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Abstract—Magneto-rheological (MR) fluid damper is a semi-

active control device that has recently received more attention by the 
vibration control community. But inherent hysteretic and highly 

nonlinear dynamics of MR fluid damper is one of the challenging 

aspects to employ its unique characteristics. The combination of 
artificial neural network (ANN) and fuzzy logic system (FLS) have 

been used to imitate more precisely the behavior of this device. 

However, the derivative-based nature of adaptive networks causes 
some deficiencies. Therefore, in this paper, a novel approach that 

employ genetic algorithm, as a free-derivative algorithm, to enhance 

the capability of fuzzy systems, is proposed. The proposed method 
used to model MR damper. The results will be compared with 

adaptive neuro-fuzzy inference system (ANFIS) model, which is one 

of the well-known approaches in soft computing framework, and two 
best parametric models of MR damper. Data are generated based on 

benchmark program by applying a number of famous earthquake 

records. 

 

Keywords—Benchmark program, earthquake record filtering, 

fuzzy logic, genetic algorithm, MR damper. 

I. INTRODUCTION 

IVIL engineers persistently are researching to decrease 

the natural and man-made hazards. Meanwhile, structural 

control has attracted a great attention. Passive and active 

controls are two edge of structural control field for decreasing 

the responses of structures encounter to strong earthquakes and 

intensive winds. Passive control has widely used to decrease 

structure vibration encounter to dynamic loads [1]. But since it 

is passive, it would not have any adaptability during a dynamic 

load and it is just limited to a specific condition that is already 

designed. On the other hand, active control systems, by 

applying a control process, are completely adaptive. However, 

these systems have two significant deficiencies: firstly, they 

need a big source of energy (what might not be available 

during a vibration); secondly, since these systems control a 

structure by applying energy, the stability of the structures 

would absolutely depend on the applied force. Therefore, a 

third control strategy, i.e. semi-active control, have been 

emerged that has simultaneously the fail-safe capability of 

passive control and the adaptability of  active control with no 

need to a great deal of energy (maybe limited to a camera 

battery) [2]. 

 
B. Mehrkian is with the Department of Civil Engineering at the University 

of Guilan, Rasht, Guilan, Iran (phone: +98-131-6690055; fax: +98-131-

6690271; e-mail: behnam_mkian@webmail.guilan.ac.ir ).  

A. Bahar is with the Department of Civil Engineering at the University of 

Guilan, Rasht, Guilan, Iran (phone: +98-131-6690055; fax: +98-131-

6690271; e-mail: bahar@guilan.ac.ir ).  

A. Chaibakhsh is with the Department of Mechanical Engineering at the 

University of Guilan, Rasht, Guilan, Iran (phone: +98-131-6690055; fax: 

+98-131-6690271; e-mail: chaibakhsh@guilan.ac.ir ). 

 

MR damper is a semi-active control device that uses 

controllable fluid [3]-[7]. This device is constructed by a 

hydraulic cylinder that contains MR fluid. MR fluids typically 

consist of micron-sized, magnetically polarizable particles 

dispersed in a carrier medium such as mineral or silicone oil. 

Commonly, the fluid is contains 20 to 40% by volume of 

relatively pure carbonyl iron with 3 to 5 microns in diameter. 

MR fluids could change their mechanical properties when they 

are exposed to a magnetic field. It is characterized by a great 

ability to vary, in a reversible way, from a free-flowing linear 

viscous liquid to a semi-solid one within milliseconds. 

Moreover, MR fluids can operate at temperatures from -40 to 

150oC with only slight variations in the yield stress [5]. The 

structure of cylindrical type of MR damper and the behavior of 

MR fluid while encounters magnetic field is depicted in Fig. 1. 

Although, MR damper represents special features, highly 

nonlinear dynamics of the device hinders some unique 

characteristics of it and make the control process to have a 

precise and maybe complicated model. Many different models 

have been presented by a number of researchers in recent years 

that could be categorized in two groups: parametric and non-

parametric. Basically, first one refers to models that represent 

the physical behavior of the device such as displacement, 

velocity, etc. while the second group refers to the black-box 

models that need just the experimental input-output data to 

simulate the device behavior.  

The most relevant parametric models to describe MR 

damper behavior are the Bingham model and its extended 

version proposed in [6] and [7] respectively; the hysteresis 

Bouc–Wen model [10] proposed in [5]; models, which include 

the Dahl friction model [11] proposed in [12]; the modified 

LuGre model [13]; the biviscous hysteretic model [14]; 

normalized form of Bouc-Wen model [15], which improved 

model performance by limited the hysteresis term in [-1,1], 

was employed in [16] and [17]. In non-parametric group some 

models such as [18], which used the combination of fuzzy 

logic and neural network; neural network models [19]; black 

box model [20]; models based on tracking curves by 

polynomials [21] and [22]; and some models, which employ 

genetic algorithm to optimize the parameters of parametric 

models such as [23] and [24], have been proposed.  

II. SIMULATION EXPERIMENTS AND COLLECTING DATA 

The experimental data for MR damper has employed to 

develop the fuzzy model, generated by using the base isolated 

benchmark program [25], which is used by the structural 

control community as a state-of-the-art model for numerical 

experience of seismic control attenuation. In fact, we use this 
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numerical platform as a virtual laboratory test (Fig. 2). 

Therefore, four column data consisting of displacement, 

velocity, voltage, and force of MR damper are produced by 

employing seven predefined earthquake records of the 

benchmark problem and have been used as validation data.  

 

 
Fig. 1 (a) Structure of MR damper [8]; (b) MR fluid behavior before 

and after applying magnetic field [9] 

 

 
Fig. 2 Input-output data of the black box model of MR damper 

It should be noted that the voltage refers to the 

corresponding fluctuating voltage of an earthquake, which is 

assessed by controller during full simulations. For training and 

checking data in the proposed approach, an Iranian earthquake 

record and a predefined earthquake record of the benchmark 

problem are employed. We use Nahavand record with peak 

ground acceleration (PGA) equal to 0.35, as an Iranian record, 

for training data, and Newhall earthquake record, as a 

predefined benchmark record, for checking data. 

Consequently, the model that is trained by Iranian earthquake 

would be validated by benchmark earthquakes records. 

The seven records were prepared to use in the benchmark 

program, but Nahvand record, first, should be pre-processed. 

Here, we used Seismosignal software, which is available in 

www.seismosoft.com, to apply base line correcting and 

filtering. Quadratic polynomial is used for base line correction. 

Butterworth filter and band-pass are used for filter type and 

filter configuration, respectively. [0.1, 25] is assumed as a 

desired interval for allowable frequencies. Nahavand 

earthquake record is shown in Fig. 3 before and after 

preparing. The corrected Nahavand earthquake record and 

Newhall earthquake record are shown in Fig. 4. 

 

 

 

 
Fig. 3 (a) acceleration, (b) velocity, (c) displacement before and after 

correcting 

 
Fig. 4 (a) Corrected Nahavand record in X direction, (b) predefined 

Newhall record of the benchmark program in Y direction 

(a) 

(b) 
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The resulted Nahavand acceleration record in X direction is 

applied to benchmark program to generate training data as 

depicted in Fig. 5. Checking data, which is generated by 

applying Newhall acceleration record in Y direction, is shown 

in Fig. 6. It would be shown in the subsequent sections that 

how these data are employed to construct the proposed model. 

 
Fig. 5 Training data: (a) displacement; (b) velocity; (c) controlled 

voltage; (d) generated force by applying Nahavand acceleration 

record in X direction to benchmark program 

 
Fig. 6 Checking data: (a) displacement; (b) velocity; (c) controlled 

voltage; (d) generated force by applying Newhall acceleration record 

in Y direction to benchmark program 

III. GENETIC ALGORITHM 

Genetic algorithm (GA) [26] and [27], which was proposed 

for the first time by Holland from university of Michigan in 

1975, is a free-derivative stochastic optimization method. This 

method, generally, is based on the natural process of human 

life, which selects parents (selection operator), produce a child 

who inherits his parents genes (crossover operator), sudden 

changing in genes (mutation operator), and transferring some 

best genes from parents with no change to a child (elite 

operator). The important attribute of GA is its independence to 

derivative information of the problem, which cause some 

deficiency in most optimizing work. The features of GA are as 

follows [28 p. 175]: 

• GA is parallel-search procedure that can be 

implemented on parallel processing machines for 

massively speeding up their operations. 

• GA is applicable to both continues and discrete 

combinatorial) optimization problems. 

• GA is stochastic and less likely to get trapped in local 

minima, which inevitably are present in any practical 

optimization application.  

• GA’s flexibility facilitates both structure and parameter 

identification in complex models such as neural 

networks and fuzzy inference systems. 

The procedure of the algorithm is explained in the 

following. First, GA guesses randomly an initial population, 

which contains some chromosomes (depends on the specific 

problem). Each chromosome has some genes (equal to 

unknown parameters). Second, GA employs each chromosome 

in objective function, so the first generation would be 

evaluated. Finally, to obtain the better second generation, it 

uses selection, crossover, mutation, and elite operators. This 

process is repeated for all generation to optimize the objective 

function as well as possible. The final generation contains the 

best chromosomes, which contains the best genes (parameters 

values). It should be indicated that GA, in its traditional form, 

is based on the binary coding. In contrast, the new version 

employs real value of parameters. 

Generally, there is no regular rule to adjust the GA’s 

operators [29], and commonly they would be adjusted by trial 

and error. Reference [30], however, indicated that the 

operators are not independent to each other and they have 

some relationships. Therefore, in this paper, the algorithm is 

applied in way to avoid so many times of repetition in order to 

obtain the best performance of GA and also to apply in a way, 

which could be expanded to other optimization problems. The 

method of employing GA in the proposed model is explained 

in the next subsections. 

A. Population Size (N)  

Population size is the vital issue that influence significantly 

on the performance of the algorithm. It should cover a wide 

space of values. Reference [30] Proposed a simple but 

effective method for adjusting the population size, which has 

much better performance than other almost complicated 

approaches such as [31]-[34]. In this method, it is enough just 

to assess number of objective-function evaluation (FE): 

12
log)

1
1log(

l
M

NN

FE
−−=− .        (1) 

Where M is a constant, which appears during the process of 

obtaining the formula. In fact, it prevents the argument of 

logarithm to be zero. M=3 is suitable, and l is number of 

parameters. It is recommended that FE can be assumed, 

because of time and memory limitation, from the range 

[103,104]. 

 

B. Elite Operator  

This operator saves the best chromosome in any generation 

and transfers it with no changes to the next generation. In this 

paper, elite=2 is employed. The large number of this operator 

would cause the algorithm to be stagnated [30]. 

C. Selection Operator  

This operator decreases the deviation of objective function 

value by replacing the worse chromosome with better one. In 

fact, it looks for assessing parents. Reference [30] Chose 

Tournament for selection operator, which may weak GA 

performance. Here, the Uniform stochastic method is chosen. 
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D. Crossover Operator  

This is the other vital operator of GA. After assessing the 

parents, this operator combines those chromosomes to produce 

a child chromosome. Here, scattered method is used, which 

has high performance. Meanwhile, crossover fraction = 0.8 is 

chosen. It means that crossover operator would influence on 

80 percent of population, except elites, and remainder affected 

by mutation operator that is explained in next subsection 

E. Mutation Operator  

The most important attribute of this operator is covering the 

wide space of values by a sudden changing in some genes. 

Therefore, it prevents GA to be trapped in local minima. 

Reference [30] used the Uniform type of this operator that 

slows the performance of the algorithm.  Here, Gaussian with 

scale=1 and shrink=1 is used 

F. The Criteria of Finishing  

In this paper, number of required generations to converge is 

chosen as the criteria to end GA. This is simply obtained by 

knowing the number of function evaluation (FE) and 

population size, which were assessed earlier: 

N

FE
gconverge = .                         (2) 

G. Objective function  

Root mean squared error (RMSE) is contemplated as the 

objective function of GA: 

∑
=

−=
n

i

ii ModelBM
n

RMSE
1

2)(
1

,            (3) 

where BMi is the ith data output, Modeli is the ith output of 

proposed model, and n is the size of a data. The proposed 

approach is explained in the next section to show how it would 

employ previous sections in an organized way. 

IV. MODELING METHODOLOGY 

In this paper the first order Takagi–Sugeno (TS) fuzzy 

model [35] and [36] is employed. To construct a TS fuzzy 

model of MR damper we should first select appropriate inputs. 

Based on numerical test that we have done on MR damper 

modeling, the inputs that has the significant influence on 

model performance are displacement, velocity, and voltage. 

This issue is also validated by relevant literatures such as [5], 

[17], and [18]. So we select these three inputs for our 

modeling purpose. Then the following cases should be done: 

• Selecting a data partitioning strategy to construct an 

initial structure of fuzzy model, 

• Applying a method to optimize the resulted structure. 

For the first one, we choose the well-known grid 

partitioning strategy. But the main concern is how many 

membership functions (MFs) for inputs have to be considered 

to make fuzzy IF–THEN rules. For the second one, it should 

be said that a fuzzy model just can approximate a plant 

behavior, which is the attribute of fuzzy models, but it cannot 

imitate the exact behavior of the plant. Combination of 

artificial neural network (ANN) and fuzzy logic system (FLS), 

which is well-known as adaptive neuro-fuzzy inference system 

(ANFIS), have been used, which results trained fuzzy model 

[18]. The architecture, first employs least square estimator 

(LSE) in forward pass to estimate the consequent parameters 

of TS fuzzy model and next, it uses back-propagation learning, 

which consists of back-propagation method (to obtain gradient 

information of an objective function) and steepest descent 

method (to use the gradient information to update the 

parameters), to assess parameters of MFs in backward pass. 

However, since it is a gradient based method it might cause 

some deficiencies such as dependence on initial points and 

trapping in local minima; depending on the gradient descent 

(GD) methodologies and adjustment techniques. So it may not 

optimize the fuzzy model as well as possible.  

In this paper, we use GA as a derivative-free algorithm in 

our modeling approach. The proposed approach consists of 

two steps as follows: 

• Step 1. Estimating the number of MFs for each input 

individually by applying GA and LSE. 

• Step 2. Applying GA to assess the parameters of MFs 

(nonlinear part) and then estimating the consequent 

parameters (linear part) by LSE for each chromosome 

in generations of GA. 

In Step1, We introduce a fuzzy structure that has the 

training and checking data, which is explained before, with 

unknown number of MFs for each input to GA. Consequently, 

for each chromosome: first, GA estimates the number of MFs 

for each input based on grid partitioning strategy; second, the 

consequent parameters are estimated by LSE; finally, by 

contemplating the training and checking data error 

simultaneously, the algorithm would assess the optimize 

number of MFs for each input. The only constraint in this step 

is the maximum number of MFs for inputs and also the 

maximum number of rules (because the same number of rules 

could occur with different arrangement of MFs for each input). 

In Step 2, the resulted structure would be introduced to GA, 

in order to find the optimized parameters of MFs while the 

consequent parameters are estimated by LSE. In fact, if we 

want to compare the proposed method by ANFIS in this step, 

the back-propagation learning (derivative based) stage is 

replaced by GA (derivative-free) just with one forward pass. 

Therefore, the randomness and stochastic nature of GA leads 

the optimization process to a global minimum.  

V.  MODEL DEVELOPMENT 

In this section we employ the proposed approach to imitate 

the behavior of MR damper. The training and checking data 

consists of 9470 and 6000 data pairs as were shown in Fig. 5 

and Fig. 6, respectively.  

In step 1, MFs=[6 6 6] and rules = 24 (because of time 

limitation) are assumed as the maximum number of MFs for 

each input and the maximum number of rules, respectively. 

We use generalization bell function (g-bell) as type of MFs. 

Due to the a few numbers of parameters, FE=103 is assumed, 

so N=10 and gconverge=100 are obtained from (1) and (2), 
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respectively. MFs=[2 6 2] is obtained after 5 runs of GA, 

which belongs to displacement, velocity, and voltage data, 

respectively.In step 2, the resulted structure is introduced to 

the combination of GA and LSE, as explained before. 

Consequently, 30 optimized nonlinear parameters and 96 

optimized linear parameters would be obtained. Meanwhile, 

because of more unknown parameters in this step, GA is 

calibrated as FE=104, N=40 and gconverge=250. Fig. 7 and Fig. 8 

show the initial and final MFs. 

 
Fig. 7 Initial MFs on displacement, velocity and voltage, which are 

located evenly in their specific intervals 

 
Fig. 8 Final MFs on displacement, velocity and voltage, which are 

estimated by GA in step 2 

 

More number of MFs on velocity, which is obtained 

automatically in Step 1 of the proposed approach, shows its 

significant role in the behavior of MR damper.  

Fuzzy logic, which is expressed the approximate human 

knowledge, basically emerged to approximate a plant behavior 

and simultaneously to be interpretable. But since the aim is 

imitating the exact behavior of a plant, using an optimization 

method is inevitable. Consequently, as long as an optimization 

method is used the model accuracy would increase; however, 

simultaneously the model capability to be interpretable may 

decrease. The case that could occur, for example, in ANFIS 

performance as depicted in [28 p. 341]. 

 

 

 

 
Fig. 9 Comparison the proposed model predicted force (F) with the 

target force (FBM); Force vs. (a) Time, (b) Displacement, (c) Velocity, 

(d) Voltage under Nahavand excitation (training data) 

 

This issue could be seen in velocity MFs, as it is shown in 

Fig. 8, which are overlapped and cannot be interpreted. 

Moreover, one interesting point to be said, is up-side down 

MFs on velocity, which is due to the negative amount of 

parameter b in g-bell function (gbellmf(x,[a b c])); the case 

that is rare in ANFIS method. 
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Fig. 10 Comparison the proposed model predicted force (F) with the 

target force (FBM); Force vs. (a) Time, (b) Displacement, (c) 

Velocity, (d) Voltage under Newhall excitation (checking data) 

 

Comparing the force, which is predicted by the proposed 

approach (F), with the target force (FBM), from the benchmark 

program, are depicted in Fig. 9 and Fig. 10 for the training and 

checking data, respectively. Fig. 9 and Fig. 10 show the 

excellent performance of the proposed approach not only for 

training data but also for checking data. It should be said the 

reason that we selected Nahavand earthquake record as a 

training data was its wide range of input-output data, which it 

could cover the input-output data range of all seven predefined 

benchmark records. This is a principle issue when we want to 

select a training data and it directly influence on model 

performance. In this paper we also modeled MR damper based 

on ANFIS method, which is one of the well-known methods in 

soft computing framework, in order to compare it with the 

proposed model. The RMSE (3) for training and checking data 

are listed in Table I, where ANFIS was run for different epoch 

number. 

 
Although the training error in proposed model is less than 

ANFIS method, the large checking data error in ANFIS is 

significant. In contrast, the checking data error in the proposed 

approach is close to training data error. This would occur 

because for both steps in GA part of proposed approach the 

training and checking data errors are included in the objective 

function; thus, it causes decrease in both errors simultaneously 

and approximately equally. This is a specific attribute of the 

proposed approach. Moreover, as it can be seen from Table I, 

10 times increasing the number of epoch only results in small 

changes in the errors. The RMSE for the all seven earthquake 

records are brought in Table II, where the excellent 

performance of the proposed approach is seen. 

 
In the relevant literature, comparing nonparametric models 

with parametric one rarely have been done. Although the 

parametric models have some deficiencies, because of 

employing strict and precise mathematical differential equation 

to describe the nonlinear and inherent dynamics of MR 

damper, they have a high accuracy and are superior to 

nonparametric models. [16] and [17] are the two best 

parametric models for describing the behavior of MR damper, 

which they used normalized Bouc-Wen term for hysteresis 

phenomenon. In order to compare, we use the same 

performance index (PI) as [17] did. It is the 1-norm error (ε) 

which is defined as follows: 

1

1

d

d

F

FF −
=ε , dttff

rT

∫=
01

)(               (4) 

 

Where FBM is the target force (benchmark building platform 

TABLE II 

RMSE VALUES FOR THE PROPOSED MODEL AND ANFIS (EPOCH=1000). EACH 

CELL CONTAINED X AND Y DIRECTION OF EARTHQUAKE RECORDS 

INFORMATION AT THE TOP AND BOTTOM, RESPECTIVELY 

Method Newhall Sylmar 
El 

Centro 
Rinaldi Kobe Jiji Erzinkan 

ANFIS 
123.37 

101.23 

101.85 

114.57 

121.85 

166.66 

99.47 

121.95 

130.17 

91.60 

92.08 

122.03 

86.60 

99.87 

Proposed 

approach 

63.22 

52.12 

52.58 

58.24 

62.24 

111.80 

57.05 

63.22 

119.50 

65.38 

65.29 

51.46 

56.60 

52.21 

 

TABLE I 

THE RMSE VALUES FOR BOTH ANFIS AND PROPOSED METHOD FOR TRAINING 

AND CHECKING DATA 

Method MFs Epoch RMSEtraining RMSEchecking 

ANFIS [2 6 2] 100 73.05 115.11 

ANFIS [2 6 2] 1000 63.09 101.23 

Proposed 

approach 
[2 6 2] 1 43.67 52.12 
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output) and F is the resulting force of the proposed approach. 

The results are listed in Table III. 

 
Table III shows that the proposed model has better 

performances even in comparison with parametric 

models.Furthermore, it should be noted that, although the 

Parametric 1 method has a good performance, it could not be 

inversed. In contrast, the proposed model easily can be 

inversed just by interchanging the force and voltage location in 

the data. The model capability for being inversed is a vital 

issue when we want to apply the model to a control process 

where an appropriate instant voltage signal should be sent to 

MR dampers during an earthquake. Consequently, the 

proposed approach, which could be categorized in soft 

computing techniques, can have promising role in modeling 

and control process. 
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TABLE III 

ε VALUES IN TERMS OF % FOR THE PROPOSED MODEL, ANFIS (EPOCH=1000), 

AND TWO PARAMETRIC MODELS. EACH CELL CONTAINED X AND Y DIRECTION 

OF EARTHQUAKE RECORDS INFORMATION AT THE TOP AND BOTTOM, 

RESPECTIVELY. (THE TWO FIRST ROWS ARE FROM [17]) 

Method Newhall Sylmar 
El 

Centro 

Rinald

i 
Kobe Jiji 

Erzinka

n 

Parametric 1 
6.47 

3.84 

5.67 

8.44 

7.78 

7.90 

7.12 

5.67 

6.52 

7.85 

3.61 

4.02 

4.88 

5.35 

Parametric 2 
16.15 

15.83 

18.06 

24.14 

22.89 

19.68 

17.55 

18.48 

18.2

2 

24.7

2 

14.1

6 

20.0

9 

14.19 

18.80 

ANFIS 
9.96 

8.80 

7.50 

6.36 

12.21 

14.75 

6.83 

5.76 

9.90 

20.2

9 

9.25 

8.94 

5.50 

4.58 


