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Generalised Slant Weighted Toeplitz Operator

S. C. Arora and Ritu Kathuria

Abstract—A slant weighted Toeplitz operator A¢ is an operator
on L*(3) defined as Ay = WMy where My is the weighted
multiplication operator and W is an operator on L?(j3) given by
Weon = ; €n, {€n }nez being the orthonormal basis. In this paper,
we generahse Ay to the k-th order slant weighted Toeplitz operator
Uy and study its properties.

Keywords—Slant weighted Toeplitz operator, weighted multiplica-
tion operator.

[. INTRODUCTION

O. Toeplitz [5] introduced the Toeplitz operators in the
year 1911 and later many mathematicians came up with
different generalisations of the Toeplitz operators. In 1995,
Ho [2] introduced the class of slant Toeplitz operators having
the property that the matrices with respect to the standard
orthonormal basis could be obtained by eliminating every
alternate row of the matrices of the corresponding Toepltiz
operators. All these operators arise in plenty of applications
like prediction theory [6], solution of differential equations [7]
and wavelet analysis [8]. However, these studies were made in
context of the usual Hardy spaces and Lorentz spaces. In the
mean time, the notion of weighted sequence spaces H?(3) and
L?(B) also gained momentum. Shields [4] made a systematic
study of the multiplication operator on L2(3), while Lauric
[3] studied particular cases of Toeplitz operators on H2(f3).
Motivated by these studies and the various applications of slant
Toeplitz operators, we introduced and studied [1] the notion
of a slant weighted Toeplitz operator on L?(3). In this paper
we extend our study to the k-th order slant weighted Toeplitz
operator. We now begin with the notations and preliminaries.

Let 8 = {Bn}ne g be a sequence of positive numbers such
that [7)0 S <1
for all n < O Consﬁer the spaces [4] [3]

2@ = {10= ¥ aslacc
and [fI3= 3 |an|252<oo}

and

oo
Z anz"la, € C

n=0

and (73 =3 Janl?62 < oo}.

n=0

H(5) = {f(z) -
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Then (L%(B),] - Hﬁ) is a Hilbert space with an orthonormal
basis {e,(2) = 5~ -1 <, and with respect to the inner product

defined by < 2™, S bp2™ Y = 3 anby B2,
Also, H?(f3) is a subspace of L2(3). If,

oo

2 = {ol)= 3 asmlor (o) € 1) aa

n=—oo

Jec e R such that ||of||g < c| flig
for all f € LZ(B)},

then L°°(3) is a Banach space with a norm defined by

1lloc = inf{c[l6flls < cllflls  forall feL*(8)}.

If P: L?(B8) — H?(B) is the orthogonal projection of
L?(B) onto H?(f), then the weighted Toeplitz operator T
on H?(B) [3] with symbol ¢ in L>(8) is defined by

Tyf = P(¢f) forall fe H?*(B).

Let M, denote the weighted multiplication operator on L?(53).
Then,

My(f)=¢f forall fe L*(B),
and,
Myeg(z Z Ap_ kﬁnf’n ?) for all k€ Z.

It W : L2(8) — L2(B) is defined as Weap(2) = £=ep(2)
and Wegy,_1(z)=0, then a slant weighted Toeplitz operator
[1] Ag : L3(B8) — L%(B) is given by: Ayg(f) = WM,f for
all f e L2(B).

Hence Ager(2) = 3 “5="Bnen(2). The matrix of Ay is
as follows:

Bo Bo Bo
o, G-1p Ad-23,

axft g aog:

Bz Bz B2
G4z, a3'g, G275,

Bs Bs Bs
a6 3, 458, @47,

In the following section we introduce the k-th order slant
weighted Toeplitz operator Uy which is a generalisation of A.
Ay is the particular case of Uy for £ = 2. We have studied
some properties of Ay in [1]. In this paper we investigate those
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results and many more other properties for the generalised (iv) Wi M_,W; =0 forp=1,2,...,k— 1L

Brn «
operator Uy. Henceforth we assume that s < M < 0. Proof: (i) Take ¢ = 1 in Uy = WM.

II. k-TH ORDER SLANT WEIGHTED TOEPLITZ oPERATOR (1) [[Usll = [[WiMl|
Let Wy : L2(8) — L%(B) be defined as < Wil M|
< oo
Zalke, (z) if s divisible by k < el
Wien(2) =9 ™" , since | My|| = ||#lc as shown by Shields [4].
0 otherwise. (iif) Case (a) i = kn, n € NU{0}.
The adjoint of W, is given by Bn
3 PWyei(z) = PWiekn(z) = Pﬁ —en(2)
Wien(z) = ﬂ—"e;m(z) forall ne Z 3 kn
kn n
= en(2)
Also, the matrix of Wy, is Brn
= WkPe;m(z)
{2 000 ...0000 0 .. = WiPei(2).
0 000 % 0 ol Case (b) ¢ = kn, n is a negative integer.
k-times Then
0 000 ..... 0 ... 0 £ . B,
2* PWiei(z) = PB en(2) = 0= Wi Pe;(2).
Therefore ||Wy|| = sup ﬁil <1. Case (c) 4 is not a multiple of k.
Definition IL1. For an integer & > 2, we define the k- PWyei(z) = 0= WyPe;(z) forall i€ Z.

th order slant weighted Toeplitz operator Uy : L?(8) —
L%(B) as Uy(f) = WiMy(f) for all f € L2*(3). The
effect of Uy on the orthonormal basis {e;(2) =

Hence we conclude that

PWy =W, P (D
Now for all n € NU {0},

PWien(z) = Wien(z) = Wi Pey(2).

i
- E}iez
can be given by: Uge;(z) = i > apg—ifnen(2). Also,
n=—o00

the (i,j)th element of Uy is given by (Ugej,e;) =
<% _Z ank_jﬁnen(z),ei(z)> = aik;_j%. Therefore the For negative integers n,

matrix of Uy, with respect to this basis is as follows: PWiien(z) = Wi Pen(z)
i 7 Thus

3 B 3 a PW} =W;P 2)

From (1) and (2) we get that P reduces W.

5o 5o Bo 5o (iv) Consider f € L%(3). Then W} f lies in the closed span
M-y | %0p, O-lp a-2, - of {egn(2z) : n € Z}. Hence M, (W} f) belongs to the closed

5 5 5 5 span of {ex,+1(2) : n € Z}. Also, M2 (W} f) belongs to the
CGpp13 | Gk Gk-1p,  Gk—25; - closed span of {exn+2(2) :n € Z} and so on. In fact, for all
p=1,2,...k—1, M.»(W}f) belongs to the closed span of

. agk_;,_l% agk% agk_l% agk_g% . {ekn+p(2) n e Z} Hence WkMZka*(f) =0 for all f €

L?(B). Therefore Wy M- W} = 0forallp=1,2,...k—1. &
- Lemma IIL2. If h(z) is an L%(B) function and for a fixed

The adjoint of Uy, denoted by Uy is given by integer k > 2, % < M < oo, then h(z") is also an L*(f)
function.
Ulej,e;) = (e, Upei) = jp_i=2. o )
(Udess ei) = (e Upei) = Bi Proof: Let h(z) = Y. «,2" be an L?(3) function.
The matrix of U can be obtained now. Then nETee
o0
[II. ALGEBRAIC PROPERTIES Ih(2)II3 = Z lon 262 < o0 3)

n—=—oo

We make the following observations:

Theorem III.1. () W, =U; o

(i) Ud’ is bounded h(Zk) = ankn = anﬂk‘nekn(z) .
(iii) P reduces Wi, Z Z

Also, then

n=—oo n=—oo
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Hence
GG = Y laalBin
o0 2
SN
n=—o00 ﬁn
< MY B <o
n=-—oo0

from (3).
Therefore h(z*) is also an L?(3) function. |

Theorem IIL.3. For all f in L?(B),
() Wi f € L*(B) if %= is bounded .
(ii) Wif € L*(B).
Proof: (i) Let f(2) = >_ anz™ be in L%(3). Then
Wi f(z) Wiy anz"
= Wl: Zanﬂnen(z)
= Z annWiien(2)

= Z anﬁn %ekn(z)

= Za z’mﬁ—?’
B

= fi(z")

where

Zanﬁkn -

We claim that fi(2) € L%(B).
Since

OB = Yl nwzﬁ" 2
> lanl 53 < .

Hence fi,(z) is in L?(3). Also, then by Lemma IIL2, f;.(z*)
is in L?(8). This implies that W} f(z) € L?(B).
(ii) Let f = Zanzn € L?(B). Then

Wk = szan
= Zaanﬂnen(z)'

Since Wy, eliminates all other terms, we consider only those
terms for which n is a multiple of k. That is n = km (say).
Then

IN

oo

Z akmﬁmem(z)

m=—0o0
oo

Z ‘akm‘zﬂrzn

s 2

= > \akmwzﬁimx[%m )
km

m=—0o0

g
N
[

oo

> larml*Bi <00 (3)

m=—0oC

IN

Now,

Z lan|?B2 < oo
n
= D lakml*Bim+ D lanl?B) < oo

n#km
= Y lakm[* B < 00 ©)
Hence, we conclude that Wy, f € L2(3). [
Theorem IIL4. W,.(f(z%)) = f(z) for all f € L*(B).

Proof: Let f =Y a,z™ be in L?(8). Then

Wilf(F) = Widoanst"
Z anWi(Brnewrn(2))
Zanﬁnen(z)

= Zanz”
= f(2).

Corollary IIL5. W;,6(2F) = ¢(2) for all ¢ € L>(B).

Lemma III6 @) WiWif(z) = fi(z) where fr(z) =
Z Qn 52— 52 2"
(i) WiWyif(2) = h(z*) where h(z) = Zaknﬂg‘ 2" n €
Z. ’

Proof: () WW; f(2) = Wi fu(2*) = fi(2).
Thus W W} # I as in the case of ordinary space L? [2].
()  WiWef(z) = WD apnz"
= Z ak:nW]:;Bnen(Z)

= Z aknﬁn%ekn(z)
= Z ag 52 kn
" ﬁkn
Thus WiW, f(z) = h(zk), where

ag " nez.
Z nﬁkw
]

Theorem IIL7. If 8 = {Bn}nez is a sequence of positive

numbers such that By = 1, 0 < [f: <1lforn>00<

ﬁﬁil <1 forn <0 and %’m < M < oo, then a bounded

operator U on L?(f3) is a k-th order slant weighted Toeplitz
operator if and only if M, U = UM ,x.

Proof: For necessity: Let U = U, be a slant weighted
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Toeplitz operator. Then,

Mtei(Z) = Mquﬁ@z(Z)
<n=Z—oc Bi
_ i akn—iBnt16n+1(2)

n=—oo /))Z

_ i ak(nfl)fﬂi.ﬂnen(fz) %

n=—oo

On the other hand,
UM re;(z)
= U¢Mzke,;(z)
= (2 en®) = 2 vt

i
— B 5 Y wniiben() ®)

Hence, from (7) and (8) we conclude that M, U = UM .

For sufficiency: Suppose that U is a bounded operator on
L?(8) which satisfies M,U = UM_x and let f = 3 a,2"
be in L2(8). Then,

U(f(z%) = U an2*"
= ZanUMZ;ml
= > a, MUl
= Zanz"Ulzf(z)Ul
By Lemma III.2,
[f(z)ULl

n=—oo

IUF(*)Ns

ITHf (")l
MU f(2)]lg < oo

Now, take Ul = ¢g(z). Then ¢y(z) is bounded. Similarly,
we can show that

U(zf(z")) = f(2)Uz

Uf() = f()Uz2

ININ

U = fa)U

Also then, on taking ¢ (2)=Uz, ¢a(2)=U22, ..., dp—_1(2)=
Uz*~1 we get that ¢1(2), #2(2) ... di_1(2) are all bounded.
So, by Lemma IIL.2, each ¢;(z*) is bounded for j =
0,1,2,...,k — 1. Hence the function

B(2) = o (%) + 21 (2%) + . ..

is also bounded. Next we show that ¢ is, infact, the inducing
function for the k-th order slant weighted Toeplitz operator
Uy = U. Or, in other words, we show that U = WM.
Since f € L%(3), we can write

f(2) = folzF) + 2 f1 (%) + ...

+ 2k—1¢k71(zk)

+ 257 1 (25),

where fo, f1,..., fu—1 are all in L?(3). Then,
Wi My (f)
Wilof]
Wi[¢o(z*) + 261 (z") + ... + 2* gy -1(2M)]
X [fo(2") + 2fu(z") + .. 2 i (2M)]]

Now, as W, eliminates all other terms, we consider only the
following terms. We get

Wi My (f)
= Wilgo(z*) fo(2")] + Wilen (%) fu(z5)] + . ..
F Wil dr—1(2") fe—1(2")]
= ¢0(2)fo(2) + 1(2) f1(2) + ... + dr—1(2) fu-1(2)
= fo(HUL+ fi(x)Uz + ... + fra(z)U="
Ufo(z") + Uzf1(*) + ...+ U fra (257
- Uy

Corollary IIL8. MyU, is a k-th order slant weighted Toeplitz
operator.

Proof:
M. MUy, = MyM,Uy
= MyUyM, .
|
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