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 Abstract—Gene networks present a graphical view at the level 

of gene activities and genetic functions and help us to understand 
complex interactions in a meaningful manner. In the present study, 
we have analyzed the gene interaction of PPAR-γ (peroxisome 
proliferator-activated receptor gamma) by search tool for retrieval of 
interacting genes. We find PPAR-γ is highly networked by genetic 
interactions with 10 genes: RXRA (retinoid X receptor, alpha), 
PPARGC1A (peroxisome proliferator-activated receptor gamma, 
coactivator 1 alpha), NCOA1 (nuclear receptor coactivator 1), 
NR0B2 (nuclear receptor subfamily 0, group B, member 2), HDAC3 
(histone deacetylase 3), MED1 (mediator complex subunit 1), INS 
(insulin), NCOR2 (nuclear receptor co-repressor 2), PAX8 (paired 
box 8), ADIPOQ (adiponectin) and it augurs well for the fact that 
obesity and several other metabolic disorders are inter related. 

 
Keywords—Gene networks, NCOA1, PPARγ, PPARGC1A, 

RXRA. 

I. INTRODUCTION 
HE functioning of biological systems is carried out 
through the concerted activity of many genes [1], [2]. 

Estimates suggest that there are more than 30,000 different 
genes in human beings. Although it is an idealization, it is 
common for biologists to think of genes as being turned “on” 
or “off”. If a gene is “off” the associated protein would not be 
synthesized. Only a subset of genes will be expressed at any 
one time in any particular cell of the body. The expression of 
the genes in a cell is controlled by various diffusible factors, 
called transcription factors. A transcription factor is a protein 
whose sequence is in turn coded by a gene and whose 
expression is controlled by transcription factors [3]. Hence, 
activity of genes is regulated by proteins and metabolites, 
which are produced by proteins. But proteins are also gene 
products, thus genes can influence each other (induce or 
repress) through a chain of proteins and metabolites [1]. 
Proteins can interact with each other in a variety of functional 
complexes, regulatory interactions, and metabolic pathways. 
These interactions can be presented as a meaningful set of 
genetic functions when they are conceptualized as gene 
networks. Presently to increase the statistical power of human 
genetics, to assists drug discovery, to avoid gaps in metabolic 
enzyme knowledge and to predict gene functions the “network 
view” is more often presented [4], [5].  

PPAR-γ is a gene that belongs to the superfamily of nuclear 
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receptors (NRs) that are ligand-dependent transcription factors 
and are important regulators of lipid storage and metabolism 
[6]. PPAR-γ has been implicated in diseases associated with 
dysregulation of lipid levels, such as obesity, cardiovascular 
disease, and type 2 diabetes [6]. It has many pleiotropic 
functions; it plays a crucial role in the expression of key genes 
involved in adipogenesis [7], carbohydrates metabolism [7], 
inflammation [7], and cancer [7] and hence can form a 
complex network with different disease causing genes. Even 
though there are many reports [7] on the association of PPAR-
γ with other disorders, there are no reports on the gene 
network analysis of PPAR-γ using bioinformatics tools. Hence 
ours is probably the first such report and our result will be 
useful for researchers working in the field of obesity and 
related disorders.  

II. METHODOLOGY 
We have used the search tool for retrieval of interacting 

genes/protein (STRING 9.0) [4] that explains a comprehensive 
PPARγ gene-disease and gene-gene association involving 
associations from several sources such as databases of 
physical interactions and databases of curated biological 
pathway knowledge. 

A. Confidence Scoring and Network Analysis. 
STRING database was used to retrieve and construct 

disease-gene network of PPARγ. The functional interaction 
was analyzed by using confidence score, ranging from 0.5 to 
1.0. Interactions with score < 0.3 are considered as low 
confidence, scores ranging from 0.3 to 0.7 are classified as 
medium confidence and scores > 0.7 yield high confidence 
[8]. 

B. Gene Ontology Annotations and Clustering 
STRING imported information for PPARγ gene network 

from Gene Ontology (GO) data sources to understand the 
functional organization of gene networks. The criteria for gene 
ontology was based on the p-value and a value of ≤ 0.05 was 
found to be a significant one [9]. Also STRING provides 
clustered functional modules of genes in the network and thus 
explaining a closest coexpressive path. 

III. RESULTS AND DISCUSSION 

A. Network Study and Confidence Scoring of PPARγ 
In the PPARγ network analysis, links between genes signify 

various evidence type interaction data supporting the network. 
The evidence based representations of PPARγ associated with 
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several other functional genes are depicted in Fig. 1. Here 
PPARγ is the node and the functional partners are represented 
towards the edges. PPARγ network represent the existence of 
different types of evidence used in predicting the gene-gene 
associations. Each line of evidence represents co-occurrence 
or binding, co-expression, experiments, databases and text 
mining [10]. 

 

 
Fig. 1 Evidence view of PPARγ gene network showing functional 

association with 10 genes produced using multiple pieces of evidence 
 

This functional interaction of PPARγ obtained is analyzed 
by confidence score. The result shows PPARγ is associated 
with RXRA not only through experimental evidence but also 
interacted by biochemical data which is co-mentioned in 
extended database and information in literature. Also, RXRA 
contributes to coronary heart disease [11] and it is found to be 
the most associated functional node of PPARγ with highest 
confidence scoring (0.999) as mentioned in Table I [12]-[26]. 
PPARGC1A is the next functional node associated with 
PPARγ and its association obtained from experimental data 
and literature evidence. Dysregulation of this gene is co-
related with abdominal obesity and hypertrophic 
cardiomyopathy [27]. Several findings suggest that both 
NCOA1 and NR0B2 are associated with breast cancer [28]-
[29]. Our result also depicts that NCOA1 and NR0B2 are 
networked with PPARγ with high confidence score. HDAC3 
which is associated with the risk of colon cancer shows a good 
interaction with PPARγ and its association is obtained from 
experimental data and curated database. MED1 gene ranked as 
6th in PPARγ gene network, pertains its association by 
experimental and literature evidence and is also associated 
with the disease risk of colorectal and ovarian cancer [30]. 
INS and ADIPOQ genes exhibit good interactions with 
PPARγ; this is most commonly found to be associated with 
diabetes mellitus [31] and coronary heart disease [32]. 
NCOR2 and PAX8 interacting with PPARγ, pertains their 
association by literature and data-mining evidence. 

B. GO Annotation of PPARγ 
Gene ontology for PPARγ network involving biological 

processes, molecular function and cellular components has 

been framed at different specificity levels to explore 
interaction patterns and its expression levels. The findings of 
GO annotation for PPARγ referred collectively from NCBI 
(Gene ID: 5468) along with STRING 9.0 GO dataset. 

Our result demonstrates the functional organization and 
composition of ten genes in PPARγ network. Here, the PPARγ 
network emphasizes ten biological annotations of genes. Out 
of ten, eight genes (PPARG, RXRA, PPARGC1A, NR0B2, 
HDAC3, MED1, NCOR2, ADIPOQ) shows the lipid 
metabolic process, three genes (PPARG, RXRA, ADIPOQ) 
shows response to nutrient in a cell, two genes (PPARG, 
ADIPOQ) not only indicate negative regulation of 
macrophage derived foam cell differentiation but also negative 
regulation of receptor biosynthetic process. There are four 
genes (PPARGC1A, RXRA, NR0B2, and MED1) in PPARγ 
network which are associated with intracellular receptor 
mediated signaling pathway, three genes (PPARG, RXRA, 
INS) which respond to insulin stimulus. Glucose homeostasis 
is followed by four genes (PPARG, PPARGC1A, INS, and 
ADIPOQ) and lipid homeostasis by two genes (PPARG, INS). 
Lastly, five genes (PPARG, PPARG C1A, RXRA, MED1, and 
PAX8) involve positive regulation of transcription from RNA 
polymerase II promoter and three genes (PPARG, PPARG 
C1A, and INS) are associated with positive regulation of 
sequence-specific DNA binding transcription factor activity. 
PPARγ also demonstrates molecular functions of the genes 
that interact with it. Among ten genes, two of them (NCOR2, 
HDAC3) are associated with enzyme binding activity, three 
genes (PPARG, RXRA, NR0B2) are associated with ligand-
dependent nuclear receptor activity and three genes (PPARG, 
RXRA, PAX8) indicate both sequence-specific DNA binding 
and transcription factor activity. It has been revealed that all 
the ten genes in the PPARγ network are integrated to protein 
binding activity and hence explains that they can either 
selectively or non-covalently bind with any proteins or its 
complex. Also there are three genes (PPARG, RXRA, and 
NCOR1) that involve the molecular function of transcription 
regulatory region of DNA binding activity. Later, in PPARγ 
network, the cytoplasmic activity is associated by five genes 
(PPARG, INS, ADIPOQ, PPARGC1A, and HDAC3) 
followed by nucleoplasm and nuclear activity association with 
eight genes (PPARG, PPARGC1A, NCOR2, HDAC3, PAX8, 
NR0B2, RXRA, MED1). 
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TABLE I 
INTERACTION OF PPARG WITH FUNCTIONAL PARTNERS 

S.no Functional node Interaction type Types of evidence for the association. Combined confidence score 

1 RXRA (retinoid X receptor, 
alpha) Binding, Reaction 

Experimental/ Biochemical Data [12], 
Association in Curated Database (KEGG 

pathway) and co-mentioned in pubmed abstract 
[13] 

0.999 

2 
PPARGC1A (peroxisome 

proliferator-activated receptor 
gamma, coactivator 1 alpha) 

Binding Experimental/ Biochemical Data[14], 
Co mentioned in Pubmed abstract [15] 0.999 

3 NCOA1 (nuclear receptor 
coactivator 1) Binding, Association in curated database (KEGG 

pathway), Co mentioned in pubmed abstract [16] 0.997 

4 NR0B2 (nuclear receptor 
subfamily 0, group B, member 2) Binding 

Experimental/ Biochemical Data [17], 
Association in curated database (KEGG 

pathway), Co mentioned in pubmed abstract [18] 
0.997 

5 HDAC3 (histone deacetylase 3) Binding, 
Experimental/ Biochemical Data [19], 

Association in curated database (KEGG 
pathway), Co mentioned in pubmed abstract [20] 

0.997 

6 MED1 
(mediator complex subunit 1) 

Binding, post-translation 
modification 

Experimental/ Biochemical Data [21], 
Co mentioned in Pubmed abstract [22] 0.926 

7 INS (insulin) Binding, post-translation 
modification. Co mentioned in pubmed abstract [23] 0.994 

8 NCOR2 (nuclear receptor co-
repressor 2) nil Association in curated database (KEGG 

pathway), Co mentioned in pubmed abstract [24] 0.993 

9 PAX8 (paired box 8) Binding 
 

Association in curated database (KEGG 
pathway), Co mentioned in pubmed abstract [25] 0.992 

10 ADIPOQ (adiponectin) Expression Co mentioned in pubmed abstract [26] 0.992 
 

C. Clustering of PPARγ Network 
Clustering of genes in PPARγ network has been analyzed to 

find groups of genes that have similar functions. Fig. 2 
explains PPARγ network involving two clusters which involve 
upregulated and downregulated genes. 

 

 
Fig. 2 Clustering of PPARγ network 

 
Nine genes in the network represent upregulated genes 

(PPARγ, PPARGC1A, RXRA, MED1, NCOA1, PAX8, INS, 
ADIPOQ, and NR0B2) and two genes represents 
downregulated genes (NCOR2, HDAC3) [33]. These 
upregulated genes in clusters are associated by text-mining. 
Among them PPARγ, PPARGC1A, RXRA, MED1, NCOA1 
and NR0B2 are associated by experimental evidence. PPARγ, 
RXRA, PAX8 and NR0B2 are found to be associated by 
databases. Again the downregulated genes (NCOR2, HDAC3) 
in the second cluster are associated by database, experimental 
and text-mining evidence. 

On the whole, our study emphasize that out of ten genes in 
PPARγ network (PPARGC1A, RXRA, MED1, NCOA1, 
PAX8, INS, ADIPOQ, NR0B2, NCOR2 and HDAC3), five 
genes (PPARGC1A, NCOA1, NR0B2, HDAC3 and PAX8) 

are confederated by binding interaction pattern and one gene 
(RXRA) is associated not only by binding but involve in 
biochemical reaction patterns also. Two genes (MED1 and 
INS) are involved in binding and post-translation modification 
and ADIPOQ show expression patterns. Even though, NCOR2 
does not show any interaction there is information in literature 
[24] to suggest its association with PPARγ as mentioned in 
Table I. Thus our computational analysis suggest that, PPARγ 
and its associated ten genes are well coordinated and any 
alteration in the network might result in obesity and associated 
diseases like coronary heart disease, cardiomyopathy, breast 
cancer, and diabetes mellitus. Finally, we believe that our 
results will be useful for researchers working in the field of 
genetic and metabolic disorders. 

ACKNOWLEDGMENT  
Dr. A. Anbarasu gratefully acknowledges the Indian council 

of Medical Research (ICMR), Government of India Agency 
for the research grant to establish the Medical & Biological 
Computing Laboratory. The authors would like to thank the 
management of VIT for providing us the necessary 
infrastructure for conducting this project. 

REFERENCES  
[1] A.de la Fuente, P. Brazhnik, and P. Mendes, “Linking the genes: 

inferring quantitative gene networks from microarray data,” Trends 
Genet,vol. 18, p. 395-8, 2002. 

[2] AV. Antonov, HW. Mewes, “BIOREL: the benchmark resource to 
estimate the relevance of the gene networks,” FEBS Lett., vol. 580, p. 
844-8, 2006. 

[3] K. Kappler, R. Edwards, L. Glass, “Dynamics in high-dimensional 
model gene networks,” Signal Processing, vol. 83, p.89–798, 2003. 

[4] D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth, P. 
Minguez., et al., “The STRING database in 2011: functional interaction 
networks of proteins, globally integrated and scored,” Nucleic Acids 
Res., vol. 39, Database issue D561–D568, 2011 

[5] A. Laszlo Barabasi, N. Gulbahce, and J. Loscalzo, “Network medicine: a 
network-based approach to human disease,” Nat Rev Genet., vol. 12, 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:1, No:1, 2007

42

 

 

p.56–68, 2011. 
[6] V. A. Javiya, J.A. Patel, “The role of peroxisome proliferator-activated 

receptors in human disease,” Indian J Pharmacol, vol. 38, p.243-253, 
2006.  

[7] Y. Guan and M.D. Breyer, “Peroxisome proliferator-activated receptors 
(PPARs): novel therapeutic targets in renal disease,” Kidney Int., vol. 
60, p.14–30, 2001. 

[8] J .Li, X. Zhu, and J.Y. Chen, “Building disease-specific drug-protein 
connectivity maps from molecular interaction networks and PubMed 
abstracts,” PLoS. Comput. Biol., vol. 5, e1000450, 2009. 

[9] J. Mao, J. Ai, X. Zhou, M. Shenwu, M. Ong, M. Blue, J.T. Washington, 
X. Wang, and Y. Deng, “Transcriptomic profiles of peripheral white 
blood cells in type II diabetes and racial differences in expression 
profiles,” BMC Genomics, vol. 12, S12, 2011. 

[10] H.N. Kadarmideen, L.L.G. Janss, “Population and systems genetics 
analyses of cortisol in pigs divergently selected for stress,” Physiol 
Genomics, vol.29, p. 57-65, 2007. 

[11] G.M. Peloso, S. Demissie, D. Collins , D.B. Mirel , S.B. Gabriel , L.A. 
Cupples , S.J. Robins , E.J. Schaefer , and M.E. Brousseau , “Common 
genetic variation in multiple metabolic pathways influences 
susceptibility to low HDL-cholesterol and coronary heart disease,” J 
Lipid Res., vol. 51,p. 3524-32, 2010. 

[12] R.T. Gampe, V.G.Montana, M.H. Lambert, A.B. Miller, R.K. Bledsoe, 
M.V. Milburn, S.A. Kliewer, T.M. Willson, and Xu HE, “Asymmetry in 
the PPARγ/RXRα crystal structure reveals the molecular basis of 
heterodimerization among nuclear receptors,” Mol. Cell., vol. 5, p. 545-
55, 2000. 

[13] D.L. Mohler, G. Shen, “The synthesis of tethered ligand dimers for 
PPARgamma-RXR protein heterodimers,” Org Biomol Chem., vol.4, p. 
2082-7, 2006. 

[14] Y. Wu, W.W. Chin, Y. Wang, T.P. Burris, “Ligand and coactivator 
identity determines the requirement of the charge clamp for coactivation 
of the peroxisome proliferator-activated receptor gamma,” J. Biol. 
Chem., vol. 278, p.8637-44, 2003. 

[15] D. Patsouris, M. Müller, S. Kersten, “Peroxisome proliferator activated 
receptor ligands for the treatment of insulin resistance,” Curr Opin 
Investig Drugs, vol.5, p.1045-50, 2004.  

[16] C. Qi, Y. Zhu, J. Pan, A.V. Yeldandi, M.S. Rao, N. Maeda, V. Subbarao, 
S. Pulikuri, T. Hashimoto, J.K. Reddy, “Mouse steroid receptor 
coactivator-1 is not essential for peroxisome proliferator-activated 
receptor alpha-regulated gene expression,” Proc Natl. Acad. Sci. U S A., 
vol.96, p.1585-90, 1999.  

[17] H. Nishigori, H. Tomura, N. Tonooka, M. Kanamori, S. Yamada, K. 
Sho., et al., “Mutations in the small heterodimer partner gene are 
associated with mild obesity in Japanese subjects,” Proc Natl Acad Sci U 
S A., vol.98, p.575-80, 2001. 

[18] D.J. Shin, T.F. Osborne, “Peroxisome proliferator-activated receptor-
gamma coactivator-1alpha activation of CYP7A1 during food restriction 
and diabetes is still inhibited by small heterodimer partner,” J Biol 
Chem., vol. 283, p.15089-96, 2008. 

[19] L. Fajas, V. Egler, R. Reiter, J. Hansen, K. Kristiansen, M.B. Debril, S. 
Miard, J.Auwerx, “The retinoblastoma-histone deacetylase 3 complex 
inhibits PPARgamma and adipocyte differentiation,” Dev Cell., vol.3, 
p.903-10, 2002. 

[20] S.N. Kim, H.Y. Choi, Y.K. Kim, “Regulation of adipocyte 
differentiation by histone deacetylase inhibitors,” Arch. Pharm. Res., 
vol. 32, p.535-41, 2009. 

[21] S. Surapureddi, N. Viswakarma, S. Yu, D. Guo, M.S. Rao, J.K. Reddy, 
“PRIC320, a transcription coactivator, isolated from peroxisome 
proliferator-binding protein complex,” Biochem. Biophys Res. 
Commun., vol.343, 535-43, 2006. 

[22] K. Ge, Y.W. Cho, H. Guo, T.B. Hong, M. Guermah, M. Ito, H. Yu, M. 
Kalkum, R.G. Roeder, “Alternative mechanisms by which mediator 
subunit MED1/TRAP220 regulates peroxisome proliferator-activated 
receptor gamma-stimulated adipogenesis and target gene expression,” 
Mol .Cell. Biol., vol.28, p.1081-91, 2008  

[23] B.G. Drew, A.C. Calkin, “Drug evaluation: K-111, an insulin-sensitizing 
peroxisome proliferator-activated receptor alpha agonist,” Curr. Opin. 
Investig. Drugs, vol.8, p.324-30, 2007.  

[24] S. Chintharlapalli, S. Papineni, M. Konopleva, M. Andreef, I. Samudio, 
S. Safe, “2-Cyano-3, 12-dioxoolean-1, 9-dien-28-oic acid and related 
compounds inhibit growth of colon cancer cells through peroxisome 
proliferator-activated receptor gamma-dependent and -independent 
pathways,” Mol .Pharmacol., vol. 68, p.119-28, 2005.  

[25] P. Castro, A.P. Rebocho, R.J. Soares, J. Magalhaes, L. Roque, V. 

Trovisco., et al., “PAX8-PPARgamma rearrangement is frequently 
detected in the follicular variant of papillary thyroid carcinoma,” J. Clin. 
Endocrinol. Metab., vol. 91, p.213-20, 2006.  

[26] C.M. Kusminski, P.E. Scherer, “The road from discovery to clinic: 
adiponectin as a biomarker of metabolic status,” Clin. Pharmacol. Ther., 
vol.86, p. 592-5, 2009.  

[27]  M.A. Jay and J. Ren, “Peroxisome proliferator-activated receptor 
(PPAR) in metabolic syndrome and type 2 diabetes mellitus,” Curr 
Diabetes Rev, vol.3, p.33-39, 2007. 

[28] L. Qin, X. Chen, Y. Wu, Z. Feng, T. He, L.Wang, L. Liao, J. Xu, 
“Steroid receptor coactivator-1 upregulates integrin α₅ expression to 
promote breast cancer cell adhesion and migration,” Cancer Res., vol. 
71, p.1742-51, 2011. 

[29] Y. Zhang, C.H. Hagedorn, “L. Wang, Role of nuclear receptor SHP in 
metabolism and cancer,” Biochim Biophys Acta., vol. 1812, 893-908, 
2011. 

[30] C. Lahtz, G.P. Pfeifer, “Epigenetic changes of DNA repair genes in 
cancer,” J Mol Cell Biol., vol.3, p.51–58, 2011. 

[31] A. Pugliese, D. Miceli, “The insulin gene in diabetes,” Diabetes Metab 
Res Rev., vol.18, p.13-25, 2002. 

[32] A.G. Comuzzie, M.E. Tejero, T. Funahashi, L.J. Martin, A. Kissebah, 
M. Takahashi., et al. “The genes influencing adiponectin levels also 
influence risk factors for metabolic syndrome and type 2 diabetes,” Hum 
Biol., vol.79, p.191-200, 2007. 

[33] J.H. Chung, H.J. Choi, S.Y. Kim, K.S. Hong, S.K. Min, M.H. Nam, 
C.W. Kim, H.K.Young, J.B. Seo, “Proteomic and biochemical analyses 
reveal the activation of unfolded protein response, ERK-1/2 and 
ribosomal protein S6 signaling in experimental autoimmune myocarditis 
rat model,” BMC Genomics, vol.12, p520, 2011. 


