
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

899

Generalized inverse eigenvalue problems for
symmetric arrow-head matrices

Yongxin Yuan

Abstract—In this paper, we first give the representation of the
general solution of the following inverse eigenvalue problem (IEP):
Given X ∈ Rn×p and a diagonal matrix Λ ∈ Rp×p, find
nontrivial real-valued symmetric arrow-head matrices A and B such
that AXΛ = BX. We then consider an optimal approximation
problem: Given real-valued symmetric arrow-head matrices Ã, B̃ ∈
Rn×n, find (Â, B̂) ∈ SE such that ‖Â − Ã‖2 + ‖B̂ − B̃‖2 =
min(A,B)∈SE

(‖A− Ã‖2+‖B− B̃‖2), where SE is the solution set
of IEP. We show that the optimal approximation solution (Â, B̂) is
unique and derive an explicit formula for it.

Keywords—partially prescribed spectral information, symmetric
arrow-head matrix, inverse problem, optimal approximation.

I. INTRODUCTION

THROUGHOUT this paper, we denote the real m × n
matrix space by Rm×n, the set of all symmetric ma-

trices in Rn×n by SRn×n, the transpose and the Moore-
Penrose generalized inverse of a real matrix A by AT and
A+, respectively. In represents the identity matrix of size n.
For A,B ∈ Rm×n, an inner product in Rm×n is defined
by (A,B) = trace(BTA), then Rm×n is a Hilbert space.
The matrix norm ‖ · ‖ induced by the inner product is the
Frobenius norm. Given two matrices A = [aij ] ∈ Rm×n and
B = [bij ] ∈ Rp×q , the Kronecker product of A and B is
defined by A ⊗ B = [aijB] ∈ Rmp×nq. Also, for an m × n
matrix A = [a1, a2, · · · , an], where ai, i = 1, · · · , n, is the i-th
column vector of A, the stretching function Vec(A) is defined
by Vec(A) = [aT1 , a

T
2 , · · · , aTn ]T .

Definition 1 An n × n matrix A is called an arrow-head
matrix if

A =

⎡
⎢⎢⎢⎢⎢⎣

a1 b1 b2 · · · bn−1

c1 a2 0 · · · 0
c2 0 a3 · · · 0
...

...
...

. . .
...

cn−1 0 0 · · · an

⎤
⎥⎥⎥⎥⎥⎦
.

If bi = ci, i = 1, · · · , n−1, then A is a symmetric arrow-head
matrix.

The application background and the computations of the
eigenvalues and eigenvectors of this kind of matrices can see
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[1, 2, 3, 4]. The inverse problem of constructing the symmetric
arrow-head matrix from spectral data has been investigated by
Peng et al. [5], and Borges et al. [6]. In this paper we will
further consider generalized inverse eigenvalue problems for
symmetric arrow-head matrices, which can be described as
follows:

Problem IEP. Given X ∈ Rn×p and a diagonal matrix
Λ ∈ Rp×p, find nontrivial real-valued symmetric arrow-head
matrices A and B such that

AXΛ = BX. (1)

Problem II. Given real-valued symmetric arrow-head matri-
ces Ã, B̃ ∈ Rn×n, find (Â, B̂) ∈ SE such that

‖Â−Ã‖2+‖B̂−B̃‖2 = min
(A,B)∈SE

(‖A−Ã‖2+‖B−B̃‖2), (2)

where SE is the solution set of IEP.
The paper is organized as follows. In Section 2, using the

Kronecker product and stretching function Vec(·) of matrices,
we give an explicit representation of the solution set SE

of Problem IEP. In Section 3, we show that there exists a
unique solution in Problem II and present the expression of
the unique solution (Â, B̂) of Problem II. Finally, in Section
4, a numerical algorithm to acquire the optimal approximation
solution under the Frobenius norm sense is described and a
numerical example is provided.

II. THE SOLUTION OF PROBLEM IEP

To begin with, we introduce two lemmas.
Lemma 1: [7] If L ∈ Rm×q, b ∈ Rm, then Ly = b has

a solution y ∈ Rq if and only if LL+b = b. In this case,
the general solution of the equation can be described as y =
L+b+ (Iq − L+L)z, where z ∈ Rq is an arbitrary vector.

Lemma 2: [8] Let D ∈ Rm×n, H ∈ Rn×l, J ∈ Rl×s.
Then

Vec(DHJ) = (JT ⊗D)Vec(H).

Let S0 be the set of all real-valued symmetric arrow-head
matrices, then S0 is a linear subspace of SRn×n, and the
dimension of S0 is d = 2n− 1.
Define Yij as

Yij =

{ √
2
2 (eie

T
j + eje

T
i ), i = 1, j = 2, · · · , n;

eie
T
i , i = j = 1, · · · , n, (3)
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where ei, i = 1, · · · , n, is the i-th column vector of the
identity matrix In. It is easy to verify that {Yij} forms an
orthonormal basis of the subspace S0, that is,

(Yij , Ykl) =

{
0, i �= k or j �= l,
1, i = k and j = l.

(4)

Now, if A, B ∈ Rn×n are symmetric arrow-head matrices,
then A, B can be expressed as

A =
∑
i,j

αijYij , B =
∑
i,j

βijYij , (5)

where the real numbers αij , βij ,

{
i = 1, j = 2, · · · , n;
i = j = 1, · · · , n,

are yet to be determined. Substituting (5) into (1), we have∑
i,j

αijYijXΛ−
∑
i,j

βijYijX = 0. (6)

Let
α = [α11, · · · , αn,n, α12, · · · , α1,n]

T ,

β = [β11, · · · , βn,n, β12, · · · , β1,n]T ,
G = [Vec(Y11), · · · ,Vec(Yn,n),

Vec(Y12), · · · ,Vec(Y1,n)] ∈ Rn2×d (7)

and
M = (ΛTXT ⊗ In)G, N = (XT ⊗ In)G. (8)

Using Lemma 2, we see that the equation of (6) is equivalent
to

Mα−Nβ = 0. (9)

It follows from Lemma 1 that the equation of (9) with
unknown vector α has a solution if and only if

EMNβ = 0, (10)

where EM = Inp −MM+. Using Lemma 1 again, we know
that the equation of (10) with respect to β is always solvable
and the general solution to the equation is

β = (Id − (EMN)+EMN)u, (11)

where u ∈ Rd is an arbitrary vector.
Substituting (11) into (9) and applying Lemma 1, we obtain

α =M+N(Id − (EMN)+EMN)u+ FMv, (12)

where FM = Id −M+M, and v ∈ Rd is an arbitrary vector.

In summary of above discussion, we have proved the
following result.

Theorem 1: Suppose that X ∈ Rn×p,Λ ∈ Rp×p, and Λ
is a diagonal matrix. Let {Yij}, G,M,N be given as in (3),
(7) and (8). Write d = 2n− 1, EM = Inp −MM+, FM =

Id −M+M. Then the solution set SE of Problem IEP can be
expressed as

SE =
{
(A,B) ∈ SRn×n × SRn×n :

A = K(α⊗ In), B = K(β ⊗ In)} , (13)

where

K = [Y11, · · · , Yn,n, Y12, · · · , Y1,n] ∈ Rn×nd, (14)

α, β are, respectively, given by (12) and (11) with u, v ∈ Rd

being arbitrary vectors.

III. THE SOLUTION OF PROBLEM II

It follows from Theorem 1 that the set SE is always
nonempty. It is easy to verify that SE is a closed convex subset
of SRn×n × SRn×n. From the best approximation theorem
[9], we know there exists a unique solution (Â, B̂) in SE such
that (2) holds.

We now focus our attention on seeking the unique solution
(Â, B̂) in SE . For the real-valued symmetric arrow-head
matrices Ã and B̃, it is easily seen that Ã, B̃ can be expressed
as the linear combinations of the orthonormal basis {Yij}, that
is,

Ã =
∑
i,j

γijYij , B̃ =
∑
i,j

δijYij , (15)

where γij , δij ,
{
i = 1, j = 2, · · · , n;
i = j = 1, · · · , n, are uniquely deter-

mined by the elements of Ã and B̃. Let

γ = [γ11, · · · , γn,n, γ12, · · · , γ1,n]T , (16)

δ = [δ11, · · · , δ1,n, δ12, · · · , δ1,n]T . (17)

Then, for any pair of matrices (A,B) ∈ SE in (13), by the
relations of (4) and (15) we see that

f = ‖A− Ã‖2 + ‖B − B̃‖2
= ‖

∑
i,j

(αij − γij)Yij‖2 + ‖
∑
i,j

(βij − δij)Yij‖2

= (
∑
i,j

(αij − γij)Yij ,
∑
i,j

(αij − γij)Yij)

+ (
∑
i,j

(βij − δij)Yij ,
∑
i,j

(βij − δij)Yij)

=
∑
i,j

(αij − γij)(Yij ,
∑
i,j

(αij − γij)Yij)

+
∑
i,j

(βij − δij)(Yij ,
∑
i,j

(βij − δij)Yij)

=
∑
i,j

(αij − γij)
2 +

∑
i,j

(βij − δij)
2

= ‖α− γ‖2 + ‖β − δ‖2.
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Substituting (11) and (12) into the relation of f , we have

f = ‖M+NWu+ FMv − γ‖2 + ‖Wu− δ‖2
= uTWNT (MMT )+NWu− 2γTM+NWu

− 2γTFMv + vTFMv + γT γ

+ uTWu− 2uTWδ + δT δ,

where W = Id − (EMN)+EMN. Therefore,

∂f

∂u
= 2WNT (MMT )+NWu

−2WNT (M+)T γ + 2Wu− 2Wδ,
∂f

∂v
= 2FMv − 2FMγ.

Clearly, ‖A− Ã‖2 + ‖B − B̃‖2 = min if and only if

∂f

∂u
= 0,

∂f

∂v
= 0

which yields

Wu = (Id +WNT (MMT )+NW )−1W (δ +NT (M+)T γ),
(18)

FMv = FMγ. (19)

Upon substituting (18) and (19) into (11) and (12), we obtain

α̂ =M+NW (Id +WNT (MMT )+NW )−1

W (δ +NT (M+)T γ) + FMγ,
(20)

β̂ =W (Id +WNT (MMT )+NW )−1W (δ +NT (M+)T γ).
(21)

By now, we have proved the following result.
Theorem 2: Let the real-valued symmetric arrow-head ma-

trices Ã and B̃ be given. Then Problem II has a unique solution
and the unique solution of Problem II can be expressed as

Â = K(α̂⊗ In), (22)

B̂ = K(β̂ ⊗ In), (23)

where α̂, β̂ are given by (20) and (21), respectively.

IV. A NUMERICAL EXAMPLE

Based on Theorem 1 and Theorem 2 we can describe an
algorithm for solving Problem IEP and Problem II as follows.

Algorithm 1.
1) Input Ã, B̃, Λ, X.
2) Form the orthonormal basis {Yij} by (3).
3) Compute G, M, N according to (7) and (8), respectively.
4) Compute EM = Inp−MM+, FM = Id−M+M, W =

Id − (EMN)+EMN .
5) Form vectors γ, δ by (15), (16) and (17).
6) Compute K, α̂, β̂ by (14), (20) and (21), respectively.
7) Compute the unique solution (Â, B̂) of Problem II by

(22) and (23).

Example 1. Given

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎝

−4 2 5 1 2 11
2 −3 0 0 0 0
5 0 −6 0 0 0
1 0 0 −2 0 0
2 0 0 0 −4 0
11 0 0 0 0 −44

⎞
⎟⎟⎟⎟⎟⎟⎠
,

B̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−7 2 19 9 3 15
2 −13 0 0 0 0
19 0 −8 0 0 0
9 0 0 −6 0 0
3 0 0 0 −3 0
15 0 0 0 0 −28

⎞
⎟⎟⎟⎟⎟⎟⎠

and

Λ = diag {λ1, λ2, λ3}
= diag {2.1709, 0.84882, 0.73245} ,

X = [x1, x2, x3]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.27362 0.019321 −0.090308
0.071468 0.00087224 −0.0056621
0.70165 0.085116 −0.3485
−0.91 0.035512 −0.16064

−0.050465 −0.91 −0.39781
−0.030195 −0.024079 0.91

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Using Algorithm 1, we obtain the unique solution of Problem
II as follows.

Â =

⎡
⎢⎢⎢⎢⎢⎢⎣

−3.8904 1.8001 4.7078
1.8001 −2.7001 0
4.7078 0 −5.6494
0.90628 0 0
1.8874 0 0
10.383 0 0

0.90628 1.8874 10.383
0 0 0
0 0 0

−1.8126 0 0
0 −3.7749 0
0 0 −41.531

⎤
⎥⎥⎥⎥⎥⎥⎦
,

B̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−6.6982 2.0161 20.037
2.0161 −13.105 0
20.037 0 −8.4365
9.1354 0 0
3.1709 0 0
15.857 0 0
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9.1354 3.1709 15.857
0 0 0
0 0 0

−6.0902 0 0
0 −3.1709 0
0 0 −29.6

⎤
⎥⎥⎥⎥⎥⎥⎦
,

We define the residual as

res(λi, xi) = ‖(λiÂ− B̂)xi‖,
and the numerical results shown as follows.

(λi, xi) (λ1, x1) (λ2, x2) (λ3, x3)
Res(λi, xi) 1.7468e-014 1.0116e-014 3.6636e-014

.

Furthermore, we can figure out

‖Â− Ã‖ = 2.7319, ‖B̂ − B̃‖ = 2.57.
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