (z=1) and decreases 

on negative (z=0) observation readings respectively, while 

being normalized over cell beliefs. One can easily see that 

dissimilar outcome observations (zt=0, zt’

belief evolution. α  refers to the occurrence of positive 

detections while β  corresponds to negative observation events. 

Equation (7) generalizes the traditional false alarm

update scheme, and can be formally proved by induction. It is 

the first time to our knowledge that a general belief update 

form is formulated explicitly, departing f

form over consecutive time steps generally proposed and 

largely used and reported in open literature.

It is worth noticing that the expected entropy objective 

function is invariant with respect to cell visits order (path 

ordering) and strictly depends on visited cells and its related 

posterior probability of target occupancy. This is due to the 

fact that final entropy only relies on belief updates, and in 

particular on the number of visits performed on a given cell, 

and not when those visits took place as shown in

The expected entropy model can be further approximated 

by the following model to keep the number of terms in the 

objective function linear over T (as opposed to an

number of contributions, accounting for all poss

observation scenarios): 
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on negative (z=0) observation readings respectively, while 
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The main idea is to emphasize the most likely conditional 

events only, restricting the set of values for 

probable values.  

Further simplification consists in focusing on the presumed 

target location cell j only, while assuming likely negative 

observations for all other visited cells (i.e. probability of 

negative observations equals one) leading to the following |

term expression: 
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In this case, the belief update scheme considers imperfect 

sensors while the objective function does not.

B. Dynamic Planning and Ti

A path can be computed dynamically over receding 

horizons by using real information feedback as it beco

available and progressively perform a new optimization

periodically improve solution quality. Accordingly, l

horizon problems are solved through repeated fast subproblem 

optimizations including real information feedback,

receding horizons as pictured in 

partitioned in time intervals and corresponding subproblems 

are sequentially solved over respective episodes of period 

A subproblem solution periodically expands the overall 

current partial solution by integrating a small local path 

segment (subperiod δT), while updating the objective function 

to properly reflect new path move contributions

move insertions at each time step define overlapping episodes, 

mitigating the effects of myopic path planning

loop subproblem is then periodically solved subject to the 

partial solution constructed so far. 

reiterated until the time horizon

The strategy consists in taking advantage of the fast 

computation of reasonable time horizon subproblems over a 

limited number of episodes to quickly compute a near optimal 

solution to the original problem.

Fig. 4 A large time horizon T is defined over 

of period ∆T. Moves computed in subperiods δ
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The main idea is to emphasize the most likely conditional 

events only, restricting the set of values for sj to its most 

nsists in focusing on the presumed 

only, while assuming likely negative 

observations for all other visited cells (i.e. probability of 

negative observations equals one) leading to the following |V|-

]
))}},0

))}},

))}},{(

NiVmmm

NiVmmmj

NiVmmmjmmi

l

l

llsX

∈∈

∈∈

∈∈

=





= δ

   (10) 

In this case, the belief update scheme considers imperfect 

sensors while the objective function does not. 

Dynamic Planning and Time Horizon 

A path can be computed dynamically over receding 

horizons by using real information feedback as it becomes 

available and progressively perform a new optimization to 

periodically improve solution quality. Accordingly, large time 

horizon problems are solved through repeated fast subproblem 

including real information feedback, over 

ons as pictured in Fig. 4. Time horizonis 

partitioned in time intervals and corresponding subproblems 

are sequentially solved over respective episodes of period ∆T. 

ubproblem solution periodically expands the overall 

current partial solution by integrating a small local path 

), while updating the objective function 

to properly reflect new path move contributions. Limited new 

at each time step define overlapping episodes, 

mitigating the effects of myopic path planning. A new open-

loop subproblem is then periodically solved subject to the 

partial solution constructed so far. The process is then 

reiterated until the time horizon has been completely covered. 

The strategy consists in taking advantage of the fast 

computation of reasonable time horizon subproblems over a 

limited number of episodes to quickly compute a near optimal 

solution to the original problem. 

 

 

is defined over T/δT receding horizons 

Moves computed in subperiods δT form the final path 

solution to the original problem 
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IV. GENETIC ALGORITHM  

The searching agent evolves a population of individual 

solutions through natural selection, recombination and 

mutation mechanisms over successive generations. Individuals 

are first represented as chromosomes encoding a feasible path 

plan corresponding to a sequence of intended actions (physical 

moves at+1 ... at+T, each referring to 8 possible directions: E, 

NE, N, NW, W,SW, S, SE) over a time horizon T (Fig. 5) for a 

given episode t. 

 

at+1 at+2 at+3 … at+T-1 at+T 

Fig. 5 Individual path plan representation at time step t 

 

At each generation, the steady-state evolutionary approach 

consists in using genetic operators to expand the population by 

λ offspring, and later suppress the worst λ individuals. 

Recombination and mutation operators are sequentially 

applied with probability Xoverp  and Mutp respectively, until all 

λ new individuals are generated. Those parameters are chosen 

in order to balance search intensification and diversification. 

The whole process is repeated until a convergence 

criterion/condition is met (e.g. maximum number of 

generations, a maximum run-time or a threshold in solution 

quality improvement). The algorithm is outlined as follows: 

 

gen=0 

Repeat for each new generation 

Evolve Population - build a new generation  

generate λ new offspring using genetic operators 

(selection, recombination, mutation)  

evaluate fitness of new individuals 

eliminate the λ worst individuals of the expanded 

population 

gen=gen+1 

Until(gen = max_gen) 

 

Return (best computed path plan from Population)  

The initial population of path plan individuals is generated 

randomly, selecting actions proportionally to projected 

information gain over single-step horizons. 

A.  Fitness 

Fitness characterizes the predisposition of an individual to 

reproduce. Fitness is defined in terms of expected information 

gains (differential entropy contributions) while overlooking 

potential benefits that could result from using intermediate 

outcomes whenever available. Accordingly, individual reward 

refers to local information gain or entropy reduction expected 

by projecting path plan execution over time. It can be 

expressed as the difference between current entropy (
0E ) and 

final expected entropy (
TE ).An individual fitness is based 

upon approximate entropy defined by (8). 

B.  Selection 

Fitness values are sorted and normalized using a linear 

ranking scheme to better control selection pressure [19]. 

Individual mating is then based upon a fitness-proportional 

scheme [20]. 

C. Recombination/Crossover 

This genetic operation recombines chromosomes from two 

selected parents in order to create a child. The proposed 

recombination operator X_path breeds two parent individuals 

identifying suitable crossover points and generates an 

offspring by connecting together head and tail path segments 

inherited from both parents respectively, truncating control 

actions when the chromosome length exceeds the planning 

horizon T (see Fig. 6) or appending missing control actions to 

complete the solution whenever necessary. If parents P1 and 

P2 have intersecting points, two children are generated by 

exchanging respective parent sub-segments. Otherwise, 

closest points x1 (from P1) and x2 (from P2) separating both 

path parents by the shortest distance are first determined. 

Should multiple points exist, they would be selected 

stochastically, biased toward the largest probability values. A 

child is generated by combining the first segment from P1, to 

a subroute connecting x1 to x2 by the most direct way and 

then link to the second segment from P2. In connecting x1 to 

x2, route construction is biased toward cells with large 

beliefs, selecting moves with maximum one-step information 

gain using (10) to minimize run-time computation. Resulting 

path exceeding T moves are removed. Alternatively, if 

required, missing moves are appended to the end of the route 

to complete the path using the same information gain -biased 

procedure to add one cell at a time. A second child can be 

generated the same way by swapping both parents.  

 

 

Parent 1 Solution             Parent 2 Solution           Child Solution 

Fig. 6 Crossover operator X_path mating Parent 1 and 2 to generate 

a new child solution. Parent trajectories are shown to intersect at a 

cross-over point depicted by the shaded cell. The last control action 

inherited from Parent 2 is deleted to maintain solution consistency 

D.  Mutation 

Mutation is a natural evolution process in which some 

individual’s genes are randomly modified. Two genetic 

mutators are proposed, namely, M_path1 and M_path2.  

M_path1 first randomly selects a specific visit (t> 2) along a 

path solution, preserving the first segment while 

reconstructing a new feasible solution from that move on, one 

cell at a time as shown in Fig. 7. The last path segment 

reconstruction is information gain -biased, whereby move 

selection probability is proportional to expected one-step 

information gain. 
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                        Solution            Mutated Solution 

Fig. 7 M_path1 mutation: a move from an individual solution is 

randomly selected and mutated. A new solution is then reconstructed 

from that point on (shaded move) 

 

The M_path2 mutation operator randomly removes a short 

path fragment (some consecutive visits, a few steps from the 

path endpoint) from a solution and constructs an alternate 

subpath to locally repair or bridge both disconnected 

components. The mutator is pictured in Fig. 8. Once again, 

subpath reconnection is information gain -biased. Path moves 

are then removed if required. 

 

 

Fig. 8 M_path2 mutation: a subpath segment is removed (shaded 

area) resulting in two disconnected components. A new solution is 

then reconstructed linking both orphan components through an 

alternate subroute 

V.  COMPUTATIONAL EXPERIMENT 

A computational experiment has been conducted to test the 

approach over a variety of scenarios. The value of the 

proposed algorithm is assessed in terms of performance gap 

and compared to amyopic heuristic. The approach is also 

measured against solutions using an alternate objective 

function called covariability reflecting belief dispersion. 

Comparative solution performance for respective methods/ 

approaches are reported against relative expected information 

gain (IG) defined as follows: 
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where S1 and S2 correspond to computed solutions from 

methods 1 and 2 respectively. The larger the gap, the better the 

relative performance.  

A.  Myopic Algorithm 

The limited look-ahead method consists in myopically 

planning moves k steps ahead of time, visiting the closest 

admissible neighbor cell providing the largest gain over a k-

step horizon. Accordingly, at each time step, the move with 

the largest reward is selected first, and the objective function 

updated accordingly. The procedure is then reiterated for each 

episode over time horizon |T|. Run-time ∈O(|T
k
|). In our 

experiment cases for k=1, 2 are explored. 

B. Covariability Measure 

The algorithm is also measured against solutions using an 

alternate objective function called covariability (COV) which 

somewhat reflects belief dispersion and approximate entropy: 

 

∑∑
∈≠

=
Nji

jTiT ppCOV  (12) 

 

where pIt is the final belief over cell i resulting from path 

execution for a specific scenario (sequence of observations). 

We can see from the above function that minimal belief 

covariability (known target location) leads to minimum 

entropy. 

In this case, the genetic algorithm uses the following 

objective somewhat mimicking entropy: 
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A related quantity of interest is the number of contending 

cells CT +1 depicting remaining target cell location 

competitors by the end of time horizon T. Its expected value is 

given by: 
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For a given scenario, covariability and contending number 

of cells relate to one another through the relation: COV= 

CT/(CT+1). This can be illustrated by an example involving 

exactly k’ equally competing cells with probability 1/k’ for 

which the number of contending cells clearly shows CT +1 = 

k’. CT is an indicator of the number of remaining cells still to 

be visited beyond horizon T to successfully find the target.  

C.  Simulations 

Computer simulations were conducted under the following 

conditions for twelve problem instances: 

Grid size N= 5x5, 10x10, 15x15 

Initial belief probability distributions: 

belief magnitude: exponential and uniform  

 spatial: clustered and uniform  

T ≈  0.4 N 

Maximum number of visits = 7    

pc= 0.8 for all cells    

pf = 0 and 0.1 for all cells 

Genetic algorithm (GA): 

Population size = 20    

=λ  10 (Population size/2)  
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pMut: (M_path, M_path_local_repair): 50% 

pXover:Crossover rate = 100%  

Stopping criterion: time limit of 30 

minutes or minimal entropy threshold  

The algorithm was implemented in C++ and run on a 0.8 

GHz Pentium computer. Given the deficient power of the 

computer platform at our disposal in comparison to 

mainstream multiprocessing computer technology (e.g. 8 core, 

3 GHz) currently available and used, a 30 minute run-time 

limit has been set to ensure feasible near-real-time execution 

in practice. 

D.  Results 

A sample of random simulation results is reported in Table I 

for two false alarm rate cases and clustered data sets. Each 

entry corresponds to a separate problem instance. Specific 

instance, grid size and time horizon scenarios are presented in 

first, second and third column respectively. Differential 

performances over false alarm rates pf=0 and pf=0.1 scenarios 

are reported in the fourth column. Genetic algorithm 

performance is described in terms of expected entropy over 

initial entropy ratio. Relative information gain gaps 

differentiating both false alarm rate scenario classes are 

indicated in the last column. A better information gain 

performance is naturally shown for a false alarm -free scenario 

(minimum uncertainty), as final average entropy is expectedly 

smaller. Imperfect sensors (pf> 0) always add uncertainty over 

perfect sensors, degrading relative solution quality 

(augmenting entropy).  

It is surprising to see to what extent performance results 

may differ in gap magnitudes for slightly different false alarm 

rate parameters. A false alarm rate of 10% implies minimal 

information loss of approximately 30% for the data sample 

examined, translating the importance of uncertainty 

propagation through possible scenarios and the fact that even 

modest false alarm rate may ultimately have a significant 

impact on expected information gain. 

 
TABLE I 

RELATIVE GENETIC ALGORITHM PERFORMANCE FOR CLUSTER DATA SETS 

OVER FALSE ALARM RATES - }1.0,0{∈fp  

Problem |N| 

Time 

Horizo

nT 

Genetic Algorithm 

0/EET  
0=fp 1.0=fp

 

Information 

gain 

gap % 

G5x5 clu10 25 10 0.4381 0.7176 49.8 

G10x10clu40 100 40 0.2473 0.4684 29.4 

G15x15clu80 225 80 0.2519 0.5483 39.6 

G15x15clu100 225 100 0.3258 0.5433 32.3 

 

Comparative results with k-step myopic procedures (k=1,2) 

and belief covariability minimization is reported in Table II 

for all problem instances for a false alarm rate pf = 0.1. As for 

Table I, columns 1-3 first characterize problem instance, grid 

size and time horizon. The next table entries include 

normalized final expected entropy (
0/ EET
) as well as the 

final relative expected number of contending cells for the 

genetic approach. The last two columns report relative 

performance gaps for 1 and 2 -step limited look-ahead myopic 

techniques, and the covariability measure -based genetic 

procedure respectively, in comparison to the proposed genetic 

algorithm (reference). Reported simulation results show that 

the entropy-based genetic algorithm generally outperforms 

both myopic heuristics and, the covariability–based genetic 

approach. The only exception (-2.3%) simply translates the 

fact that the genetic algorithm still remains a meta-heuristics 

and therefore cannot guarantee an optimal solution. In other 

respect, fluctuations variability in differential performance of 

the genetic algorithm over myopic procedures are shown to be 

important ranging from 6.9% to 61% highlighting the value of 

planning with look-ahead. It is also worth noticing that a top 

performance gaps (10x10 instances) mostly correlates with the 

relative final number of contending cells. As expected, the 

smaller the final number of contending cells, the smaller the 

uncertainty, and therefore, the larger the performance gap 

anticipated with alternate methods. 

In contrast, separate simulation results show that 

minimizing covariability is always preferable to cell 

contention (final number of contending cells at time step T) 

minimization, as the former objective seems better aligned 

with the entropy function. 

Given the state-of-the-art parallel computing technology 

currently available and the natural inclination of genetic 

algorithms to be easily/massively parallelized, significant 

speed-up and further refined approximate expected entropy 

decision model can be realistically envisioned to efficiently 

solve this problem. 
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TABLE II 

RELATIVE PERFORMANCE - COVARIABILITY VS. MYOPIC HEURISTIC VS. GENETIC ALGORITHM FOR A SAMPLE DATA SET 

Problem 

(pf=0.1) 
|N| 

Time Horizon 

T 

Genetic Algorithm 

0/EET
 

 

CT/|N| 

% 

Myopic Heuristic          IG gap% 

k-move look-ahead 

k=1   k=2 

GA Covariability 

IG gap % 

G5x5  clu10 25 10 0.7176 10 18 4.2 0.7 

G5x5 ran10 25 10 0.8494 47 8.1 8.3 -2.3 

G5x5 exp10 25 10 0.6970 22 6.4 6.9 0 

G10x10clu40 100 40 0.4684 0.04 81 61 21.3 

G10x10exp40 100 40 0.7846 0.31 32 19 11.7 

G10x10ran40 100 40 0.8745 0.61 23 24 11.7 

G15x15clu80 225 80 0.5483 2 59 53 10.8 

G15x15ran80 225 80 0.9030 61 12 10 2.5 

G15x15exp80 225 80 0.8520 36 18 8 1.1 

G15x15ran100 225 100 0.8769 58 11 10 1.9 

G15x15exp100 225 100 0.8080 33 23 15 3.2 

G15x15clu100 225 100 0.5433 2 56 29 7.4 

 
VI. CONCLUSION  

An innovative information-theoretic –based open-loop 

decision model with anticipated feedback explicitly 

accounting for false alarm sensor readings has been proposed 

to solve a single agent military logistics search-and-delivery 

path planning problem. Minimizing uncertainty about unit 

target location, a near optimal path plan is computed 

considering anticipated possible observation outcomes. For the 

first time, a general belief update formulation/scheme on 

target cell occupancy involving false alarms was successfully 

derived in an explicit form. Then, a novel genetic algorithm 

was proposed, providing near-optimal solutions to practical 

size search path planning problems. Computational results 

prove the algorithm to outperform or favorably compete with 

alternate approaches. Algorithm performance can be further 

enhanced using parallel computing to gain additional run-time 

savings. 

Future work envisions search path planning problem 

extensions including threat risk and moving target in a time-

varying hostile environment. Generalized sensor footprint and 

increasingly complex observation models problem variants are 

also contemplated. 
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