
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1737

Abstract—An application framework provides a reusable design

and implementation for a family of software systems. Application
developers extend the framework to build their particular
applications using hooks. Hooks are the places identified to show
how to use and customize the framework. Hooks define Framework
Interface Classes (FICs) and their possible specifications, which
helps in building reusable test cases for the implementations of these
classes. In applications developed using gray-box frameworks, FICs
inherit framework classes or use them without inheritance. In this
paper, a test-case generation technique is extended to build test cases
for FICs built for gray-box frameworks. A tool is developed to
automate the introduced technique.

Keywords—Class testing, object-oriented framework, reusable
test case.

I. INTRODUCTION
OFTWARE testing is an important and critical verification
activity considered to be a time-consuming and labor-

intensive task. It aims at finding software errors in order to
increase the level of confidence in development software.
Central to the testing activities is the design of a test suite. The
basic element of a test suite is a test case that describes the
input test data, the test pre-conditions, and the expected
output. A test driver is a software implementation of a test
case.

An application framework provides a reusable design and
implementation for a family of software systems [1]. It
contains a collection of reusable concrete and abstract classes.
The framework design provides the context in which the
classes are used. The framework itself is not complete. Users
of the framework complete or extend the framework to build
their particular applications. Places at which users can add
their own classes are called hooks [2]. Frameworks are
classified according to their customization method into two
categories [3]: white box and black box. In white box
frameworks, functionality is extended or customized by
subclassing some existing framework classes. In the black-box
frameworks, compositions and existing components are used

Manuscript received May 12, 2007. Jehad Al Dallal is with Department of

Information Sciences, Kuwait University, P.O. Box 5969, Safat 13060,
Kuwait (e-mail: jehad@cfw.kuniv.edu).

Paul Sorenson is with Department of Computing Science, University of
Alberta, Edmonton, AB. T6G 2H1, Canada (email: Sorenson@cs.ualberta.ca)

without inheritance. Gray-box frameworks contain the
characteristics of both black- and white-box frameworks.

To build an application using a framework, application
developers create two types of classes: (1) classes that use the
framework classes with or without inheritance, and (2) classes
that do not. Classes that use the framework classes are called
Framework Interface Classes (FICs) because they act as
interfaces between the framework classes and the second type
of classes created by application developers. Instances of FICs
are called framework interface objects. Fig. 1 shows the
relationships among framework classes, hooks, and FICs.
FICs use the framework classes in two ways: either by
subclassing them or by using them without inheritance. Hooks
define how to use the framework; therefore, they define the
FICs and specify the pre-conditions and post-conditions of the
FIC methods. Synthesizing the FIC state-based model from
the pre-conditions and post-conditions of the FIC methods is
detailed in [4].

Fig. 1 Framework interface classes

Application developers can use all FICs or some of them
according to their application requirements. When application
developers use FICs to implement their applications, they deal
with the specification of the FICs introduced by the hooks in
three ways: (1) use them as defined, (2) add new
specifications for the added behaviors to meet the application
requirements, and (3) ignore specifications for the behaviors
that are unnecessary in implementing the application
requirements. The FIC specifications can be represented using
a State Transition Diagram (STD) or a UML statechart.

Fig. 2 shows the STD representation of a NewAccount
banking framework interface object specification introduced
by the framework hooks. The STD contains two special states:
α and ω, to represent the states of the object before being
constructed and after being destructed, respectively.
Moreover, the STD contains the Open, Overdrawn, Inactive,

Generating Class-Based Test Cases for Interface
Classes of Object-Oriented Gray-Box

Frameworks
Jehad Al Dallal, and Paul Sorenson

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1738

and Frozen states to model the states of the object. A banking
system developer can choose to implement the specification
shown in Fig. 2 as defined. Moreover, the developer can
choose to add, for example, transitions between Overdrawn
and Frozen states to match the requirements of a banking
system. Finally, the application developer can choose to
ignore, for example, a transition originating from the Open
state and ending at the Inactive state. This implies that an
account can never go directly from the Open state to the
Inactive state without going through the Frozen state first.

Fig. 2 The STD of the NewAccount object defined in the banking

framework hooks.

Testing techniques for deriving test cases starting from the
software specification only are called specification-based
testing techniques. Instead of applying such techniques to
produce test cases to test the FICs everytime a framework
application is developed, we can apply them once to build
reusable test cases when the framework is developed and the
hooks that specify the FICs behaviors are described. The test
cases that are generated at this stage are called baseline test
cases. When developing the framework application, the
developer can reuse some of the baseline test cases and write
new test cases only for the added behaviors instead of writing
all test cases from scratch.

As a result, two main problems have to be tackled: (1)
building effective baseline test cases in terms of reusability
and fault coverage, and (2) introducing an efficient way to use
the baseline test cases. Although we are studying both
problems, this paper focuses on just the first problem. In [5], a
technique called all paths-state is introduced to build test cases
for FICs. In this paper, first, it is shown that this technique is
not effective in building test cases for FICs that extend
framework classes. In this case, unnecessary test cases are
built. Second, an effective technique is introduced to build test
cases for FICs that inherit the framework classes or use them
without inheritance. Building test cases and coding them is a
labor-intensive work. Therefore, a tool that automates the
introduced technique for Java frameworks is developed.

The paper is organized as follows. Sections II and III
discuss the related work and background research,
respectively. In Section IV, the extended version of the all

paths–state technique is described. Section V illustrates how
to generate the reusable test cases for the FICs using the
extended technique. A supporting tool is introduced in Section
VI. Finally, Section VII provides conclusions and a discussion
of future work.

II. RELATED WORK
In object-oriented testing, each class has to be tested

individually. Class testing is a unit testing step with respect to
application testing and the first level of integration testing. At
class testing level, the method responsibilities, intraclass
interactions, and superclass/subclass interactions are
considered [6]. Research in generating test cases to test an
implementation at the class level can be divided into two
broad approaches: (1) generating test cases from the source
code to achieve a given level of statement, branch, or path
coverage, and (2) generating test cases from the formal
specification of the implementation. Testing techniques that
follow the former approach are called implementation-based
testing techniques (also sometimes referred to as white-box
testing techniques), while testing techniques that follow the
latter approach are called specification-based testing
techniques (also sometimes referred to as black-box testing
techniques).

The specification of a class behavior can be expressed using
state-based models such as finite state machines and UML
statecharts [6]. In this case, a state is a set of instance variable
value combinations of the class object. A transition is an
allowable two-state sequence caused by an event. An event is
a method call. Each transition can be associated with (1) an
event, (2) a set of predicates, and (3) a set of expected actions.
The UML syntax for a transition is:

event-name argument-list [guard predicate]/action-expression
There are several state-based specification coverage criteria

proposed in the literature such as:
1. All-transition coverage. In all-transition coverage, each
transition is covered at least once in some test case. Therefore,
to test a transition, the test case requires that the object under
test be in the accepting state of the transition. The criterion
does not put any constraints on how to reach the accepting
state. Chow [7] introduced all transition coverage criterion for
finite state machines and Offut et al. [8] adapted the criterion
for UML statecharts and compared it experimentally with
other specification coverage criteria. Bogdanov et al. [9] used
all transitions coverage criterion to derive test sequences in
the presence of hierarchical statecharts.
2. Transition-pair coverage. In transition-pair coverage, it is
required to cover each pair of adjacent transitions [7, 8, 10].
3. Full predicate coverage. In full predicate coverage, it is
required to cover each clause in each predicate on every
transition, if the clause independently affects the value of the
predicate [8, 10].
4. Round-trip path coverage. In round-trip path coverage,
transition sequences that start and end with the same state and
simple paths from α to ω state are covered. A simple path
includes only an iteration of a loop, if a loop exists in some
sequence. Round-trip path strategy was proposed originally by
Chow [7] and was denoted as W-method. Binder [6] adapted

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1739

the strategy to UML statecharts and called it round-trip path
testing. Antoniol et al. [11] showed experimentally that the
round-trip path testing strategy is reasonably effective at
detecting faults. Kim et al. [12] used a criterion similar to the
round-trip path strategy to derive testing trees for testing
control and data flow through states.

III. BACKGROUND
At the class testing level, a testing model has to be

constructed and used to generate the test cases. In [4], a novel
technique to synthesize a class state-based testing model from
the specifications (i.e., pre-conditions and post-conditions) of
class methods is introduced. Al Dallal et al. [5] introduced a
test-case generation criterion called all paths-state that uses
the synthesized model to generate test cases that are effective
at the application testing stage in covering the reused FIC
specifications.

A. Framework Hooks
In [2], the issue of documenting the purpose of a framework

and how it is intended to be used using the hooks is described
and formalized. Hooks describe how to extend or customize
parts of the framework to build an application.

Froehlich [2] provided a special-purpose language and
grammar in which the hook description can be written. Each
hook description consists of the following parts. (1) a unique
name, (2) the requirement (i.e., the problem the hook is
intended to help solve), (3) the hook type. (4) the other hooks
required to use this hook, (5) the components that participate
in this hook, (6) the pre-conditions (i.e., the constraints on the
parameters [or the context] that must be true before the hook
can be used), (7) the changes that can be made to develop the
application, (8) the post-conditions (i.e., constraints on the
parameters that must be true after the hook has been used), (9)
a general comment section. It is not necessary to have all the
above parts for each hook.

Fig. 3 shows a hook description example for the creation of
an account in a banking framework. The Initialize Account
hook creates a constructor method for the NewAccount class
(i.e., an FIC defined in the framework hooks). In the
constructor method, the account money currency is selected.
There are three pre-built classes in the framework for money:
USMoney, EURMoney, and Money. Moreover, the user must
specify the bank branches in the system. Finally, the user must
specify the maxPeriod variable value.

The introduced hook description supports the framework
application test design. The hook description identifies the
FICs and their methods. In addition, it identifies the pre-
conditions and post-conditions of the FIC methods. These pre-
conditions and post-conditions are essential to determine the
FIC behaviors and sequential constraints. Moreover, post-
conditions hold the expected outputs. The pre-conditions and
post-conditions of a method are called method specifications.
When an FIC extends a framework class (i.e., in case of a
white-box framework), the inherited methods are either used
in the context of the FIC without modifications or extended.
For both cases, the hook descriptions show how to use the

inherited methods of the framework classes and identify their
pre- and post-conditions in the context of the FICs. When an
FIC uses a framework class (i.e., in case of a black-box
framework), there are no methods inherited from the
framework classes. In this case, the hook descriptions
introduce methods for the FICs and show how to use the
introduced methods. The technique proposed in [4] can be
used to synthesize the class testing models for the FICs from
the method specifications provided in the hooks. In addition,
the method specifications can be used to evaluate the results
of the test cases as proposed in [13].

Fig. 3 Description of the Initialize Account hook of a banking
framework

B. All Paths-State Test-Case Generation Technique
At the application development stage, the application

developer can implement part of the specification introduced
by the framework hooks for FICs and decide that the rest of
the specification is not required to be implemented and used in
the application. This can affect the baseline test cases
generated from the full specification provided through the
hook descriptions. Therefore, the unaffected test cases can be
insufficient to cover all implemented transitions in the
specification model of the FIC under test. This problem exists
when applying any of the state-based specification coverage
criteria presented in Section II. In [5], the problem is solved
by introducing a specification coverage criterion that produces
test cases sufficient to cover all reused transitions in the

Name: Initialize Account
Requirement: Initialize an account (i.e., set the currency and

bank branches).
Type: Template
Uses: None
Participants: Account(framework), NewAccount(app),

Amoney(app);
Pre-conditions: amount>=0;
Changes:
 NewAccount.NewAccount(int amount) extends
 Account.Account(int amount);
 Choose AM from (Money, USMoney, EURMoney);
 Create Object Amoney as AM() in MyAccount.
 NewAccount(int);
 Create Object branches as Branches() in
 NewAccount.NewAccount(int);
 Repeat as necessary {
 Acquire BranchName: string
 NewAccount.NewAccount(int) ->
 branch.addBranch(BranchName);
 }
 Acquire maxPeriod : integer domains:0-999999;
 NewAccount.NewAccount(int) ->
 NewAccount.setMaxPeriod(maxPeriod);
Post-conditions:
 Operation NewAccount. NewAccount (int);
 NewAccount.balance>=0;
 ! NewAccount.frozen;
 NewAccount.getUpdate()< NewAccount.MaxPeriod
Comments:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1740

modified specification models of the implemented FICs under
test. The introduced coverage criterion is called all paths-state
and it is used to construct a set of test cases T from a
specification graph SG (e.g., UML statechart or finite state
machine of the FIC under test). T covers all simple paths to
each state in the SG. A simple path includes only an iteration
of a loop, if a loop exists in some sequence.

The set of paths that satisfy the criterion can be shown in a
tree. The construction process of the tree starts from the α
state of the SG. In the process, whenever a state is reached all
outgoing transitions from the state are traversed. The process
terminates when each root-leaf tree path terminates at the final
(i.e., ω) state or a state already encountered on the path.

Fig. 4 shows the all paths-state tree of the STD of Fig. 2. In
the STD, if any transition is deleted, reachable states from the
deleted transition can still be reached by some other paths of
the tree. For example, if all paths-state technique is used to
build the test cases and the application developer chooses not
to implement the transition originating from the Open state
and ending at the Inactive state, the test cases that include the
transition are considered broken; therefore, they cannot be
used as-is. This results in breaking the test cases built from the
paths that include the transition sequences labeled as
(1,20,13,21), (1,20,13,14), (1,20,13,19), (1,20,13,5),
(1,20,15), (1,20,18), and (1,20,4). Note that the remaining test
cases still cover all outgoing transitions from the Inactive
state, and therefore, can be deployed. In [5], it is proved that
all paths-state coverage subsumes the round-trip path
coverage, and therefore, it has at least the same error detection
power.

Fig. 4 All paths-state tree of the STD example shown in Fig. 2

Test cases are generated by traversing each path in the tree

from the tree root to a leaf node. The number of generated test
cases is equal to the number of leaf nodes in the tree. The

number of leaf nodes in the tree shown in Fig. 4 is 22;
therefore, the number of generated test cases is 22.

IV. EXTENDED ALL PATHS-STATE TECHNIQUE
Hooks can introduce FICs that subclass framework classes.

This way of customizing the framework is called white-box
customization. In this case, even if the application developer
does not implement the FIC methods that override the
inherited framework class methods, the inherited methods are
accessible when the FIC is instantiated. Therefore, the
specifications of the inherited methods defined in the hooks
cannot be ignored. In terms of states and transitions, this
results in having transitions that cannot be broken (i.e., must
be implemented) at the application development stage. We
call such transitions guaranteed. In Section III.B, the analysis
for the NewAccount class neglects the fact that some
transitions that model the class specification are guaranteed
because the NewAccount class extends the Account
framework class, and therefore, the application developer
cannot ignore the specifications of the Account class. This
produces unnecessary nodes and transitions in the all paths-
state tree, as will be shown later in this section.

When the all paths-state coverage technique is applied to
build test cases for the FICs that extend framework classes,
some transitions can be covered using several paths. Some of
the paths from the α state to the source state of the transition
are composed of guaranteed transitions only. In this case, a
path that contains only guaranteed transitions cannot be
broken at the application development stage, and therefore, it
is ineffective to cover the rest of the paths (i.e., paths that have
not-guaranteed transitions) from α state to the source state of
the considered transition. For example, for the STD shown in
Fig. 2, if the transitions from the α state to the open state and
from the open state to the inactive state are guaranteed, the
outgoing transitions from the inactive state are guaranteed to
be reached by following the path of the guaranteed transitions.
Since this path cannot be broken at the application
development stage, there is no need to cover the other paths
from the α state to the inactive state in the all paths-state tree
to ensure the coverage of the outgoing transitions from the
inactive state.

In the state-transition diagram, if a path to a state has all
transitions marked guaranteed, we say that the state has a
guaranteed path. In the all path-state tree, a state can be
represented by more than one node because we have to cover
all simple paths to it such that if one path to a state has a
transition not used by the application developer, the state
remains reachable in the tree using other paths. Outgoing
transitions from a state that has a guaranteed path do not have
to be covered in the tree using other paths, which reduces the
tree complexity. The procedure given in Fig. 5 shows how to
construct the all paths-state tree from a state-transition model
that has guaranteed transitions.

The procedure starts from the root state of the state-
transition model. In the process, whenever a state is reached
the procedure traverses all outgoing transitions from the state.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1741

Input: A class state-based testing model that has guaranteed
transitions.
Output: The all paths-state tree of the class model.
Procedure:
1. Draw the root node of the tree to represent the α state. Mark

the node as non-terminal and guaranteed.
2. Search for a state that corresponds to a non-terminal

guaranteed leaf node in the tree. If none is found, search for
a state that corresponds to a non-terminal not-guaranteed
leaf node in the tree.

3. Examine each outgoing transition from the state. At least one
new edge will be drawn for each outgoing transition from the
state. Each new edge and node represents an event and
resultant state reached by an outgoing transition.
a. If the transition is unguarded, the transition guard is a

simple predicate, or the transition guard is complex
predicate composed of only AND operators draw one
new edge.

b. If the transition guard is a complex predicate using one
or more OR operators, draw a new branch for each truth
value combination that is sufficient to make the guard
TRUE.

4. For each edge and node drawn in step 3:
a. Note the corresponding transition event, guard, action,

and guarantee information on the new edge.
b. If the edge and its source node in the tree are marked

guaranteed, mark the destination node of the edge as
guaranteed. Otherwise, mark it as not-guaranteed.

c. If the state that the new node represents is the ω state, the
state is already represented by another node (in the path
containing the new node), or the state is represented
somewhere else in the tree by a guaranteed node, mark
this node as a terminal – no more transitions are drawn
from this node. Otherwise, mark it as non-terminal.

5. Repeat steps 2, 3, and 4 until all leaf nodes are marked
terminal.

The procedure marks the tree nodes that have guaranteed
paths as guaranteed nodes. The procedure traverses the
outgoing transitions from the states represented by guaranteed
nodes before the outgoing transitions from the other states.
The process terminates when each root-leaf tree path ends at
the ω state, a state represented previously in the path, or a
state represented previously in the tree by a guaranteed node.

Fig. 5 Produce an all paths-state tree from a state model that includes
guaranteed transitions.

For example, suppose that the transitions that are necessary
to implement the open and inactive states (i.e., transitions
labeled by 1, 2, 4, 6, 10, 15, 16, 18, and 20) shown in Fig. 2
are introduced by the Account class, which is a framework
class. The rest of the transitions are not defined in the Account
class, but they are defined in the hooks. In this case, the
transitions labeled by 1, 2, 4, 6, 10, 15, 16, 18, and 20 are
guaranteed transitions. When the procedure shown in Fig. 5 is
applied, the tree shown in Fig. 6 is constructed.

In the construction process, first, the root node represents
the α state of the STD. In the first iteration of the repeat loop
of the procedure, an edge and a node are drawn to represent
the outgoing transition from the α state and the transition
destination state (i.e., Open state). The two nodes drawn in the

first iteration are bolded. A bolded node and a bolded edge
represent a guaranteed node and a guaranteed edge,
respectively. The α node is always marked guaranteed. The
outgoing edge from the α node is bolded because it represents
a guaranteed transition. Finally, the open node is marked
guaranteed because it is a destination node of a guaranteed
edge initiated from a guaranteed node.

Fig. 6 All paths-state tree of the STD example shown in Fig. 2,

constructed using the procedure shown in Fig. 5

In the second iteration of the repeat loop, all the outgoing
transitions from the Open state are added to the tree. This
includes adding the edges labeled as 2, 6, 11, 10, 12, 20, and
16, and adding all the nodes reached by these edges. In the
tree drawn so far, nodes reached by the edges labeled by 2, 6,
10, and 16 are marked terminal (i.e., no more edges are drawn
from them) because they are either previously encountered on
the tree paths that contain them or represent the ω state. In
addition, nodes reached by the edges labeled by 2, 6, 10, 20
and 16 are marked guaranteed because they are destination
nodes of guaranteed edges initiated from a guaranteed node.

The tree drawn so far contains one node marked as non-
terminal and guaranteed, which is the node that represents the
Inactive state. Therefore, in the third iteration of the repeat
loop, edges that represent the outgoing transitions from
Inactive state and the nodes that represent the states reached
from the Inactive state are drawn. This includes adding the
edges labeled as 13, 15, 18, and 4, and adding the nodes
reached by these edges. Three of the drawn nodes in the third
iteration (i.e., open, ω, and inactive) are marked terminal
because they are either previously encountered on the tree
paths that contain them or represent the ω state. In addition,
these nodes are marked guaranteed because they are
destination nodes of guaranteed edges initiated from a
guaranteed node. The fourth node (i.e., frozen) is marked non-

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1742

terminal and not-guaranteed.
All the non-terminal leaf nodes drawn so far are marked

not-guaranteed. Therefore, in the fourth iteration we can pick
any of the states that represent each of them. In this example,
the node that represents the overdrawn state is picked. In the
fourth iteration, edges that represent the outgoing transitions
from the overdrawn state and the nodes that represent the
states reached from the overdrawn state are added to the tree.
This includes adding the edges labeled 3, 9, 8, and 17, and the
nodes reached by these edges. All the drawn nodes are marked
terminal because they are either previously encountered on the
tree paths that contain them or represent the ω state. In
addition, these nodes are marked not-guaranteed because they
are reached by not-guaranteed edges.

All the non-terminal leaf nodes drawn so far are marked
not-guaranteed. Therefore, in the fifth iteration, any of the
states that represent each of them can be picked. In this
example, the node that represents the frozen state reached by
the edge labeled as 12 is picked. Edges that represent the
outgoing transitions from the frozen state and the nodes that
represent the states reached from the frozen state are added to
the tree. This includes adding the edges labeled as 21, 14, 19,
and 5, and the nodes reached by these edges. Three of the
drawn nodes (i.e., open, ω, and frozen) are marked terminal
because they are either previously encountered on the tree
paths that contain them or represent the ω state. The fourth
drawn node (i.e., inactive) is marked terminal because it
represents a state represented in the tree by a guaranteed node
(i.e., the state represented by the node at the end of path (1-
>20)). The four nodes are marked not-guaranteed because
they are reached by not-guaranteed edges.

So far, only one leaf node in the tree is marked non-
terminal. Edges that represent the outgoing transitions from
the frozen state and the nodes that represent the states reached
from the frozen state are added to the tree in the sixth
iteration. This includes adding the edges labeled 21, 14, 19,
and 5, and the nodes reached by these edges. All the drawn
nodes are marked terminal because they are either previously
encountered on the tree paths that contain them or represent
the ω state. In addition, these nodes are marked not-
guaranteed because they are reached by not-guaranteed edges.
After the sixth iteration, all the leaf nodes are marked
terminal, which indicates that the construction process of the
tree is completed.

V. GENERATING REUSABLE TEST CASES
The constructed all path-state tree can be used to build

reusable test cases for the FICs. This section discusses how to
build the reusable test cases and how to implement them.

A. Generating the Test Cases
The procedure given in Fig. 7 shows how to generate the

test cases from the all paths-state tree that has guaranteed
nodes. The test cases are generated in two rounds. In the first
round, each path from the root node to a leaf node is used to
build a test case. The number of test cases built in this round is

equal to the number of leaf nodes. In the second round, we
search for all non-terminal nodes marked as guaranteed that
have all outgoing edges marked as not-guaranteed. For each
of these nodes, we build a test case that traverses the path
from the root node to the node marked guaranteed. This round
is necessary because the application developer can decide not
to use any of the methods associated with the outgoing edges
from the state. In this case, all the test cases built from the
paths that include the unused edges are considered broken.
This results in having no test cases to test the transitions that
have their destination states represented by guaranteed nodes
in the tree. Fig. 8 depicts the problem. The node labeled by C
is a non-terminal guaranteed node and all its outgoing edges
are marked as not-guaranteed. In the first round of generating
test cases, three test cases are generated to cover the paths (A-
>B), (A->C->D), and (A->C->E). If the application developer
decides not to use the methods associated with the edges (C-
>D) and (C->E), the test cases generated from the paths (A-
>C->D), and (A->C->E) will be broken. Therefore, the edge
(A->C) is not going to be covered by the remaining test case.
To overcome this problem, we have introduced the second
round. In the second round, the path (A->C) is used to build
an additional test case.

Fig. 7 Generate test cases from the all paths-state tree that has
guaranteed nodes

Fig. 8 Non-terminal guaranteed node special case

Finally, it is important to note that the introduced technique
can be used for both the FICs that inherit the framework
classes and the FICs that use the framework classes without
inheritance. For the latter case, all the transitions in the STD
are declared not-guaranteed. The resulting all paths-state tree,
in this case, is going to be similar to the one built using the
original all paths-state technique. As a result, the extended

Input: All paths-state tree that has guaranteed nodes and edges.
Output: The test cases generated from the all paths-state tree.
Procedure:
1. for each path from the root node to a leaf node in the all

paths-state tree do
 Build a test case that traverses the path.
2. Search for all non-terminal nodes in the tree marked

guaranteed and that have all their outgoing edges marked
as not-guaranteed.

3. for each node n found in Step 2 do
 Build a test case that traverses the path from the root

node to node n.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1743

technique can be used to generate test cases for gray-box
framework interface classes.

B. Generating Test Drivers
In the previous section, it is shown how to select the

sequences of message executions (i.e., sequences of
transitions that form the all paths-state paths) to be tested.
Each sequence of message executions forms a test case. To
automate the testing process, it is required to generate test
drivers (i.e., implementations of the test cases). To execute
any message associated with a transition, it is required to set
test values for the parameters of the message and to execute
the code required to satisfy the predicates of the transition.
The general problem of the automatic generation of the test
values for the parameters of the message and the automatic
generation of the code required to satisfy the predicates of the
transition is considered future work. In this work, the required
code for the test values and predicates is associated manually
with the transitions of the testing model.

After executing a transition, it is required to check whether
the actions associated with the transition are performed
correctly and whether the transition leads to the expected
resulting state. Once the testing model is synthesized using the
technique introduced in [4], the transition actions and the
state-invariants are associated with the transitions and states of
the model, respectively. When the test drivers are developed,
the checking of the code for the actions and state-invariants
are instrumented into the test drivers and executed at run time
to evaluate the test cases.

There are two ways to implement the test cases: either to
implement all of them in one class or to implement each test
case in a separate class. At the application development stage,
the test drivers that can be reused to test an implemented FIC
are determined. These test drivers are a subset of the test
drivers provided with the framework to test the FIC. If all test
drivers are included in one class, the non-applicable test
drivers provided with the framework would be included in the
class of the test drivers and not used, which is an ineffective
solution. Therefore, it is better to implement each test driver in
a separate class. This allows the application developer to
maintain only the test drivers that implement the applicable
test cases instead of maintaining all the test drivers provided
with the framework.

The procedure given in Fig. 9 shows how to construct the
test drivers for selected paths of a testing model. The
procedure implements a class for each test case. Each class
includes a constructor method. When the constructor method
is invoked at test time, the actual testing is performed. In the
constructor method, the code for executing the sequence of
message executions is listed. For each message associated
with a transition, the code sets up the parameter values and
includes the statements required to satisfy the transition
predicates. The setting-up code is followed by the message
invocation statement and checking statements for the resulting
actions and the state-invariants of the resulting state.

In this paper, the examples used are coded in Java

language; however, the introduced techniques are applicable
for frameworks and applications written in any other object-
oriented language. Fig. 10 shows two Java test driver
examples generated from the tree shown in Fig. 6. The two
test cases are generated by traversing the paths that include the
transition sequences labeled as (1->2) and (1->12->14),
respectively. The checking statements for the actions and the
state-invariants are written as Javadoc comments using the
Design-by-Contract (DbC) language [14]. These Javadoc
comments are translated at compilation time into Java code
using a tool called Jcontract [15]. At run time, the Jcontract
tool checks the Java statements translated from the DbC
statements and reports any violations. Appendix B shows all
the test drivers for the NewAccount FIC generated using the
supporting tool introduced in Section VI.

Fig. 9 Construction procedure of the test drivers

VI. AUTOMATION
Framework Interface State Transition Tester (FIST2) is a

tool that supports the generation of the reusable test drivers
for Java framework FICs at the framework development stage.
It also deploys, executes, and evaluates the test drivers at the
application development stage. In this paper, only the role of
the tool in generating the reusable test drivers is presented.

Inputs: Paths in the FIC state-based model required to
implement the test cases.

Outputs: FIC test drivers.
Procedure:
for each path required to implement a test case do
 Create a new file
 Create a class for the test driver in the file.
 Create a constructor method in the class.
 s is the first state in the path.
 Repeat
 transition t is the outgoing transition from state s in the

path
 if the method invoked by the transition t has parameters

then add the code require to set the test values of the
parameters to the code of the constructor method.

 if the transition t has predicates then add the code
required to satisfy the predicates to the code of the
constructor method.

 if the transition t is the first transition in the path then
 insert a creation statement in the constructor method

for the instance of the FIC for which the reusable test
drivers are constructed.

 else insert a method call statement in the constructor
method for the event associated with the transition.

 if the transition t has actions, insert statement(s) in the
constructor method to check whether the actions
associated with the transition are performed.

 Insert statement(s) in the constructor method to check
whether the invariants of the reached state by the
transition t are satisfied.

 s is the destination state of the transition t.
 until state s is the last state in the path.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1744

Fig. 10 Two test case examples generated from the tree shown in Fig.
6

At the framework development stage, FIST2 tool supports

the generation of the reusable test drivers for Java framework
FICs. The tool semi-automates the construction of the state-
transition tables for the FICs, checks the correctness of the
tables, and generates reusable test drivers using the extended
all paths-state technique.

Fig. 11 shows the high-level design of the tool when used at

the framework development stage. The user (typically the
framework developer in a test-case generation role) selects the
framework. The framework is stored in a database that
contains the framework code and the descriptions of the
hooks. The tool passes the hook descriptions to the FIC state-
transition table builder module. The FIC state-transition table
builder module parses the pre-conditions and post-conditions
of the FIC methods, analyzes them, and produces the state-
transition table for the FIC. The framework developer can edit
the generated table to add the code required to satisfy the
predicates of the transitions and to add the non-event-driven
transitions. The tool translates the tabular form of the state-
transition model into text and stores the text in a file in the
framework database. The user can use the Model Checker
module of FIST2 tool to check the existence of one entry and
one exit state in the state model and that all the states are
reachable from the entry state.

Fig. 11 The high-level design of FIST2 tool (framework development

stage)

The All paths-state test drivers builder component of FIST2

tool uses the state-transition table to generate the all paths-
state test drivers and associates the test driver identifiers with
the model transitions. In addition, the tool uses the hook
descriptions to determine and generate the stubs required at
the application testing stage to isolate the FICs. The test
drivers and stubs are stored in the framework database and
provided to the user.

In the prototype version of the tool, the method
specifications are not extracted from the hooks automatically
because the module responsible for constructing the state-
transition model from the method specifications is not yet
implemented. Instead, the user has to construct the model
manually from the method specifications listed in the hooks,
using the algorithms provided in [4]. The user is, however,
provided with a friendly GUI to input the model description in
a tabular form. When entering the model description, the user
specifies the guaranteed and not-guaranteed transitions. In

Test Case # 1 (covers transition sequence 1->2)
public class TEST1_NewAccount{
 public TEST1_NewAccount(){

/* testing the transition labeled as “1” */
/* code for setting the parameter value */

 float amount=1;
/* invoking the message associated with
the transition */

 NewAccount o = new NewAccount(amount);
/* DbC checking statement for the
invariants of the resulting state: Open*/

 /** @assert((o.balance()>=0) && ((o.
getCurrentDate()-o.getLastActivityDate())<
o.getMaxPeriod()) && !(o.isFrozen())) */

/* testing the transition labeled as “2” */
/* invoking the message associated with the

transition */
 o.balance();

/* DbC checking statement for the
invariants of the resulting state: Open */

 /** @assert((o.balance()>=0) && ((o.
getCurrentDate()-o.getLastActivityDate())<
o.getMaxPeriod()) && !(o.isFrozen())) */

 }
}

Test Case # 9 (covers transition sequence 1->12->14)
public class TEST9_NewAccount{
 public TEST9_NewAccount(){

/* testing the transition labeled as “1” */
/* code for setting the parameter value */

 float amount=1;
/* invoking the message associated with
the transition */

 NewAccount o = new NewAccount(amount);
/* DbC checking statement for the
invariants of the resulting state:Open*/

 /** @assert((o.balance()>=0) && ((o.
getCurrentDate()-o.getLastActivityDate())<
o.getMaxPeriod()) && !(o.isFrozen())) */

/* testing the transition labeled as “12” */
/* invoking the message associated with the

transition */
 o.freeze();

/* DbC checking statement for the
invariants of the resulting state:Frozen*/

 /** @assert((o.balance()>=0) &&
((o.getCurrentDate()-o.getLastActivityDate
())< o.getMaxPeriod())&&(o.isFrozen())) */

/* testing the transition labeled as “14” */
/* invoking the message associated with the

transition */
 o.unfreeze();

/* DbC checking statement for the
invariants of the resulting state:Open*/

 /** @assert((o.balance()>=0) &&
((o.getCurrebtDate()-o.getLastActivityDate
())< o.getMaxPeriod())&&!(o.isFrozen()))*/

 }
}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:5, 2008

1745

addition, the prototype version of the tool does not create the
required stubs. However, the extended all paths-state
technique is fully implemented in the prototype version of the
tool.

VII. CONCLUSIONS AND FUTURE WORK
This paper helps to address the overall goal of providing a

framework with effective reusable test cases. The application
developer can not only use the framework design and code to
build the application, but can also use the provided test cases
to test part of the new application code. Part of the application
code is implemented by following the hook descriptions.
Hook descriptions define how to construct the FICs and
introduce also the specifications of the FICs. As a result, the
framework developer can produce specification-based test
cases for the FICs that the application developer can use to
test the implementation of the FICs.

The problem with this approach is that the application
developer can implement part of the specification and decide
that the rest of the specification is not required to be
implemented and used in the application. This can affect the
baseline test cases generated from the full specification
provided through the hook descriptions. All paths-state
technique solves this problem. However, it is limited for FICs
that do not inherit framework classes. In this paper, the
technique is extended such that it can be used in generating
reusable test cases for white- and gray-box frameworks, as
well as the black-box ones. The extended technique is
automated in a tool called FIST2. The usefulness of the tool is
shown by applying it to an example illustrated in this paper.

The introduced technique is limited to classes that have
sequential behaviors. It can be extended to consider the
classes that have concurrent behaviors. In future, we plan to
extend the tool to automate the generation of the class testing
models and the stubs.

REFERENCES
[1] Beck and R, Johnson. Patterns generated architectures, Proc. of

ECOOP 94, 1994, pp. 139-149.
[2] G. Froehlich. Hooks: an aid to the reuse of object-oriented frameworks,

Ph.D. Thesis, University of Alberta, Department of Computing Science,
2002.

[3] R. Johnson and B. Foote. Designing reusable classes, Journal of Object-
Oriented Programming, Vol. 2(1), 1988, pp. 22-35.

[4] J. Al Dallal and P. Sorenson, Generating State-Based Testing Models for
Object-Oriented Framework Interface Classes, Transactions on
Engineering, Computing and Technology, Vol. 16, 2006, pp. 96-102.

[5] J. Al Dallal and P. Sorenson, Generating Class-Based Test Cases for
Interface Classes of Object-Oriented Black Box Frameworks,
Transactions on Engineering, Computing and Technology, Vol. 16,
2006, pp. 90-95.

[6] R. Binder. Testing object-oriented systems, Addison Wesley, 1999.
[7] T. Chow, Testing software design modeled by finite state machines,

IEEE Transactions on Software Engineering, EE-4(3), 1978, pp. 178-
187.

[8] J. Offut and A. Abdurazik, Generating tests from UML specifications,
Second International Conference on the Unified Modeling Language
(UML99), Fort Collins, CO, October 1999, pp. 416-429.

[9] K. Bogdanov and M. Holcombe, Statechart testing method for aircraft
control systems, Software Testing, Verification and Reliability, 11(1),
2001, pp. 39-54.

[10] A. Abdurazik, P. Ammann, W. Ding, and J. Offutt, Evaluation of three
specification-based testing criteria, Sixth IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS '00), Tokyo,
Japan, September 2000, pp. 179-187.

[11] G. Antoniol, L. Briand, M. Penta, and Y. Labiche, A case Study Using
the Round-Trip Strategy for State-based Class Testing, Carlton
University TR SCE-01-08, revised Jan. 2002.

[12] Y. Kim, H. Hong, D. Bae, and S. Cha, Test cases generation from UML
state diagrams, IEE Proc.-Software, 146(4), 1999, pp. 187-192.

[13] L. Briand, Y. Labiche, A UML-based approach to system testing.
Technical Report TR SCE-01-01. Carlton University: Canada, 2002.

[14] B. Meyer, Design by contracts, IEEE Computer, 1992, Vol. 25(10), pp.
40-52.

[15] Jcontract,http://www.parasoft.com/jsp/products/home.jsp?product=Jcont
ract, ParaSoft Corporation, July 2006.

