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Abstract—An application framework provides a reusable design 

and implementation for a family of software systems. Application 
developers extend the framework to build their particular 
applications using hooks. Hooks are the places identified to show 
how to use and customize the framework. Hooks define Framework 
Interface Classes (FICs) and their possible specifications, which 
helps in building reusable test cases for the implementations of these 
classes. In applications developed using gray-box frameworks, FICs 
inherit framework classes or use them without inheritance. In this 
paper, a test-case generation technique is extended to build test cases 
for FICs built for gray-box frameworks. A tool is developed to 
automate the introduced technique.  
 

Keywords—Class testing, object-oriented framework, reusable 
test case.  

I. INTRODUCTION 
OFTWARE testing is an important and critical verification 
activity considered to be a time-consuming and labor-

intensive task. It aims at finding software errors in order to 
increase the level of confidence in development software. 
Central to the testing activities is the design of a test suite. The 
basic element of a test suite is a test case that describes the 
input test data, the test pre-conditions, and the expected 
output. A test driver is a software implementation of a test 
case. 

An application framework provides a reusable design and 
implementation for a family of software systems [1]. It 
contains a collection of reusable concrete and abstract classes. 
The framework design provides the context in which the 
classes are used. The framework itself is not complete. Users 
of the framework complete or extend the framework to build 
their particular applications. Places at which users can add 
their own classes are called hooks [2]. Frameworks are 
classified according to their customization method into two 
categories [3]: white box and black box. In white box 
frameworks, functionality is extended or customized by 
subclassing some existing framework classes. In the black-box 
frameworks, compositions and existing components are used 
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without inheritance. Gray-box frameworks contain the 
characteristics of both black- and white-box frameworks.   

To build an application using a framework, application 
developers create two types of classes: (1) classes that use the 
framework classes with or without inheritance, and (2) classes 
that do not. Classes that use the framework classes are called 
Framework Interface Classes (FICs) because they act as 
interfaces between the framework classes and the second type 
of classes created by application developers. Instances of FICs 
are called framework interface objects. Fig. 1 shows the 
relationships among framework classes, hooks, and FICs. 
FICs use the framework classes in two ways: either by 
subclassing them or by using them without inheritance. Hooks 
define how to use the framework; therefore, they define the 
FICs and specify the pre-conditions and post-conditions of the 
FIC methods. Synthesizing the FIC state-based model from 
the pre-conditions and post-conditions of the FIC methods is 
detailed in [4].  

 

 
Fig. 1 Framework interface classes 

Application developers can use all FICs or some of them 
according to their application requirements. When application 
developers use FICs to implement their applications, they deal 
with the specification of the FICs introduced by the hooks in 
three ways: (1) use them as defined, (2) add new 
specifications for the added behaviors to meet the application 
requirements, and (3) ignore specifications for the behaviors 
that are unnecessary in implementing the application 
requirements. The FIC specifications can be represented using 
a State Transition Diagram (STD) or a UML statechart. 

Fig. 2 shows the STD representation of a NewAccount 
banking framework interface object specification introduced 
by the framework hooks. The STD contains two special states: 
α and ω, to represent the states of the object before being 
constructed and after being destructed, respectively. 
Moreover, the STD contains the Open, Overdrawn, Inactive, 
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and Frozen states to model the states of the object. A banking 
system developer can choose to implement the specification 
shown in Fig. 2 as defined. Moreover, the developer can 
choose to add, for example, transitions between Overdrawn 
and Frozen states to match the requirements of a banking 
system. Finally, the application developer can choose to 
ignore, for example, a transition originating from the Open 
state and ending at the Inactive state. This implies that an 
account can never go directly from the Open state to the 
Inactive state without going through the Frozen state first. 

 

 
Fig. 2 The STD of the NewAccount object defined in the banking 

framework hooks. 
 

Testing techniques for deriving test cases starting from the 
software specification only are called specification-based 
testing techniques. Instead of applying such techniques to 
produce test cases to test the FICs everytime a framework 
application is developed, we can apply them once to build 
reusable test cases when the framework is developed and the 
hooks that specify the FICs behaviors are described. The test 
cases that are generated at this stage are called baseline test 
cases. When developing the framework application, the 
developer can reuse some of the baseline test cases and write 
new test cases only for the added behaviors instead of writing 
all test cases from scratch. 

As a result, two main problems have to be tackled: (1) 
building effective baseline test cases in terms of reusability 
and fault coverage, and (2) introducing an efficient way to use 
the baseline test cases. Although we are studying both 
problems, this paper focuses on just the first problem. In [5], a 
technique called all paths-state is introduced to build test cases 
for FICs. In this paper, first, it is shown that this technique is 
not effective in building test cases for FICs that extend 
framework classes. In this case, unnecessary test cases are 
built. Second, an effective technique is introduced to build test 
cases for FICs that inherit the framework classes or use them 
without inheritance. Building test cases and coding them is a 
labor-intensive work. Therefore, a tool that automates the 
introduced technique for Java frameworks is developed. 

The paper is organized as follows. Sections II and III 
discuss the related work and background research, 
respectively. In Section IV, the extended version of the all 

paths–state technique is described. Section V illustrates how 
to generate the reusable test cases for the FICs using the 
extended technique. A supporting tool is introduced in Section 
VI. Finally, Section VII provides conclusions and a discussion 
of future work. 

II. RELATED WORK 
In object-oriented testing, each class has to be tested 

individually. Class testing is a unit testing step with respect to 
application testing and the first level of integration testing. At 
class testing level, the method responsibilities, intraclass 
interactions, and superclass/subclass interactions are 
considered [6]. Research in generating test cases to test an 
implementation at the class level can be divided into two 
broad approaches: (1) generating test cases from the source 
code to achieve a given level of statement, branch, or path 
coverage, and (2) generating test cases from the formal 
specification of the implementation. Testing techniques that 
follow the former approach are called implementation-based 
testing techniques (also sometimes referred to as white-box 
testing techniques), while testing techniques that follow the 
latter approach are called specification-based testing 
techniques (also sometimes referred to as black-box testing 
techniques).  

The specification of a class behavior can be expressed using 
state-based models such as finite state machines and UML 
statecharts [6]. In this case, a state is a set of instance variable 
value combinations of the class object. A transition is an 
allowable two-state sequence caused by an event. An event is 
a method call. Each transition can be associated with (1) an 
event, (2) a set of predicates, and (3) a set of expected actions. 
The UML syntax for a transition is: 

event-name argument-list [guard predicate]/action-expression 
There are several state-based specification coverage criteria 

proposed in the literature such as: 
1. All-transition coverage. In all-transition coverage, each 
transition is covered at least once in some test case. Therefore, 
to test a transition, the test case requires that the object under 
test be in the accepting state of the transition. The criterion 
does not put any constraints on how to reach the accepting 
state. Chow [7] introduced all transition coverage criterion for 
finite state machines and Offut et al. [8] adapted the criterion 
for UML statecharts and compared it experimentally with 
other specification coverage criteria. Bogdanov et al. [9] used 
all transitions coverage criterion to derive test sequences in 
the presence of hierarchical statecharts.  
2. Transition-pair coverage. In transition-pair coverage, it is 
required to cover each pair of adjacent transitions [7, 8, 10].  
3. Full predicate coverage. In full predicate coverage, it is 
required to cover each clause in each predicate on every 
transition, if the clause independently affects the value of the 
predicate [8, 10].  
4. Round-trip path coverage. In round-trip path coverage, 
transition sequences that start and end with the same state and 
simple paths from α to ω state are covered. A simple path 
includes only an iteration of a loop, if a loop exists in some 
sequence. Round-trip path strategy was proposed originally by 
Chow [7] and was denoted as W-method. Binder [6] adapted 
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the strategy to UML statecharts and called it round-trip path 
testing. Antoniol et al. [11] showed experimentally that the 
round-trip path testing strategy is reasonably effective at 
detecting faults. Kim et al. [12] used a criterion similar to the 
round-trip path strategy to derive testing trees for testing 
control and data flow through states. 

III. BACKGROUND 
At the class testing level, a testing model has to be 

constructed and used to generate the test cases. In [4], a novel 
technique to synthesize a class state-based testing model from 
the specifications (i.e., pre-conditions and post-conditions) of 
class methods is introduced. Al Dallal et al. [5] introduced a 
test-case generation criterion called all paths-state that uses 
the synthesized model to generate test cases that are effective 
at the application testing stage in covering the reused FIC 
specifications. 

A. Framework Hooks 
In [2], the issue of documenting the purpose of a framework 

and how it is intended to be used using the hooks is described 
and formalized. Hooks describe how to extend or customize 
parts of the framework to build an application. 

Froehlich [2] provided a special-purpose language and 
grammar in which the hook description can be written. Each 
hook description consists of the following parts. (1) a unique 
name, (2) the requirement (i.e., the problem the hook is 
intended to help solve), (3) the hook type. (4) the other hooks 
required to use this hook, (5) the components that participate 
in this hook, (6) the pre-conditions (i.e., the constraints on the 
parameters [or the context] that must be true before the hook 
can be used), (7) the changes that can be made to develop the 
application, (8) the post-conditions (i.e., constraints on the 
parameters that must be true after the hook has been used), (9) 
a general comment section. It is not necessary to have all the 
above parts for each hook.  

Fig. 3 shows a hook description example for the creation of 
an account in a banking framework. The Initialize Account 
hook creates a constructor method for the NewAccount class 
(i.e., an FIC defined in the framework hooks). In the 
constructor method, the account money currency is selected. 
There are three pre-built classes in the framework for money: 
USMoney, EURMoney, and Money. Moreover, the user must 
specify the bank branches in the system. Finally, the user must 
specify the maxPeriod variable value. 

The introduced hook description supports the framework 
application test design. The hook description identifies the 
FICs and their methods. In addition, it identifies the pre-
conditions and post-conditions of the FIC methods. These pre-
conditions and post-conditions are essential to determine the 
FIC behaviors and sequential constraints. Moreover, post-
conditions hold the expected outputs. The pre-conditions and 
post-conditions of a method are called method specifications. 
When an FIC extends a framework class (i.e., in case of a 
white-box framework), the inherited methods are either used 
in the context of the FIC without modifications or extended. 
For both cases, the hook descriptions show how to use the 

inherited methods of the framework classes and identify their 
pre- and post-conditions in the context of the FICs. When an 
FIC uses a framework class (i.e., in case of a black-box 
framework), there are no methods inherited from the 
framework classes. In this case, the hook descriptions 
introduce methods for the FICs and show how to use the 
introduced methods. The technique proposed in [4] can be 
used to synthesize the class testing models for the FICs from 
the method specifications provided in the hooks. In addition, 
the method specifications can be used to evaluate the results 
of the test cases as proposed in [13]. 

 

Fig. 3 Description of the Initialize Account hook of a banking 
framework 

 

B. All Paths-State Test-Case Generation Technique 
At the application development stage, the application 

developer can implement part of the specification introduced 
by the framework hooks for FICs and decide that the rest of 
the specification is not required to be implemented and used in 
the application. This can affect the baseline test cases 
generated from the full specification provided through the 
hook descriptions. Therefore, the unaffected test cases can be 
insufficient to cover all implemented transitions in the 
specification model of the FIC under test. This problem exists 
when applying any of the state-based specification coverage 
criteria presented in Section II. In [5], the problem is solved 
by introducing a specification coverage criterion that produces 
test cases sufficient to cover all reused transitions in the 

Name: Initialize Account 
Requirement: Initialize an account (i.e., set the currency and 

bank branches). 
Type: Template 
Uses: None 
Participants: Account(framework), NewAccount(app), 

Amoney(app); 
Pre-conditions: amount>=0; 
Changes: 
 NewAccount.NewAccount(int amount) extends 
      Account.Account(int amount); 
 Choose AM from (Money, USMoney, EURMoney);  
 Create Object Amoney as AM() in MyAccount.  
   NewAccount(int);     
 Create Object branches as Branches() in 
   NewAccount.NewAccount(int); 
 Repeat as necessary { 
  Acquire BranchName: string 
  NewAccount.NewAccount(int) ->  
        branch.addBranch(BranchName); 
 } 
           Acquire maxPeriod : integer  domains:0-999999; 
           NewAccount.NewAccount(int) ->  
      NewAccount.setMaxPeriod(maxPeriod); 
Post-conditions:  
 Operation NewAccount. NewAccount (int);  
 NewAccount.balance>=0; 
    ! NewAccount.frozen; 
    NewAccount.getUpdate()< NewAccount.MaxPeriod 
Comments:   
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modified specification models of the implemented FICs under 
test. The introduced coverage criterion is called all paths-state 
and it is used to construct a set of test cases T from a 
specification graph SG (e.g., UML statechart or finite state 
machine of the FIC under test). T covers all simple paths to 
each state in the SG. A simple path includes only an iteration 
of a loop, if a loop exists in some sequence.    

The set of paths that satisfy the criterion can be shown in a 
tree. The construction process of the tree starts from the α 
state of the SG. In the process, whenever a state is reached all 
outgoing transitions from the state are traversed. The process 
terminates when each root-leaf tree path terminates at the final 
(i.e., ω) state or a state already encountered on the path. 

Fig. 4 shows the all paths-state tree of the STD of Fig. 2. In 
the STD, if any transition is deleted, reachable states from the 
deleted transition can still be reached by some other paths of 
the tree. For example, if all paths-state technique is used to 
build the test cases and the application developer chooses not 
to implement the transition originating from the Open state 
and ending at the Inactive state, the test cases that include the 
transition are considered broken; therefore, they cannot be 
used as-is. This results in breaking the test cases built from the 
paths that include the transition sequences labeled as 
(1,20,13,21), (1,20,13,14), (1,20,13,19), (1,20,13,5), 
(1,20,15), (1,20,18), and (1,20,4). Note that the remaining test 
cases still cover all outgoing transitions from the Inactive 
state, and therefore, can be deployed. In [5], it is proved that 
all paths-state coverage subsumes the round-trip path 
coverage, and therefore, it has at least the same error detection 
power. 

 

 
Fig. 4 All paths-state tree of the STD example shown in Fig. 2 

 
Test cases are generated by traversing each path in the tree 

from the tree root to a leaf node. The number of generated test 
cases is equal to the number of leaf nodes in the tree. The 

number of leaf nodes in the tree shown in Fig. 4 is 22; 
therefore, the number of generated test cases is 22. 

IV. EXTENDED ALL PATHS-STATE TECHNIQUE 
Hooks can introduce FICs that subclass framework classes. 

This way of customizing the framework is called white-box 
customization. In this case, even if the application developer 
does not implement the FIC methods that override the 
inherited framework class methods, the inherited methods are 
accessible when the FIC is instantiated. Therefore, the 
specifications of the inherited methods defined in the hooks 
cannot be ignored. In terms of states and transitions, this 
results in having transitions that cannot be broken (i.e., must 
be implemented) at the application development stage. We 
call such transitions guaranteed. In Section III.B, the analysis 
for the NewAccount class neglects the fact that some 
transitions that model the class specification are guaranteed 
because the NewAccount class extends the Account 
framework class, and therefore, the application developer 
cannot ignore the specifications of the Account class. This 
produces unnecessary nodes and transitions in the all paths-
state tree, as will be shown later in this section. 

When the all paths-state coverage technique is applied to 
build test cases for the FICs that extend framework classes, 
some transitions can be covered using several paths. Some of 
the paths from the α state to the source state of the transition 
are composed of guaranteed transitions only. In this case, a 
path that contains only guaranteed transitions cannot be 
broken at the application development stage, and therefore, it 
is ineffective to cover the rest of the paths (i.e., paths that have 
not-guaranteed transitions) from α state to the source state of 
the considered transition. For example, for the STD shown in 
Fig. 2, if the transitions from the α state to the open state and 
from the open state to the inactive state are guaranteed, the 
outgoing transitions from the inactive state are guaranteed to 
be reached by following the path of the guaranteed transitions. 
Since this path cannot be broken at the application 
development stage, there is no need to cover the other paths 
from the α state to the inactive state in the all paths-state tree 
to ensure the coverage of the outgoing transitions from the 
inactive state.  

In the state-transition diagram, if a path to a state has all 
transitions marked guaranteed, we say that the state has a 
guaranteed path. In the all path-state tree, a state can be 
represented by more than one node because we have to cover 
all simple paths to it such that if one path to a state has a 
transition not used by the application developer, the state 
remains reachable in the tree using other paths. Outgoing 
transitions from a state that has a guaranteed path do not have 
to be covered in the tree using other paths, which reduces the 
tree complexity. The procedure given in Fig. 5 shows how to 
construct the all paths-state tree from a state-transition model 
that has guaranteed transitions. 

The procedure starts from the root state of the state-
transition model. In the process, whenever a state is reached 
the procedure traverses all outgoing transitions from the state. 
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Input: A class state-based testing model that has guaranteed 
transitions. 
Output: The all paths-state tree of the class model. 
Procedure: 
1. Draw the root node of the tree to represent the α state. Mark 

the node as non-terminal and guaranteed. 
2. Search for a state that corresponds to a non-terminal 

guaranteed leaf node in the tree. If none is found, search for 
a state that corresponds to a non-terminal not-guaranteed 
leaf node in the tree.   

3. Examine each outgoing transition from the state. At least one 
new edge will be drawn for each outgoing transition from the 
state. Each new edge and node represents an event and 
resultant state reached by an outgoing transition. 
a. If the transition is unguarded, the transition guard is a 

simple predicate, or the transition guard is complex 
predicate composed of only AND operators draw one 
new edge. 

b. If the transition guard is a complex predicate using one 
or more OR operators, draw a new branch for each truth 
value combination that is sufficient to make the guard 
TRUE. 

4. For each edge and node drawn in step 3: 
a. Note the corresponding transition event, guard, action, 

and guarantee information on the new edge. 
b. If the edge and its source node in the tree are marked 

guaranteed, mark the destination node of the edge as 
guaranteed. Otherwise, mark it as not-guaranteed.   

c. If the state that the new node represents is the ω state, the 
state is already represented by another node (in the path 
containing the new node), or the state is represented 
somewhere else in the tree by a guaranteed node, mark 
this node as a terminal – no more transitions are drawn 
from this node. Otherwise, mark it as non-terminal. 

5. Repeat steps 2, 3, and 4 until all leaf nodes are marked 
terminal. 

The procedure marks the tree nodes that have guaranteed 
paths as guaranteed nodes. The procedure traverses the 
outgoing transitions from the states represented by guaranteed 
nodes before the outgoing transitions from the other states. 
The process terminates when each root-leaf tree path ends at 
the ω state, a state represented previously in the path, or a 
state represented previously in the tree by a guaranteed node. 

Fig. 5 Produce an all paths-state tree from a state model that includes 
guaranteed transitions. 

For example, suppose that the transitions that are necessary 
to implement the open and inactive states (i.e., transitions 
labeled by 1, 2, 4, 6, 10, 15, 16, 18, and 20) shown in Fig. 2 
are introduced by the Account class, which is a framework 
class. The rest of the transitions are not defined in the Account 
class, but they are defined in the hooks. In this case, the 
transitions labeled by 1, 2, 4, 6, 10, 15, 16, 18, and 20 are 
guaranteed transitions. When the procedure shown in Fig. 5 is 
applied, the tree shown in Fig. 6 is constructed. 

In the construction process, first, the root node represents 
the α state of the STD. In the first iteration of the repeat loop 
of the procedure, an edge and a node are drawn to represent 
the outgoing transition from the α state and the transition 
destination state (i.e., Open state). The two nodes drawn in the 

first iteration are bolded. A bolded node and a bolded edge 
represent a guaranteed node and a guaranteed edge, 
respectively. The α node is always marked guaranteed. The 
outgoing edge from the α node is bolded because it represents 
a guaranteed transition. Finally, the open node is marked 
guaranteed because it is a destination node of a guaranteed 
edge initiated from a guaranteed node. 

 

 
Fig. 6 All paths-state tree of the STD example shown in Fig. 2, 

constructed using the procedure shown in Fig. 5 
 

In the second iteration of the repeat loop, all the outgoing 
transitions from the Open state are added to the tree. This 
includes adding the edges labeled as 2, 6, 11, 10, 12, 20, and 
16, and adding all the nodes reached by these edges. In the 
tree drawn so far, nodes reached by the edges labeled by 2, 6, 
10, and 16 are marked terminal (i.e., no more edges are drawn 
from them) because they are either previously encountered on 
the tree paths that contain them or represent the ω state. In 
addition, nodes reached by the edges labeled by 2, 6, 10, 20 
and 16 are marked guaranteed because they are destination 
nodes of guaranteed edges initiated from a guaranteed node. 

The tree drawn so far contains one node marked as non-
terminal and guaranteed, which is the node that represents the 
Inactive state. Therefore, in the third iteration of the repeat 
loop, edges that represent the outgoing transitions from 
Inactive state and the nodes that represent the states reached 
from the Inactive state are drawn. This includes adding the 
edges labeled as 13, 15, 18, and 4, and adding the nodes 
reached by these edges. Three of the drawn nodes in the third 
iteration (i.e., open, ω, and inactive) are marked terminal 
because they are either previously encountered on the tree 
paths that contain them or represent the ω state. In addition, 
these nodes are marked guaranteed because they are 
destination nodes of guaranteed edges initiated from a 
guaranteed node. The fourth node (i.e., frozen) is marked non-
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terminal and not-guaranteed.        
All the non-terminal leaf nodes drawn so far are marked 

not-guaranteed. Therefore, in the fourth iteration we can pick 
any of the states that represent each of them. In this example, 
the node that represents the overdrawn state is picked. In the 
fourth iteration, edges that represent the outgoing transitions 
from the overdrawn state and the nodes that represent the 
states reached from the overdrawn state are added to the tree. 
This includes adding the edges labeled 3, 9, 8, and 17, and the 
nodes reached by these edges. All the drawn nodes are marked 
terminal because they are either previously encountered on the 
tree paths that contain them or represent the ω state. In 
addition, these nodes are marked not-guaranteed because they 
are reached by not-guaranteed edges.    

All the non-terminal leaf nodes drawn so far are marked 
not-guaranteed. Therefore, in the fifth iteration, any of the 
states that represent each of them can be picked. In this 
example, the node that represents the frozen state reached by 
the edge labeled as 12 is picked. Edges that represent the 
outgoing transitions from the frozen state and the nodes that 
represent the states reached from the frozen state are added to 
the tree. This includes adding the edges labeled as 21, 14, 19, 
and 5, and the nodes reached by these edges. Three of the 
drawn nodes (i.e., open, ω, and frozen) are marked terminal 
because they are either previously encountered on the tree 
paths that contain them or represent the ω state. The fourth 
drawn node (i.e., inactive) is marked terminal because it 
represents a state represented in the tree by a guaranteed node 
(i.e., the state represented by the node at the end of path (1-
>20)). The four nodes are marked not-guaranteed because 
they are reached by not-guaranteed edges. 

So far, only one leaf node in the tree is marked non-
terminal. Edges that represent the outgoing transitions from 
the frozen state and the nodes that represent the states reached 
from the frozen state are added to the tree in the sixth 
iteration. This includes adding the edges labeled 21, 14, 19, 
and 5, and the nodes reached by these edges. All the drawn 
nodes are marked terminal because they are either previously 
encountered on the tree paths that contain them or represent 
the ω state. In addition, these nodes are marked not-
guaranteed because they are reached by not-guaranteed edges. 
After the sixth iteration, all the leaf nodes are marked 
terminal, which indicates that the construction process of the 
tree is completed. 

V. GENERATING REUSABLE TEST CASES 
The constructed all path-state tree can be used to build 

reusable test cases for the FICs. This section discusses how to 
build the reusable test cases and how to implement them.  

A.  Generating the Test Cases 
The procedure given in Fig. 7 shows how to generate the 

test cases from the all paths-state tree that has guaranteed 
nodes. The test cases are generated in two rounds. In the first 
round, each path from the root node to a leaf node is used to 
build a test case. The number of test cases built in this round is 

equal to the number of leaf nodes. In the second round, we 
search for all non-terminal nodes marked as guaranteed that 
have all outgoing edges marked as not-guaranteed. For each 
of these nodes, we build a test case that traverses the path 
from the root node to the node marked guaranteed. This round 
is necessary because the application developer can decide not 
to use any of the methods associated with the outgoing edges 
from the state. In this case, all the test cases built from the 
paths that include the unused edges are considered broken. 
This results in having no test cases to test the transitions that 
have their destination states represented by guaranteed nodes 
in the tree. Fig. 8 depicts the problem. The node labeled by C 
is a non-terminal guaranteed node and all its outgoing edges 
are marked as not-guaranteed. In the first round of generating 
test cases, three test cases are generated to cover the paths (A-
>B), (A->C->D), and (A->C->E). If the application developer 
decides not to use the methods associated with the edges (C-
>D) and (C->E), the test cases generated from the paths (A-
>C->D), and (A->C->E) will be broken. Therefore, the edge 
(A->C) is not going to be covered by the remaining test case. 
To overcome this problem, we have introduced the second 
round. In the second round, the path (A->C) is used to build 
an additional test case. 

 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 7 Generate test cases from the all paths-state tree that has 
guaranteed nodes 

 

 
Fig. 8 Non-terminal guaranteed node special case  

Finally, it is important to note that the introduced technique 
can be used for both the FICs that inherit the framework 
classes and the FICs that use the framework classes without 
inheritance. For the latter case, all the transitions in the STD 
are declared not-guaranteed. The resulting all paths-state tree, 
in this case, is going to be similar to the one built using the 
original all paths-state technique. As a result, the extended 

Input: All paths-state tree that has guaranteed nodes and edges. 
Output: The test cases generated from the all paths-state tree. 
Procedure: 
1. for each path from the root node to a leaf node in the all 

paths-state tree do 
          Build a test case that traverses the path. 
2. Search for all non-terminal nodes in the tree marked 

guaranteed and that have all their outgoing edges marked 
as not-guaranteed. 

3. for each node n found in Step 2 do 
          Build a test case that traverses the path from the root 

node to node n. 
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technique can be used to generate test cases for gray-box 
framework interface classes. 

B.  Generating Test Drivers 
In the previous section, it is shown how to select the 

sequences of message executions (i.e., sequences of 
transitions that form the all paths-state paths) to be tested. 
Each sequence of message executions forms a test case. To 
automate the testing process, it is required to generate test 
drivers (i.e., implementations of the test cases). To execute 
any message associated with a transition, it is required to set 
test values for the parameters of the message and to execute 
the code required to satisfy the predicates of the transition. 
The general problem of the automatic generation of the test 
values for the parameters of the message and the automatic 
generation of the code required to satisfy the predicates of the 
transition is considered future work. In this work, the required 
code for the test values and predicates is associated manually 
with the transitions of the testing model.  

After executing a transition, it is required to check whether 
the actions associated with the transition are performed 
correctly and whether the transition leads to the expected 
resulting state. Once the testing model is synthesized using the 
technique introduced in [4], the transition actions and the 
state-invariants are associated with the transitions and states of 
the model, respectively. When the test drivers are developed, 
the checking of the code for the actions and state-invariants 
are instrumented into the test drivers and executed at run time 
to evaluate the test cases.      

There are two ways to implement the test cases: either to 
implement all of them in one class or to implement each test 
case in a separate class. At the application development stage, 
the test drivers that can be reused to test an implemented FIC 
are determined. These test drivers are a subset of the test 
drivers provided with the framework to test the FIC. If all test 
drivers are included in one class, the non-applicable test 
drivers provided with the framework would be included in the 
class of the test drivers and not used, which is an ineffective 
solution. Therefore, it is better to implement each test driver in 
a separate class. This allows the application developer to 
maintain only the test drivers that implement the applicable 
test cases instead of maintaining all the test drivers provided 
with the framework.  

The procedure given in Fig. 9 shows how to construct the 
test drivers for selected paths of a testing model. The 
procedure implements a class for each test case. Each class 
includes a constructor method. When the constructor method 
is invoked at test time, the actual testing is performed. In the 
constructor method, the code for executing the sequence of 
message executions is listed. For each message associated 
with a transition, the code sets up the parameter values and 
includes the statements required to satisfy the transition 
predicates. The setting-up code is followed by the message 
invocation statement and checking statements for the resulting 
actions and the state-invariants of the resulting state.  

In this paper, the examples used are coded in Java 

language; however, the introduced techniques are applicable 
for frameworks and applications written in any other object-
oriented language. Fig. 10 shows two Java test driver 
examples generated from the tree shown in Fig. 6. The two 
test cases are generated by traversing the paths that include the 
transition sequences labeled as (1->2) and (1->12->14), 
respectively. The checking statements for the actions and the 
state-invariants are written as Javadoc comments using the 
Design-by-Contract (DbC) language [14]. These Javadoc 
comments are translated at compilation time into Java code 
using a tool called Jcontract [15]. At run time, the Jcontract 
tool checks the Java statements translated from the DbC 
statements and reports any violations. Appendix B shows all 
the test drivers for the NewAccount FIC generated using the 
supporting tool introduced in Section VI. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 9 Construction procedure of the test drivers 

VI. AUTOMATION 
Framework Interface State Transition Tester (FIST2) is a 

tool that supports the generation of the reusable test drivers 
for Java framework FICs at the framework development stage. 
It also deploys, executes, and evaluates the test drivers at the 
application development stage. In this paper, only the role of 
the tool in generating the reusable test drivers is presented.  

 
 

Inputs: Paths in the FIC state-based model required to 
implement the test cases. 

Outputs: FIC test drivers. 
Procedure:     
for each path required to implement a test case do 
     Create a new file 
     Create a class for the test driver in the file. 
     Create a constructor method in the class. 
     s is the first state in the path. 
     Repeat  
              transition t is the outgoing transition from state s in the 

path    
               if the method invoked by the transition t has parameters 

then add the code require to set the test values of the 
parameters to the code of the constructor method.  

               if the transition t has predicates then add the code 
required to satisfy the predicates to the code of the 
constructor method.  

               if the transition t is the first transition in the path then       
                   insert a creation statement in the constructor method 

for the instance of the FIC for which the reusable test 
drivers are constructed. 

               else insert a method call statement in the constructor 
method for the event associated with the transition. 

               if the transition t has actions, insert statement(s) in the 
constructor method to check whether the actions 
associated with the transition are performed. 

               Insert statement(s) in the constructor method to check 
whether the invariants of the reached state by the 
transition t are satisfied. 

               s is the destination state of the transition t.  
       until state s is the last state in the path. 
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Fig. 10 Two test case examples generated from the tree shown in Fig. 
6 

 
At the framework development stage, FIST2 tool supports 

the generation of the reusable test drivers for Java framework 
FICs. The tool semi-automates the construction of the state-
transition tables for the FICs, checks the correctness of the 
tables, and generates reusable test drivers using the extended 
all paths-state technique. 

Fig. 11 shows the high-level design of the tool when used at 

the framework development stage. The user (typically the 
framework developer in a test-case generation role) selects the 
framework. The framework is stored in a database that 
contains the framework code and the descriptions of the 
hooks. The tool passes the hook descriptions to the FIC state-
transition table builder module. The FIC state-transition table 
builder module parses the pre-conditions and post-conditions 
of the FIC methods, analyzes them, and produces the state-
transition table for the FIC. The framework developer can edit 
the generated table to add the code required to satisfy the 
predicates of the transitions and to add the non-event-driven 
transitions. The tool translates the tabular form of the state-
transition model into text and stores the text in a file in the 
framework database. The user can use the Model Checker 
module of FIST2 tool to check the existence of one entry and 
one exit state in the state model and that all the states are 
reachable from the entry state. 

 

 
Fig. 11 The high-level design of FIST2 tool (framework development 

stage) 
 
The All paths-state test drivers builder component of FIST2 

tool uses the state-transition table to generate the all paths-
state test drivers and associates the test driver identifiers with 
the model transitions. In addition, the tool uses the hook 
descriptions to determine and generate the stubs required at 
the application testing stage to isolate the FICs. The test 
drivers and stubs are stored in the framework database and 
provided to the user.  

In the prototype version of the tool, the method 
specifications are not extracted from the hooks automatically 
because the module responsible for constructing the state-
transition model from the method specifications is not yet 
implemented. Instead, the user has to construct the model 
manually from the method specifications listed in the hooks, 
using the algorithms provided in [4]. The user is, however, 
provided with a friendly GUI to input the model description in 
a tabular form. When entering the model description, the user 
specifies the guaranteed and not-guaranteed transitions. In 

Test Case # 1 (covers transition sequence 1->2) 
public class TEST1_NewAccount{ 
    public TEST1_NewAccount(){ 

/* testing the transition labeled as “1” */ 
/* code for setting the parameter value  */  

        float amount=1; 
/* invoking the message associated with 
the transition */ 

        NewAccount o = new NewAccount(amount); 
/* DbC checking statement for the 
invariants of the resulting state: Open*/ 

        /** @assert((o.balance()>=0) && ((o. 
getCurrentDate()-o.getLastActivityDate())< 
o.getMaxPeriod()) && !(o.isFrozen())) */ 

         
/* testing the transition labeled as “2” */ 
/* invoking the message associated with the 

transition */ 
        o.balance(); 

/* DbC checking statement for the 
invariants of the resulting state: Open */ 

        /** @assert((o.balance()>=0) && ((o. 
getCurrentDate()-o.getLastActivityDate())< 
o.getMaxPeriod()) && !(o.isFrozen())) */ 

    } 
} 
 
Test Case # 9 (covers transition sequence 1->12->14) 
public class TEST9_NewAccount{ 
    public TEST9_NewAccount(){ 

/* testing the transition labeled as “1” */ 
/* code for setting the parameter value  */  

        float amount=1; 
/* invoking the message associated with 
the transition */ 

        NewAccount o = new NewAccount(amount); 
/* DbC checking statement for the 
invariants of the resulting state:Open*/ 

        /** @assert((o.balance()>=0) && ((o. 
getCurrentDate()-o.getLastActivityDate())< 
o.getMaxPeriod()) && !(o.isFrozen())) */ 

         
/* testing the transition labeled as “12” */ 
/* invoking the message associated with the 

transition */ 
        o.freeze(); 

/* DbC checking statement for the 
invariants of the resulting state:Frozen*/ 

        /** @assert((o.balance()>=0) && 
((o.getCurrentDate()-o.getLastActivityDate 
())< o.getMaxPeriod())&&(o.isFrozen())) */ 

 
/* testing the transition labeled as “14” */ 
/* invoking the message associated with the 

transition */ 
        o.unfreeze(); 

/* DbC checking statement for the 
invariants of the resulting state:Open*/ 

        /** @assert((o.balance()>=0) && 
((o.getCurrebtDate()-o.getLastActivityDate 
())< o.getMaxPeriod())&&!(o.isFrozen()))*/ 

    } 
} 
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addition, the prototype version of the tool does not create the 
required stubs. However, the extended all paths-state 
technique is fully implemented in the prototype version of the 
tool.   

VII. CONCLUSIONS AND FUTURE WORK 
This paper helps to address the overall goal of providing a 

framework with effective reusable test cases. The application 
developer can not only use the framework design and code to 
build the application, but can also use the provided test cases 
to test part of the new application code. Part of the application 
code is implemented by following the hook descriptions. 
Hook descriptions define how to construct the FICs and 
introduce also the specifications of the FICs. As a result, the 
framework developer can produce specification-based test 
cases for the FICs that the application developer can use to 
test the implementation of the FICs.  

The problem with this approach is that the application 
developer can implement part of the specification and decide 
that the rest of the specification is not required to be 
implemented and used in the application. This can affect the 
baseline test cases generated from the full specification 
provided through the hook descriptions. All paths-state 
technique solves this problem. However, it is limited for FICs 
that do not inherit framework classes. In this paper, the 
technique is extended such that it can be used in generating 
reusable test cases for white- and gray-box frameworks, as 
well as the black-box ones. The extended technique is 
automated in a tool called FIST2. The usefulness of the tool is 
shown by applying it to an example illustrated in this paper. 

The introduced technique is limited to classes that have 
sequential behaviors. It can be extended to consider the 
classes that have concurrent behaviors. In future, we plan to 
extend the tool to automate the generation of the class testing 
models and the stubs. 
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