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Generalization Kernel for Geopotential
Approximation by Harmonic Splines

Elena Kotevska

Abstract—This paper presents a generalization kernel for gravi-
tational potential determination by harmonic splines. It was shown
in [10] that the gravitational potential can be approximated using a
kernel represented as a Newton integral over the real Earth body. On
the other side, the theory of geopotential approximation by harmonic
splines uses spherically oriented kernels. The purpose of this paper
is to show that in the spherical case both kernels have the same type
of representation, which leads us to conclusion that it is possible
to consider the kernel represented as a Newton integral over the real
Earth body as a kind of generalization of spherically harmonic kernels
to real geometries.

Keywords—Geopotential, Reproducing Kernel, Approximation,
Regular Surface

I. INTRODUCTION

The actual problem of gravitational theory is the determi-
nation of a harmonic function (regular at infinity), to certain
linear functionals, for example, discrete boundary data on
the Earth’s surface or discrete satellite data from space. In
consequence, gravitational field theory canonically leads to
interpolation based on a specific linear functionals, usually
functional values or derivatives in certain (discretely given)
points. In the conventional geodetic approach due to [7], [11], it
was proposed, that the class of approximating functions should
conveniently be structured as a Hilbert space with reproducing
kernel. Interpolation of the Earth’s gravitational potential field
in terms of reproducing kernels immediately leads to a spline
formulation.
Considering spherical approximations to the shape of the
Earth, this can be seen by the well–known theory of spherical
harmonic splines. There is an extensive list of publications in
geomathematics considering this spherical approach. Numer-
ous applications from theory of spherical harmonic splines has
been used with very good results. Interested reader is referred
to the list of publications of the AG Geomathematik at the TU
Kaiserslautern. On the other hand, following the work of [11]
it was shown in [10] that it is also possible to develop the real
Earth body methods for geopotential determination by using
a reproducing kernel expressed as a Newton integral over the
real body of the Earth. Here it will be shown that this kernel
represents a generalization to spherically oriented kernels to
real geometries.

II. SPHERICAL HARMONIC SPLINES
Mathematical methods for approximation of gravitational

potential, like spherical harmonic splines have in their foun-
dation the Runge approach, which means that they are consid-
ering the Runge (or Bjerhammar sphere), which is completely
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situated in the Earth’s interior. Next we introduce the geomet-
rical concepts behind this theory.

Fig. 1. The geometric concept of a regular surface

Definition 1: A surface Σ ⊂ IR3 is called a C(k)-regular
surface, if it satisfies the following properties:

(i) Σ divides IR3 into the bounded region Σint (inner space)
and unbounded region Σext (outer space) defined by
Σext = IR3 \ Σint, Σint = Σint ∪ Σ.

(ii) Σ is a closed and compact surface free of double points.
(iii) The origin 0 is contained in Σint.
(iv) Σ is locally a C(k)-surface (i.e., every point x ∈ Σ

has an open neighborhood U ⊂ IR3 such that Σ ∩ U
has a parametrization which is k-times continuously
differentiable).

Given a regular surface, there exist a positive constants α, β,
such that

α < σinf = inf
x∈Σ

|x| ≤ sup
x∈Σ

|x| = σsup < β. (1)

By Aint, Bint (resp. Aext, Bext) we denote the inner (resp.
outer) space of the sphere A resp. B around the origin with
radius α resp. β. A is a so–called ’Runge sphere’ for Σext.

The theory of spherical harmonic interpolation is well–
known (see [1], [2], [4], [5], [8], [9]). However, we need to
present in short some basic elements of this theory.
In the following we denote by Σ the real Earth surface, and
by Σint and Σext its interior and exterior respectively.
We first define a class of potentials, namely Pot(Σext) as
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the space of all functions U in C(2)(Σext) satisfying the
Laplace equation in the outer spaceΣext and being regular at
infinity (that is, |U(x)| = O(|x|−1), |∇U(x)| = O(|x|−2) for
|x| → ∞ uniformly with respect to all directions ξ = x

|x| ).
For k = 0, 1, ... we denote by Pot(k)(Σext) the space of
all functions U ∈ C(k)(Σext) such that U |Σext is of class
Pot(Σext). In shorthand notation,

Pot(k)(Σext) = Pot(Σext) ∩ C(k)(Σext). (2)

Let U be of class Pot(0)(Σext). Then the maxi-
mum/minimum principle for the outer space Σext gives

sup
x∈Σext

|U(x)| ≤ sup
x∈Σ

|U(x)|. (3)

We next introduce the most commonly used harmonic
functions for representing scalar functions on a spherical sur-
face, namely the spherical harmonics. They form a complete
orthonormal system in the Hilbert space L2(Ω), (Ω denotes
a unit sphere) and thus can be used for the construction
of Fourier series in L2(Ω). Spherical harmonics of different
degrees are orthogonal in the sense of the L2(Ω)- inner product

(Yn, Ym)L2(Ω) =

∫
Ω

Yn(ξ)Ym(ξ)dω(ξ) = 0, n 
= m. (4)

For the Laplace operator Δ in IR3 we have the representa-
tion

Δ =

(
∂

∂r

)2

+
2

r

∂

∂r
+

1

r2
Δ∗

ξ , (5)

where Δ∗ is the Beltrami operator on the unit sphere Ω.
For explicit representations in polar coordinates see [6].
Any spherical harmonic Yn, n ∈ IN0, is an infinitely often
differentiable eigenfunction of the Beltrami operator, corre-
sponding to the eigenvalue −n(n + 1), n ∈ IN0. A special
class of functions, in close connection to spherical harmonics,
are the Legendre polynomials. They can be defined via the
Legendre operator

Lt = (d/dt)(1− t2)(d/dt),

which is the ’longitude-independent part’ of the Beltrami
operator. The Legendre polynomial
Pn : [−1,+1] → IR of degree n is the (uniquely defined)
infinitely often differentiable eigenfunction of the Legendre
operator Lt, corresponding to the eigenvalue −n(n + 1). It
is well–known that the Legendre polynomials are orthogonal
with respect to the L2([−1,+1])−inner product, i.e.,

∫ +1

−1

Pn(t)Pm(t)dt =
2

2n+ 1
δn,m, (6)

where δn,m is the Kronecker symbol. The system
{Pn}n∈IN0

of all Legendre polynomials is closed and complete
in L2([−1,+1]), with respect to∥∥ · ∥∥

L2[−1,+1]
.

For t ∈ [−1, 1] and all h ∈ (−1, 1)

∞∑
n=0

Pn(t)h
n =

1√
1 + h2 − 2ht

. (7)

Also, for 0 ≤ h < 1 and t ∈ [−1, 1] the following series
representation can be derived from (7)

∞∑
n=0

(2n+ 1)Pn(t)h
n =

1− h2

(1 + h2 − 2ht)3/2
. (8)

The following theorem, known as the addition theorem
for spherical harmonics, relates functions on the unit sphere
(spherical harmonics) of degree n to the univariate functions
defined on the interval [−1,+1] (Legendre polynomials).

Theorem 2: (Addition Theorem for Spherical Harmonics)
Let {Yn,k}k=1,...,2n+1 be an orthonormal system of spherical
harmonics with respect to (·, ·)L2(Ω) in Harmn(Ω). Then

2n+1∑
k=1

Yn,k(ξ)Yn,k(η) =
2n+ 1

4π
Pn(ξ · η), ξ, η ∈ Ω. (9)

Next we consider a sphere ΩR ⊂ IR3 around the origin with
radius R > 0. Denote by Ωint

R and Ωext
R the inner and the

outer space of ΩR, respectively. By virtue of the isomorphism
Ω � ξ → Rξ ∈ ΩR we can assume functions F : Ω → IR to
be defined on ΩR. With the surface measure dωR of ΩR,

dωR = R2dω, (10)

we are able to introduce the L2(ΩR) - inner product
(·, ·)L2(ΩR) and the associated norm

∥∥ · ∥∥
L2(ΩR)

, as usual.
Obviously, an L2(Ω) - orthonormal system of spherical har-
monics forms an orthogonal system on ΩR (with respect to
(·, ·)L2(ΩR)).

The function spaces defined on Ω have their natural gener-
alizations as spaces of functions defined on ΩR. We have for
example, C(ΩR), L

p(ΩR), etc.
The system of spherical harmonics {Y R

n,k}n=0,1,...
k=1,...,2n+1

, where

Y R
n,k(x) =

1

R
Yn,k

(
x

|x|
)
, x ∈ ΩR, (11)

is orthonormal in L2(ΩR)-sense.
The system {Hα

−n−1,k}n=0,1,...
k=1,...,2n+1

of outer harmonics of

degree n and order k defined by

Hα
−n−1,k(x) =

(
α

|x|
)n+1

Y α
n,k(x), x ∈ IR3 \ {0}, (12)

(where Y α
n,k is system of spherical harmonics for the Runge

sphere), satisfies the following properties:
• Hα

−n−1,k is of class C(∞)(IR3 \ {0}),
• ΔHα

−n−1,k(x) = 0, x ∈ IR3 \ {0},
• Hα

−n−1,k is regular at infinity, i.e.,∣∣∣Hα
−n−1,k(x)

∣∣∣ = O
(

1
|x|
)

, |x| → ∞,∣∣∣∇Hα
−n−1,k(x)

∣∣∣ = O
(

1
|x|2
)

, |x| → ∞,

• Hα
−n−1,k|A = Y α

n,k,

•
(
Hα

−n−1,k, H
α
−p−1,q

)
L2(A)

= δn,p δk,q .
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A. The Hilbert Spaces H
(
{An};Aext

)
In the following we introduce the (Sobolev-like) Hilbert

spaces H({An};Aext) of harmonic functions which serve
as reference spaces for spherically harmonic spline theory.
As already mentioned, from the mathematical point of view,
functions in H({An};Aext) can be seen as series expansions
in terms of outer harmonics with certain assumptions on
the growth of the coefficients. Let A = {{An}n∈IN0

|An ∈
IR+ for all n ∈ IN0} denote the set of all sequences of positive
real numbers. Given a sequence {An}n∈IN0

∈ A, we consider
the linear space E = E({An};Aext), E ⊂ Pot(∞)(Aext) of all
potentials F of the form

F =
∞∑

n=0

2n+1∑
j=1

F∧(n, j)Hα
−n−1,j (13)

whose Fourier coefficients (with respect to L2(A))

F∧(n, j) =
∫
A

F (x)Hα
−n−1,jdωα(x) (14)

satisfy

∞∑
n=0

2n+1∑
j=1

A2
n(F

∧(n, j))2 <∞ (15)

The last sum is imposed as a norm for E

||F ||H({An};Aext) =

( ∞∑
n=0

2n+1∑
j=1

A2
n(F

∧(n, j))2
)1/2

(16)

Definition 3: The Sobolev space H
(
{An};Aext

)
is de-

fined by

H({An};Aext) = E({An};Aext)
||·||H({An};Aext)

. (17)

It is a Hilbert space equipped with the inner product

(F,G)H({An};Aext) =

∞∑
n=0

2n+1∑
j=1

A2
nF

∧(n, j)G∧(n, j) (18)

for F,G ∈ H({An};Aext), where F∧(n, j) and G∧(n, j)
are Fourier coefficients of F and G with respect to L2(A).
Every element F of the space H({An};Aext) is uniquely
determined by its Fourier coefficients F∧(n, j) that satisfy

||F ||2H({An};Aext)
=
( ∞∑

n=0

2n+1∑
j=1

A2
n(F

∧(n, j))2
)
<∞, (19)

and F can be formally represented by the expansion

F =
∞∑

n=0

2n+1∑
j=1

F∧(n, j)Hα
−n−1,j , (20)

which has to be understood in ‘distributional sense’ (at
least on A). Condition (19) determines the maximal possible
growth behavior of the Fourier coefficients. It follows

directly from the definition of H({An};Aext) that the set
{A−1

n Hα
−n−1,k}n∈IN0,k=1,...,2n+1 is a complete orthonormal

system in H({An};Aext).

Remark: In particular, we let

Hs(Aext) = H({(n+ 1/2)s};Aext), s ∈ IR. (21)

Especially for s = 0 we have

H0(Aext) = H({1};Aext). (22)

The space H0(Aext) may be understood as the space
of all harmonic functions in Aext, regular at infinity,
corresponding to L2(A)–restrictions. Its norm || · ||H0(Aext)

can be understood as the L2(A)–norm. Loosely spoken,
the topology of H0(Aext) is led back to the topology of
L2(A) = H0(Aext)|A and H0(Aext) forms the harmonic
continuations of L2(A)-functions.

According to our construction, the space Pot∞(Aext) is a
dense subspace of Hs(Aext) for each s. Moreover, if t < s,
then ||F ||Ht(Aext) ≤ ||F ||Hs(Aext).

When we associate to a potential F ∈ Pot∞(Aext) the
series (20), it is of fundamental importance to know if the
series converges uniformly on Aext. The answer is provided
by an analogue of the Sobolev lemma. In order to present
this lemma, we first introduce the concept of summable
sequences.

Definition 4: A sequence {An}n∈IN0
∈ A is called

summable if it satisfies the summability condition

∞∑
n=0

2n+ 1

4π

1

A2
n

<∞. (23)

Lemma 5: (Sobolev Lemma) If a sequence {An}n∈IN0
∈ A

is summable, then each F ∈ H({An};Aext) corresponds to a
potential of class Pot(0)(Aext).

Theorem 6: Let {An}n∈IN0 ∈ A be a summable sequence.
Then H({An};Aext) is a reproducing kernel Hilbert space
with the reproducing kernel given by

KH({An};Aext)(x, y)

=
∞∑

n=0

2n+1∑
j=1

1

An
Hα

−n−1,j(x)
1

An
Hα

−n−1,j(y)

=
∞∑

n=0

1

A2
n

2n+ 1

4πα2

(
α2

|x||y|

)n+1

Pn

( x
|x| ·

y

|y|
)
(24)

where x, y ∈ Aext.

B. H({An};Aext)–Splines

The Sobolev spaces of harmonic functions H({An};Aext)
allow the definition of harmonic splines (see [1], [3] for the
original papers or the text books [4], [6]). These splines are
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introduced with respect to a set of linear bounded functionals
which provide interpolation conditions. The choise of the so-
lution space H({An};Aext), i.e., the corresponding sequence
{An}n∈IN0

∈ A, is dictated by the specifics of the functional
under consideration.

Definition 7: Let {L1, ...LN} be a set of N linearly in-
dependent bounded linear functionals on the Sobolev-type
Hilbert space H({An};Aext). Then any function S of the form

S(x) =
N∑
i=1

aiLiKH({An};Aext)(·, x), x ∈ Aext, (25)

with a set of real numbers {a1, ..., aN} ⊂ IR is called a
H({An};Aext)-spline relative to {L1, ...LN}.

The function space of all H({An};Aext)–splines relative
to {L1, ...LN} is denoted by SH({An};Aext)(L1, ...LN ).

H({An};Aext)–spline interpolation problem

Let F ∈ H({An};Aext), and let {L1, ...LN} be a set
of N linearly independent bounded linear functionals
on the Hilbert space H({An};Aext). As usual we
denote the representer of Li, by LiKH({An};Aext)(·, ·),
i = 1, ..., N . Denoting the space of all interpolating
functions in H({An};Aext) for F relative to L1, ...,LN by
IL1,...,LN

, the H({An};Aext)–spline interpolation problem
is to determine a function SF

H({An};Aext)
(L1, ...LN ) in

SH({An};Aext)(L1, ...LN ) ∩ IL1,...,LN
, i.e., to determine

a spline SF
H({An};Aext)

(L1, ...LN ) which fulfills the
interpolation conditions

LiS
F
H({An};Aext)

(L1, ...LN ) = LiF,

for all i = 1, ..., N .

The solution to the interpolation problem corresponding
to H({An};Aext)-splines relative to a finite set of linear
bounded functionals, relates the interpolation conditions to
a system of linear equations which needs to be solved to
obtain the spline coefficients. Together with the set of linear
bounded functionals and the Sobolev space H({An};Aext)
(or the corresponding representers) these coefficients define
the interpolating spline. For this spline the minimum norm
properties are valid.

III. THE REPRODUCING KERNEL VIA THE NEWTON
POTENTIAL

Spherical and ellipsoidal models are widely used in geo-
sciences as approximations to the shape of the Earth. However,
the technological progress and the increasing observational
accuracy require adequate mathematical methods observing
geophysically more realistic reference surfaces than sphere and
ellipsoid. This was the idea behind our approach. Following
the work of [11] we proposed that it is reasonable to use a
reproducing kernel given as a Newton integral over the real
Earth body:

K(x, y) =

∫
Σint

dz

|x− z||y − z| , x ∈ Σext. (26)

Using this kernel, a real Earth based spline formulation for
the solution of interpolation problem of geopotential determi-
nation is given in [10]. However, investigations on this kernel
in spherical case showed a remarkable result. Replacing a
regular surface Σ with the Runge sphere A = Ωα this kernel
takes the form of the reproducing kernel of type (24). Indeed,
the kernel gets the following representation

K(x, y) =

∫
Aint

dz

|x− z||y − z| . (27)

Now using the known expansions in spherical harmonics for
fundamental solutions (of the Laplace’s equation) appearing in
the integral we can write

1

|x− z| =
∞∑

n=0

|z|n
|x|n+1

Pn

(
x

|x| ·
z

|z|
)
. (28)

and

1

|y − z| =
∞∑

m=0

|z|m
|y|m+1

Pm

(
y

|y| ·
z

|z|
)
. (29)

Substituting this expressions in (27) we get

K(x, y) =

∫
Aint

1

|x− z|
1

|y − z|dz

=

∫ α

0

∫
Ωr

∞∑
n=0

|z|n
|x|n+1

Pn

(
x

|x| ·
z

|z|
)

·
∞∑

m=0

|z|m
|y|m+1

Pm

(
y

|y| ·
z

|z|
)
dωr

(
z

|z|
)
dr

(30)

Using the addition theorem for spherical harmonics the last
expression can be written as

∫ α

0

∞∑
n=0

r2n+2

(|x||y|)n+1

(
4π

2n+ 1

)
Pn

(
x

|x| ·
y

|y|
)
dr

=
∞∑

n=0

4π

2n+ 1
· 1

(|x||y|)n+1
Pn

(
x

|x| ·
y

|y|
)∫ α

0

r2n+2dr

=

∞∑
n=0

4π

2n+ 1

1

(|x||y|)n+1
Pn

(
x

|x| ·
y

|y|
)
α2n+3

2n+ 3

=

∞∑
n=0

4πα

(2n+ 1)(2n+ 3)
·
(

α2

|x||y|
)n+1

Pn

(
x

|x| ·
y

|y|
)

(31)

Altogether we have

K(x, y) =
∞∑

n=0

1

A2
n

2n+ 1

4πα2

(
α2

|x||y|
)n+1

Pn

(
x

|x| ·
y

|y|
)
, (32)

where An = 4π(2n+ 1)(2n+ 3)1/2α−3/2.
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This means that in case of Σ = A, the kernel (26)

corresponds to the type of kernels defined by H
(
{An};Aext

)
,

where An is the summable sequence

An = 4π(2n+ 1)(2n+ 3)1/2α−3/2, (33)

Following figures represent the reproducing kernel (32),
calculated for x, y ∈ Ω and different values of α using the
Clenshaw algorithm.

Fig. 2. Kernel K on Ω with α = 0.7.

Fig. 3. Kernel K on Ω with α = 0.9.

Fig. 4. Kernel K on Ω with α = 0.99.

IV. NUMERICAL RESULTS

For some special classes of summable sequences {An}n∈IN0

we can find closed representations of the reproducing kernel
as an elementary function by the use of the addition theorem
(9) as well as (7) or (8), respectively. Taking the advantage of
closed representations, numerical computations using spherical

Fig. 5. Coefficients A−1
n of K with α = 0.7.

Fig. 6. Coefficients A−1
n of K with α = 0.9.

kernels is mainly done by using type of kernels like Abel-
Poisson or the singularity of kernel.

(i) Kernels of Abel–Poisson type: An = h−n/2 for h ∈
(0, 1)

K
H
(
{h−n/2};Aext

)(x, y)
=

∞∑
n=0

hn
2n+ 1

4πα2

(
α2

|x||y|

)n+1

Pn

(
x

|x| ·
y

|y|

)

=
1

4π

|x|2|y|2 − h2α4(|x|2|y|2 + h2α4 − 2hα2(x · y))3/2
(34)

with x, y ∈ Aext.
(ii) Kernels of Singularity type: An =

(
n + 1

2

)
h−n/2 for

h ∈ (0, 1)

K
H
(
{
(
n+ 1

2

)
h−n/2};Aext

)(x, y)
=

∞∑
n=0

hn(
n+ 1

2

) 2n+ 1

4πα2

(
α2

|x||y|

)n+1

Pn

(
x

|x| ·
y

|y|

)

=
1

2π

1(|x|2|y|2 + h2α4 − 2hα2(x · y))1/2
with x, y ∈ Aext.

Considering the particular sequence (45) we are interested
in the existence of a closed expression for the kernel K. We
have
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Fig. 7. Coefficients A−1
n of K with α = 0.99.

Fig. 8. Kernel of Abel-Poisson type on Ω with h = 0.9

K(x, y) =
4πα3

|x||y|
∞∑

n=0

α2n

(|x||y|)n
1

(2n+ 1)(2n+ 3)
Pn

(
x

|x| ·
y

|y|
)

(35)
Writing h1 = α2

|x||y| =
(

α√
|x||y|

)
= h2, and using partial

fraction we get

K(x, y) =
4πα3

|x||y|
∞∑

n=0

h2n
1

(2n+ 1)(2n+ 3)
Pn

(
x

|x| ·
y

|y|
)

=
2πα3

|x||y|
∞∑

n=0

hn1
1

2n+ 1
Pn

(
x

|x| ·
y

|y|
)

︸ ︷︷ ︸
=S1

−2πα3

|x||y|
∞∑

n=0

hn1
1

2n+ 3
Pn

(
x

|x| ·
y

|y|
)

︸ ︷︷ ︸
=S2

.

(36)

For the sum S1 we get from (7) for t = x
|x| · y

|y|

∞∑
n=0

hn1Pn(t) =
∞∑

n=0

(h2)nPn(t) =
1√

1 + h4 − 2th2
. (37)

Integrating both sides with respect to h, we get

∞∑
n=0

h2n+1

2n+ 1
Pn(t) =

∫
1√

1 + h4 − 2th2
dh = F(h, t), (38)

where

Fig. 9. Singularity Kernel on Ω with h = 0.9

F(h, t) includes an elliptic integral of I kind.
In conclusion we have for the sum S1

S1 =
∞∑

n=0

hn1
2n+ 1

Pn(t) =
1√
h1

F(
√
h1, t). (39)

In a similar way we calculate the sum S2. Equation (7)
yields for t = x

|x| · y
|y| and for the sum

∞∑
n=0

h2n+2Pn(t) = h2
∞∑

n=0

(h2)nPn(t) =
h2√

1 + h4 − 2th2
.

(40)
Again integrating both sides with respect to h, we get

∞∑
n=0

h2n+3

2n+ 3
Pn(t) =

∫
h2√

1 + h4 − 2th2
dh

= h3
∞∑

n=0

h2n

2n+ 3
Pn(t) = G(h, t) = G(

√
h1, t),

(41)

where G(h, t) is defined via elliptic integrals of I and II
kind respectively.

In conclusion we have for the sum S2

S2 =

∞∑
n=0

hn1
2n+ 3

Pn(t) =
1

h
3/2
1

G(
√
h1, t). (42)

Finally for the reproducing kernel (32) we have

K(x, y) =

∫
Aint

1

|x− z|
1

|y − z|dz

=
2πα3

|x||y|

(
1√
h1

F(
√
h1, t) +

1

h
3/2
1

G(
√
h1, t)

)

.
(43)

For elliptic integrals of I and II kind is known that there
exist closed expression only in the case t = −1 or t = 1.
For other values of t, namely for which we are interested, the
integral must be calculated numerically. This means that the
closed expression for this kernel does not exist even in the
case of spherical boundary.
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V. CONCLUSION

The result from the previous section shows us that when
going over from the sphere to the regular surface Σ we can
consider the kernel

K(x, y) =

∫
Σint

dz

|x− z||y − z| , x ∈ Σext. (44)

a generalization to spherically oriented kernels. Moreover,
the spherical representation of this kernel

K(x, y)

=
∞∑

n=0

4πα2n+3

(2n+ 1)(2n+ 3)(|x||y|)n+1
Pn

(
x

|x| ·
y

|y|
)

associated with the summable sequence

An = 4π(2n+ 1)(2n+ 3)1/2α−3/2, (45)

corresponds to the spherically oriented kernels described in
Section II .

This is of significant result especially today when due to
the technological advances spherical models are no longer
satisfactory. Modern sciences that contribute to the study of the
Earth processes are more and more interested in boundaries
such as the real Earth surface or the real Earth body. Our result
from the previous section opens the door for future investiga-
tions in approximations involving non-spherical boundaries.
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