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Generation of Numerical Data for the Facilitation of
the Personalized Hyperthermic Treatment of Cancer

with An Interstital Antenna Array Using the
Method of Symmetrical Components

Prodromos E. Atlamazoglou

Abstract—The method of moments combined with the method
of symmetrical components is used for the analysis of interstitial
hyperthermia applicators. The basis and testing functions are both
piecewise sinusoids, qualifying our technique as a Galerkin one. The
dielectric coatings are modeled by equivalent volume polarization
currents, which are simply related to the conduction current
distribution, avoiding in that way the introduction of additional
unknowns or numerical integrations. The results of our method
for a four dipole circular array, are in agreement with those
already published in literature for a same hyperthermia configuration.
Apart from being accurate, our approach is more general, more
computationally efficient and takes into account the coupling between
the antennas.
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method of symmetrical components.

I. INTRODUCTION

HYPERTHERMIA is the use of heat for the destruction

of malignant tissues, in the treatment of cancer [1]. One

of the most efficient ways to heat a tumor is by illuminating

it with microwaves. Tumor temperatures above 42− 43oC for

a sufficient period of time, have been proven deadly for its

cells. As heating can be also dangerous for the healthy tissues

surrounding the tumor, those must be kept at significantly

lower temperatures. This can prove a significant challenge in

the design of personalized hyperthermia treatment protocols.

In clinical practice hyperthermia is used as an adjutant to both

chemotherapy and radiation therapy, since it can enhance their

therapeutic efficiencies.

Noninvasive techniques for administering microwave

hyperthermia offer certain clinical advantages, but at the cost

of great difficulty in the control of the heating patterns. As a

solution to this problem Mendecki et al. [2] and Taylor [3], first

suggested in 1977 and 1978 respectively, the use of interstitial

microwave antennas, inserted directly into the tumor. These

antennas are insulated dipoles, and they are implanted into

the treated tissue via catheters often already in situ for the

application of brachytherapy.

The field radiated by a single dipole embedded in a tumor,

has been shown to decay rapidly with distance [4]. This is due

to the highly dissipative nature of the surrounding medium.

The result is a limited heating effect, concentrated to a small
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volume around the antenna. As this is clearly unsatisfactory, in

practice interstitial antennas are used in arrays of two or more

dipoles positioned around the treated tumor. Apart from the

larger heated volume, the use of arrays offers greater flexibility

in controlling the patterns of energy distribution, by adjusting

the characteristics of the individual antenna elements, their

relative positions and their excitations.

Due to the shortage of widely available expiremental

data of the electric field and the temperature distributions

inside the tumors during the application of hyperthermia

treatment, approximate and computational techniques have

been developed for the generation of numerical data. Many

distinguished researchers have studied interstitial antennas and

their arrays in the context of hyperthermia. Two models have

been proposed for their simulation. The first put forward by

King et al. [4], treats each interstitial antenna as a symmetric

dipole. This model is relatively simple and yields results that

agree with experimental measurements in lateral planes near

the antenna tip. However the symmetrical dipole hypothesis

has not been validated along the axis of the antenna.

An alternative model is that introduced by Zhang et al.

[5]. This second model views an interstitial antenna as an

asymmetric dipole with two arms of unequal length. The

length of the shorter arm is equal to the halflength of the

symmetric model, while the size of the other arm is determined

experimentally. The concept of this model, is intuitively

justified by the actual interstitial antenna’s physical asymmetry

about the radiation gap along its axis. But this model is also

successful from the point of experimental validation. It leads

to results that are in good agreement with experiments in the

lateral as well as the axial plane.

Both of the above models can only be applied when the

complex permittivity of the ambient medium is much greater

than that of the insulating layer, which is considered to extend

to infinity. In [6] we proposed a Galerkin moment method

for the analysis of a single coated dipole in a lossy medium,

that is not subject to these restrictions, and at the same time

is considerably more efficient for field computations. That

method has been widely accepted by the scientific community

as it has been adopted in various areas of application ranging

from MRI safety [7]- [11] and the safety of implanted

cardiac pacemakers [12] to Geophysical and Remote Sensing

Applications [13], [14] and even the analysis of railway

grounding systems subjected to lightning strikes [15].
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The purpose of the presented work is the extension of [6]

to arrays of insulated antennas.

For those not familiar with our previous work in [6], the

following section contains a brief overview of it. Section

III describes the method of symmetrical components, and its

application for the analysis of interstitial antenna arrays. The

last two sections discuss the numerical results of the method

for a four antenna circular array, and provide the necessary

conclusions.

In the following analysis, a time dependence ejωt is

assumed and suppressed for all sources and fields.

II. SINGLE ANTENNA ANALYSIS

Fig. 1 An insulated dipole

By making the well known thin-wire approximations, the

reaction integral equation for a bare cylindrical antenna takes

the form

jωμ0

8π2

∫ h1

−h2

∫ π

−π

(
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∫ π
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)
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It(z
′)dφ′dz′)IS(z)dφdz = V e

o It(0) (1)

where

R =

√
(z − z′)2 + 4α2 sin2(

φ− φ′

2
). (2)

This equation can be solved via a Galerkin moment

method that uses piecewise sinusoids as expansion and

testing functions. Piecewise sinusoids are subdomain functions

defined by

Fn(z) =

⎧⎪⎨
⎪⎩

sin(k(z−zn−1))
sin(kΔz) , zn−1 ≤ z ≤ zn

sin(k(zn+1−z))
sin(kΔz) , zn ≤ z ≤ zn+1

0, elsewhere

(3)

where Δz = zn−zn−1 = zn+1−zn. By substituting IS(z) in

(1) by an expansion of it in terms of piecewise sinusoids with

unknown coefficients, and enforcing the integral equations

for N distinct test sources Fn, a linear system equations is

obtained. Because of the similarity of the basis functions and

testing functions selected (they all have the same orientation

and equal support), all the elements of every diagonal of the

system’s coefficient matrix are identical to each other. This

means that the system is a symmetric Toeplitz one, and the

very fast Levinson’s method [16] can be used its solution.

Each element Zmn of the coefficient matrix of the system

is given by the expression

Zmn =
jωμ0

4πk sin2(kΔz)

∫ zm+1

zm−1

∫ π

−π

(
e−jkRn+1

Rn+1
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· sin(k(Δz − |z′ − zm|))dφ′dz′ (4)

where

Rl =

√
(z′ − zl)2 + 4α2 sin2(

φ′

2
),

l = n+ 1, n− 1, n. (5)

The double integration in (4), must be performed

numerically. The integrand is characterized by singularities at

φ′ = φ, z′ = zn+1, zn−1, and zn. Although these singularities

are integrable, it is preferable to subtract them, in order to

perform the integrations more efficiently. The isolated singular

terms can be shown to be complete elliptic integral of the first

kind, for which a polynomial approximation algorithm can be

used for its computation.

The above formulation can be extended to take into account

the dielectric coating of an insulated dipole. Using the

volume equivalence theorem, this coating can be replaced

with ambient medium and an equivalent volume polarization

current

JP = jω(ε2 − ε)E (6)

where E is the electric field inside the coating, and ε2 and

ε denote the permittivities of the insulation and the ambient

medium respectively.

Because of this new additional current JP , the reaction

integral equation becomes for the case of a coated dipole∫ ∫
S

EtzJSzdS +

∫ ∫ ∫
V

EtrJPrdV =

∫ ∫
S

ESzJtzdS.

(7)

Ordinarily Etr and JPr, in the area of the dielectric coating

are unknown functions. But as the insulating layer is thin, these

quantities can be expressed approximately as functions of JSz .

By using Maxwell’s equations and quasistatic approximations

to them, we derive the following approximate expressions

Er(r, z) =
j

ω2πrε2

dIS(z)

dz
. (8)

JP (r, z) =
(ε− ε2)

2πε2r

dIS(z)

dz
. (9)

Therefore, any new unknowns associated with the

polarization current, are dependent upon the original ones,

and this relation keeps the total number of unknowns the
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same as that for the bare dipole analysis. Naturally, some of

the elements of the moment-method matrix are modified. The

analysis that determines these modifications is described in

detail in [6].

The main points of that analysis can be summarized as

follows. Each basis function used for the expansion of the

conduction current is related to a part of the radial volume

polarization current. Therefore each element of the moment

method matrix Zmn for an insulated antenna, has an additional

term. These terms can be thought of as forming a new matrix

ΔZ, that when added to the moment method matrix for a bare

antenna, gives the coated dipole’s matrix.

If piecewise sinusoids are used as basis and testing

functions, ΔZ turns out to be symmetric, tridiagonal and

Toeplitz. Its elements are given by the relations

ΔZn,n =
jk

2πω

(ε− ε2)

εε2
ln(

c

α
)(

kΔz

sin2(kΔz)
+

1

tan(kΔz)
)

(10)

ΔZn,n−1 =
−jk

4πω sin(kΔz)

(ε− ε2)

εε2
ln(

c

α
)(1 +

kΔz

tan(kΔz)
)

(11)

ΔZn−1,n = ΔZn,n−1. (12)

As no numerical integrations are involved in the evaluation

of ΔZ, it is obvious that the computational cost required for

the construction of the moment method matrix for an insulated

antenna, is practically equal to that for a bare antenna.

Due to rotational symmetry, the electric field radiated by the

antenna in the ambient medium has only z and r components,

that are independent of φ. The field at any point can be

expressed as the superposition of the partial fields radiated by

the expansion function currents, with weights the coefficients

determined via the moment method.

The z component of the n expansion function’s electric field

is given by

Ezn(r, z) = − jk

8π2ωε sin(kΔz)

∫ π

−π

(
e−jkRn+1

Rn+1

+
e−jkRn−1

Rn−1
− 2 cos(kΔz)

e−jkRn

Rn
)dφ′

(13)

where

Rl =
√

(z − zl)2 + r2 + α2 − 2rα cos(φ′),
l = n+ 1, n− 1, n. (14)

The corresponding formula for the radial field is

Ern(r, z) =
jk

8π2ωε sin(kΔz)

∫ π

−π
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r2 + α2 − 2rα cos(φ′)

·(e
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Rn
)(z − zn))dφ

′. (15)

The detailed derivation of the above relations is given in [6].

The numerical integrations in (13) and (15), can be performed

by means of an adaptive quadrature routine based on the Gauss

Kronrod rules.

For points not close to the surface of the insulation the

following approximate versions of (13) and (15), can be used
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.
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(
e−jkR′

n+1
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+
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n−1
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−2 cos(kΔz)
e−jkR′

n

R′
n
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where

R′
l =

√
(z − zl)2 + r2, l = n+ 1, n− 1, n. (18)

The results obtained with (17) show excellent agreement

with those from (15), for almost all values of r. However the

use of (16) leads to accurate results only in the relatively far

region.

The electric field radiated in the ambient medium by the

volume polarization current is neglected, as it is almost two

orders of magnitude smaller than the conduction current’s

contribution.

Fig. 2 A typical array of parallel coated antennas

III. ANALYSIS OF CIRCULAR ARRAYS OF INTERSTITIAL

ANTENNAS

The following analysis is restricted to the case of parallel

antenna arrays. The reason for this, is that arrays for interstitial

hyperthermia, is almost exclusively of this form. Furthermore

because of this assumption, the analysis is significantly

simplified and as a consequence the computational cost of

its implementation can be kept at low levels. However the

method of moments is general enough, so that it can be applied

to arrays of arbitrary oriented antennas, but at the cost of a

higher computational complexity.

Fig. 2 illustrates a typical array of parallel insulated dipoles.

If the coordinates of their excitation gaps are (xoi, yoi, zoi),
where i = 1, 2, . . . , N , and θi denote the time phase angles
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of the fields at each antenna, then the components of the total

electric field at point (x, y, z) are given by the relations

Ex =
N∑
i=1

x− x0i

Ri
Erie

jθi (19)

Ey =
N∑
i=1

y − y0i
Ri

Erie
jθi (20)

Ez =
N∑
i=1

Ezie
jθi (21)

where

Ri =
√

(x− x0i)2 + (y − y0i)2. (22)

In order to compute the Eri and Ezi for each antenna, its

current distribution must be determined. The most simple way

to do this, is to make the assumption that the function of each

antenna is not affected by the presence of the rest. This is

the way that the analysis of interstitial hyperthermia arrays is

carried out, in almost every other publication of the literature.

The hypothesis of negligible coupling between the antennas of

the array, is in the majority of the cases justified by the radiated

field in the surrounding space, due to the high conductivity

of the ambient medium. Having made this assumption, the

integral equation for each dipole can be solved independently

from the rest.

But in reality there exists coupling between the dipoles,

even though it is indeed extremely weak. For our solutions

to have increased accuracy, its effect must be included to

the analysis. This can be done by solving simultaneously the

N coupled integral equations for the antennas of an array.

In every dipole’s integral equation terms must be included,

that express the fields of the other elements of the array

on its conducting surface. It is assumed that the coating of

the antennas does not affect these terms. The implementation

of the method of moments for the solution of these integral

equations, leads to a linear system of equations with unknowns

the coefficients of the basis functions for all the antennas. This

system is usually large even for small arrays, and as a result

its solution is computationally intensive.

Both approaches described above, can be applied also to

cases of arrays with non-parallel elements. But if the dipoles

of an array are not only parallel but identical to each other and

equally distributed in the circumference of an imaginary circle,

then their array is called a circular one. In practice this kind

of array is the one used more than any other, in applications

of interstitial hyperthermia.

A circular antenna array can be analyzed very efficiently,

by employing the method of symmetrical components [17].

The first stage of the application of that method consists, in

the determination of the current distribution of the antennas,

when they are driven by the phase sequence voltages. These

voltages are given the relation

V
(m)
i = V

(m)
1 ej2π(i−1)m/N ,

{
i = 1, 2, . . . , N
m = 0, 1, . . . , N − 1

(23)

where i and m are the indices of the antenna and the phase

sequence respectively.

For every phase sequence m, V
(m)
1 is determined as a

function of the N individual driving voltages Vi, by using

the formula

V
(m)
1 = N−1

N∑
i=1

e−j2π(i−1)m/NVi. (24)

The uniform characteristics of the elements of a circular

array, combined with the pattern of the phase sequence

voltages, have as a result the responses of the antennas to

these excitations, the so called phase sequence currents to

differ from element to element, only a constant phase. This

phase change is characteristic for each sequence.

I
(m)
i (z′) = I

(m)
1 (z′)ej2π(i−1)m/N . (25)

This means that for each phase sequence, only the solution

of the integral equation of a single antenna is required. By

using (25), in the terms that express the effect of the other

dipoles on it, the only unknown in that equation is the current

distribution of the antenna associated with it. As soon as this

unknown is determined, by solving the integral equation, it

is fairly simple, again with the use of (25), to find out the

current distributions of the remaining antennas for the same

phase sequence.

It can be easily proved, that for every antenna the sum of

its current distributions for all the phase sequences I
(m)
i , is

equal to the response Ii to the true excitation voltages.

Ii(z
′) =

N−1∑
m=0

I
(m)
i (z′) =

N−1∑
m=0

ej2π(i−1)m/NI
(m)
1 (z′). (26)

It is obvious that for the analysis of a circular array with the

method of symmetrical components, N independent integral

equations have to be solved one for each phase sequence.

By using this method the coupling between the antennas is

included in the analysis, while the computational cost for the

solution of the arising linear systems is kept at low levels.

IV. NUMERICAL RESULTS AND DISCUSSION

Fig. 3 shows the circular array, that is used to investigate

the accuracy and numerical efficiency of the method proposed

in the previous sections. The array consists of four insulated

asymmetric dipoles, positioned at the corners of a 2 cm edge

square. The dipoles are identical, their axes parallel, and their

excitation gaps are all at the z = 0 level. The radius of each

antenna is α = 0.475 mm, and its two arms have lengths

h1 = 1.989 cm and h3 = 13.0 cm respectively. The catheters

inside which the dipoles are placed, are made of polypropylene

and have inner radius b = 0.584 mm, outer c = 0.805 mm

and relative permittivity ε3r = 2.55. The ambient medium is

muscle equivalent tissue and has relative permittivity ε4r =
51.0 at 915 MHz, the operation frequency of the antennas. Its

density is 970 Kg/m3 and its conductivity σ4 = 1.28 S/m.

The array described above has been analyzed repeatedly

in literature [18], [19], by using other techniques as well

as experimental measurements. This fact combined with the
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Fig. 3 A circular array of four insulated antennas

array’s popularity in hyperthermia practice, led its choice as a

test problem for our approach, for comparison and validation

purposes.

Fig. 4 Magnitude of the complex current distribution of antenna 1, for zero
phase sequence (m = 0)

Fig. 4 displays the magnitude of the complex current

distribution |I(0)1 (z)| for dipole 1, when the antennas of the

array are excited with the voltages of the m = 0 phase

sequence. The figure also includes the current distribution

provided by Zhang’s approximate model [5], whose accuracy

is experimentally verified. It is evident that as the number of

basis functions N increases, the distributions obtained via the

moment method soon converge and when that happens (for

N ≥ 48) they are in excellent agreement with the previously

published curved.

Fig. 5 illustrates the total electric field |E|, along the

z axis of the array, when its four elements are driven in

phase (zero phase sequence). Results from using various

discretization densities are compared to each other, and to a

field distribution computed with the application of Zhang’s

theory. Once convergence is established, any discrepancies

existing between our approach for very coarse discretizations

(N = 12, 24) and that of Zhang, are minimized and become

negligible. It must be pointed out that the results of our method

Fig. 5 Magnitude of the total electric field |E|, along the z axis of the array,
when its four elements are driven in phase (zero phase sequence)

are obtained much more efficiently compared to the numerical

complexity of Zhang’s technique, as less arithmetic operations

are involved in our implementation. However we will not

elaborate on this point as it is treated in detail in reference

[6].

A quantity of primary interest in hyperthermia, is the

Specific Absorption Rate (SAR), as it is closely associated

to the rate of temperature increase in a biological medium.

SAR is defined as the spatial distribution of energy absorbed

per unit mass, and it is measured in W/Kg. The SAR is a

function of the electric field radiated by an interstitial antenna

or array, and this relation is expressed in the form

SAR =
1

2

σ

ρ
|E|2 =

σ

2ρ
(|Ez|2 + |Er|2) (27)

where σ is the conductivity of the ambient medium (S/m), ρ
is its density (kg/m3), and |E| the magnitude of the electric

field (V/m).

Fig. 6 Normalized SAR pattern at the lateral plane of the array, for the
symmetric phase sequence

Fig. 6 displays the SAR pattern at the lateral plane (z = 0)

of the array, for the symmetrical or zero phase sequence (V1 =
V2 = V3 = V4 = 1V ). The number of basis functions used

is 48. The computation of SAR values takes place at distinct

points over a 2 cm by 2 cm array on plane z = 0. These points

are uniformly distributed over the surface, and the minimum

distances between them are Δx = Δy = 2mm.

Fig. 7 illustrates the iso-SAR distribution at the axial plane

of the array (the xz plane that is parallel to the antennas),

again for the symmetric phase sequence and N = 48. The

grid that we use for this SAR computation has dimensions 4
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Fig. 7 Normalized SAR pattern at the axial plane of the array, for the
symmetric phase sequence)

cm by 14 cm, while its discretization steps are Δx = 2mm
and Δz = 4mm.

As Figs. 6 and 7 indicate, the deposition of energy exhibits

a global maximum at the center of the array, while it is also

especially high at the close vicinities around the antennas. The

SAR pattern for zero phase sequence excitation, is non uniform

at both the lateral (z = 0) and the axial (y = 0) plane of the

array.

At this point, it must be made clear that the SAR

distributions computed, are proportional to the rate of

temperature increase for the tissue, only when that rate exceeds

significantly the rate of temperature decrease due to heat

conduction and blood perfusion. As a result of that, a steep

gradient in SAR does not necessarily correspond to a steep

temperature gradient, because of the smoothing effects of heat

conduction and blood flow in living tissue.

The results of Figs. 6 and 7, indicate that the four dipole

circular array, with its element driven in phase, is able to heat

an ellipsoidal region 2 cm in diameter and 6 cm long. This

means that the array under study is suitable for heating small

ellipsoidal tumors. In that case the dipoles must be placed at

the periphery of the tumor to be heated, and oriented parallel

to its major axis.

When the antennas 1 and 4 are driven in phase at 0o, while

2 and 3 are driven in phase at 180o, then the SAR patterns at

the planes (z = 0) and (y = 0), have the forms shown at Figs.

8 and 9 respectively. The voltages of this excitation (V1 =
V4 = 1, V2 = V3 = expjπ) do not belong in any of the four

phase sequences of the array. However as we have shown in

the previous section, the current distributions I1, I2, I3 and I4
can be expressed as functions of the phase sequence currents

I
(
im).

Fig. 8 Normalized SAR pattern at z = 0, when V1 = V4 = 0 and
V2 = V3 = expjπ

As it is expected, the non symmetrical excitation of the

dipoles has as a result the differentiation of the SAR pattern

forms, compared to those of Figs. 6 and 7. The focal point,

where the maximum energy deposition takes place, is not

anymore at the center of the array. It is evident that its

position depends on the phases of the excitation voltages of

the antennas.

Fig. 9 Normalized SAR pattern at y = 0, when V1 = V4 = 0 and
V2 = V3 = expjπ

So a suitable choice of these phases, can offer the ability

to control the positioning of the focal point, as well as the

overall form of the SAR pattern. A uniform SAR pattern

is desirable for rising the temperature to a therapeutic level,

while for maintaining it at that level more preferable is a SAR

distribution with increased energy deposition at the periphery

of the tumor, where heat conduction due to blood flow is

higher.

In order to obtain a specific temperature distribution , the

phases of the excitation voltages can be made to vary with

time. This allows greater flexibility in energy deposition, and

better control of the temperature distribution, that in clinical

hyperthermia is of primary interest.

V. CONCLUSIONS

The method of moments for the analysis of an insulated

dipole antenna embedded in a dissipative dielectric medium,

is extended for the study of interstitial antenna arrays used for

microwave-induced hyperthermia. This solution of the coupled

integral equation of the array is carried out with the method of

symmetrical components. The insulating layers of the antennas

are modeled by equivalent volume polarization currents, in a

way that prevents the introduction of additional unknowns and

numerical volume integrations.

Comparisons between our results and those obtained by

well established techniques, reveal excellent agreement for the

current as well as the field distributions. This fact testifies to

the validity and accuracy of our analysis, an accuracy that is

achieved at a computational cost significantly lower to that of

previous methods.

Furthermore, the analysis that we propose is more general

than the existing ones, as it is not subject to the restriction that

the complex permittivity of the ambient medium must be much

greater than that of the dielectric coating. Our analysis does

not even make the non physical assumption that the insulating

sheaths in which the dipoles are embedded, extend to infinity.

On the contrary it can easily treat inhomogenous coatings or

partially coated antennas. Finally the coupling between the
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dipoles that is usually neglected in the other approaches, is

taken fully into account in a simple and efficient manner.
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