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Gaussian Process Model Identification Using
Artificial Bee Colony Algorithm and Its

Application to Modeling of Power Systems

Abstract—This paper presents a nonparametric identification of
continuous-time nonlinear systems by using a Gaussian process
(GP) model. The GP prior model is trained by artificial bee colony
algorithm. The nonlinear function of the objective system is estimated
as the predictive mean function of the GP, and the confidence
measure of the estimated nonlinear function is given by the predictive
covariance of the GP. The proposed identification method is applied
to modeling of a simplified electric power system. Simulation results
are shown to demonstrate the effectiveness of the proposed method.

model, identification, nonlinear system, electric power system.

I. INTRODUCTION

PRACTICAL systems such as electric power systems
are essentially continuous-time nonlinear systems.

Development of accurate identification algorithm for such
systems is indispensable for precise analysis or control
design. Identification based on the continuous-time model
has received a little attention owing to difficulty of handling
the higher-order derivatives of input and output data. For this
approach, identification methods based on neural network
model [1], orthogonal least-squares (LS) estimator [2],
radial basis function model [3], [4], and automatic choosing
function model [5] have been reported. Since these methods
are categorized into the parametric identification, one needs
many weighting parameters of any basis functions to describe
the nonlinearity. Moreover, any confidence measures for
the estimated nonlinear functions are not given in such
identification methods.

In recent years, the Gaussian process (GP) model has been
introduced for the modeling of the nonlinear dynamic systems
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[6], [7] and the prediction in time series analysis [8], [9]. The
GP model was originally utilized for the regression problem by
O’ Hagan [10] and has recently much attention for regression
or classification problem [11]–[13]. Some applications using
the GP model have been reported for human motion modeling
[14], or predictive control of gas-liquid separation plant [15].
The GP model is a non-parametric model and fits naturally
into Bayesian framework. Since it has fewer parameters than
parametric models such as the neural network model, we
can describe the nonlinearity of the objective system in a
few parameters. Moreover, the GP gives us not only the
mean function but also the covariance function. Therefore,
in this paper, we propose a nonparametric identification of
continuous-time nonlinear systems using the GP model.

The hyperparameters included in the GP prior model have
to be appropriately determined based on the identification
data. Generally this training becomes nonlinear optimization
problem. In this paper, the separable LS approach combining
the linear LS method with artificial bee colony (ABC)
algorithm is presented for this training. ABC algorithm is
an optimization algorithm inspired by an intelligent behavior
of honeybee swarms and has high potential for both global
and local optimizations [16]. This algorithm consists of
search by the three types of bees; the employed bees, the
onlooker bees, and the scout bees. ABC algorithm consists
of only the basic arithmetic operations and does not require
complicated coding and genetic operations such as crossovers
and mutations for the genetic algorithm. Moreover, the
performance of ABC algorithm is better than or similar to
those of other population-based algorithms in spite of a few
setting parameters [16], [17]. These advantages suggest that
the use of ABC algorithm increases efficiency when the GP
prior model for identification is trained.

the GP prior model is presented using ABC algorithm, and the
nonlinear function with the confidence measure is estimated

simulation for a simplified electric power system is carried
out to illustrate the effectiveness of the proposed identification
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This paper is organized as follows. In Section II the problem
is formulated. In Section III the GP prior model for the
identification is derived. In Section IV the training method of

from the GP posterior distribution. In Section V numerical

method. Finally some conclusions are given in Section VI.
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II. STATEMENT OF THE PROBLEM

Consider a single-input, single-output, continuous-time
nonlinear system described by

n∑
i=0

i�=n1,n2,···,nα

aip
n−ix(t) = f(z(t)) +

m∑
j=0

j �=m1,m2,···,mβ

bjp
m−ju(t) (1)

(a0 = 1, n ≥ m)

z(t) =
[
pn−n1x(t), pn−n2x(t), · · · , pn−nαx(t),

pm−m1u(t), pm−m2u(t), · · · , pm−mβu(t)
]T

y(t) = x(t) + e(t)

where u(t) and x(t) are the true input and output signals,
respectively. y(t) is the noisy output that is corrupted by
the measurement noise e(t). f(·) is an unknown nonlinear
function, which is assumed to be stationary and smooth. p
denotes the differential operator. n, ni (i = 1, 2, · · · , α), m
and mj (j = 1, 2, · · · , β) are assumed to be known. The
purpose of this paper is to identify the parameters {ai} and
{bj} of the linear terms and the nonlinear function f(·) with
the confidence measure, from the true input and noisy output
data in the GP framework.

III. GP PRIOR MODEL FOR IDENTIFICATION

Equation (1) can be rewritten as

pny(t) = f(w(t))−
n∑

i=1
i�=n1,n2,···,nα

aip
n−iy(t)

+
m∑
j=0

j �=m1,m2,···,mβ

bjp
m−ju(t) + ε(t)

w(t) = [pn−n1y(t), pn−n2y(t), · · · , pn−nαy(t),

pm−m1u(t), pm−m2u(t), · · · , pm−mβu(t)]
T

(2)
where ε(t) is an error caused by the measurement noise e(t).

The following state variable filter F (p) is introduced in
order to evaluate higher-order derivatives of the signals:

F (p) =
1

pq + γ1pq−1 + · · · · · ·+ γq
(q > n) (3)

Multiplying both sides of (2) by F (p) yields

pnyf (t) = F (p)f(w(t))−
n∑

i=1
i�=n1,n2,···,nα

aip
n−iyf (t)

+

m∑
j=0

j �=m1,m2,···,mβ

bjp
m−juf (t) + εf (t)

(4)

where uf (t) = F (p)u(t) and yf (t) = F (p)y(t) are the
filtered input and output signals, respectively. When F (p)
has a transport lag characteristic, the filter F (p) and the
nonlinear function f(·) are interchangeable [2], and it follows
that F (p)f(w(t)) = f(F (p)w(t)) = f(wf (t)). Therefore,

(4) becomes

pnyf (t) = f(wf (t))−
n∑

i=1
i�=n1,n2,···,nα

aip
n−iyf (t)

+

m∑
j=0

j �=m1,m2,···,mβ

bjp
m−juf (t) + εf (t)

(5)

where εf (t) is assumed to be zero mean Gaussian noise with
variance σ2

n.
Putting t = t1, t2, · · · , tN into (5) yields

y = v +Gθl (6)

where
y = [pnyf (t1), p

nyf (t2), · · · , pnyf (tN )]T

v = [f(wf (t1)) + εf (t1), f(w
f (t2)) + εf (t2),

· · · , f(wf (tN )) + εf (tN )]T

θl = [a1, · · · , ai, · · · , an, b0, · · · , bj , · · · , bm]T

G = [g(t1), g(t2), · · · , g(tN )]T

g(t) = [−pn−1yf (t), · · · ,−pn−iyf (t), · · · ,−yf (t),

pmuf (t), · · · , pm−juf (t), · · · , uf (t)]T

(7)

A GP is a Gaussian random function and is completely
described by its mean function and covariance function. We
can regard it as a collection of random variables with a joint
multivariable Gaussian distribution. Therefore, the function
values f can be represented by the GP:

f ∼ N (m(w),Σ(w,w)) (8)

where
f = [f(wf (t1)), f(w

f (t2)), · · · , f(wf (tN ))]T

w = [wf (t1),w
f (t2), · · · ,wf (tN )]

(9)

w is the input of the function f , m(w) is the mean function
vector, and Σ(w,w) is the covariance matrix. The mean
function is often represented by a polynomial regression [13].
In this paper, the mean function is expressed by the first order
polynomial, i.e., a linear combination of the input variable:

m(wf (t)) = (wf (t))Tθm

θm =
[
θn1

, θn2
, · · · , θnα

, θm1
, θm2

, · · · , θmβ

]T (10)

where θm is the unknown parameter vector for the mean
function. Thus, the mean function vector m(w) is described
as follows:

m(w) = wTθm (11)

The covariance Σpq = s(wf (tp),w
f (tq)) is an element

of the covariance matrix Σ, which is a function of wf (tp)
and wf (tq). Under the assumption that the nonlinear function
is stationary and smooth, the following Gaussian kernel is
utilized in this paper:

Σpq = s(wf (tp),w
f (tq))

= σ2
y exp

(
−||wf (tp)−wf (tq)||2

2�2

) (12)
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where || · || denotes the Euclidean norm. Equation (12) means
that the covariance of the outputs of the nonlinear function
depends only on the distance between the inputs wf (tp)
and wf (tq). A high correlation between the outputs of the
nonlinear function occurs for the inputs that are close to each
other. The overall variance of the random function can be
controlled by σy , and the characteristic length scale of the
process can be changed by �.

From (8), the vector v of the noisy function values in (6)
can be written as

v ∼ N (m(w),K(w,w)) (13)

where
K(w,w) = Σ(w,w) + σ2

nIN

IN : N ×N identity matrix
(14)

and θc = [σy, �, σn]
T is called the hyperparameter vector.

From (6) and (13), the GP model for the identification is
derived as

y ∼ N (m(w) +Gθl,K(w,w)) (15)

In the following, K(w,w) is written as K for simplicity.

IV. IDENTIFICATION

At the first stage of the identification, the GP prior model
is trained by optimizing the unknown parameter vector θ =
[θT

m,θT
l ,θ

T
c ]

T. This training is carried out by minimizing the
negative log marginal likelihood of the identification data:

J = − log p(y|w,G,θ)

=
1

2
log |K|+ 1

2
(y −Zθml)

TK−1(y −Zθml)

+
N

2
log(2π) (16)

where
Z = [ wT

... G ]

θml = [θT
m,θT

l ]
T

(17)

Although this problem is a nonlinear optimization one, we
can separate the linear optimization part and the nonlinear
optimization part. The partial derivative of (16) with respect
to the parameter vector θml is as follows:

∂J

∂θml
= −ZTK−1y +ZTK−1Zθml (18)

Note that if the candidates of the hyperparameter vector
θc of the covariance function are given, the candidates of
the covariance matrix K can be constructed. Therefore, the
parameter vector θml can be estimated by the linear LS method
from (18):

θml = (ZTK−1Z)−1ZTK−1y (19)

However even if the parameter vector θml is known, the
optimization with respect to θc is a complicated nonlinear
problem and might suffer from the local minima problem.
Therefore, in this paper, we propose a method that combines
the linear LS method with ABC algorithm. Only Ω = θc =

[σy, �, σn]
T is represented with the positions of the food

sources and searched by ABC algorithm. The detailed training
algorithm is as follows:

(1-1) Generate an initial population of Ns bees with random
positions of the food sources Ω[i] (i = 1, 2, · · · , Ns) from
(20):

Ωij = Ωmin,j + rand[0, 1] · (Ωmax,j − Ωmin,j)

(j = 1, 2, 3)
(20)

where Ns denotes the size of the employed bees or onlooker
bees and Ωij is the jth element of the vector Ω[i]. Ωmin,j

and Ωmax,j are the minimum and maximum values for
Ωij , respectively. rand[0, 1] is uniformly distributed random
number with amplitude in the range [0, 1].
(1-2) Set the iteration counter l to 1.
(1-3) Set the counter for abandonment triali to 0. The counter
triali shows the number of times that the solution Ω[i] is not
improved by the employed and onlooker bees.

Construct Ns candidates of the covariance matrix K[i] using
Ω[i] (i = 1, 2, · · · , Ns).

ml

Estimate Ns candidates for θml[i] (i = 1, 2, · · · , Ns) from
(19):

θml[i] = (ZTK−1
[i] Z)−1ZTK−1

[i] y (21)

Calculate the negative log marginal likelihood of the
identification data:

Ji(Ω[i]) =
1

2
log |K[i]|+ 1

2
(y −Zθml[i])

TK−1
[i]

×(y −Zθml[i]) +
N

2
log(2π) (22)

and the fitness value Fi(Ω[i]) = exp(−Ji(Ω[i]).

(5-1) Determine the new positions of the food sources V[i] =
ϑc[i] around Ω[i] for the employed bees from (23):

Vij = Ωij + rand[−1, 1] · (Ωij − Ωkj)

(j = 1, 2, 3)
(23)

where Vij is the jth element of the vector V[i] and k is a
random integer selected from {1, 2, · · · , Ns}, where k �= i.
(5-2) Construct Ns candidates of the covariance matrix K[i]

using V[i] (i = 1, 2, · · · , Ns).
(5-3) Estimate Ns candidates for ϑml[i] (i = 1, 2, · · · , Ns)
from (19).
(5-4) Calculate the objective function value:

Ji(V[i]) =
1

2
log |K[i]|+ 1

2
(y −Zϑml[i])

TK−1
[i]

×(y −Zϑml[i]) +
N

2
log(2π) (24)

and the fitness value Fi(V[i]) = exp(−Ji(V[i]).
(5-5) If Fi(Ω[i]) < Fi(V[i]), update Ω[i], θml[i] and Fi(Ω[i])
by V[i], ϑml[i] and Fi(V[i]), respectively, and set triali = 0.

A. Training of GP Prior Model by ABC Algorithm

Step 1: Initialization

Step 2: Construction of the covariance matrix

Step 3: Estimation of θ

Step 4: Fitness value calculation

Step 5: Search by the employed bees
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Otherwise set triali = triali + 1. This procedure is called
“greedy selection”.

(6-1) Choose one position of the food source for each
onlooker bee from Ω[i] (i = 1, 2, · · · , Ns) through
“roulette-wheel” slots weighted in proportion to the fitness
value of the employed bee. Namely each onlooker bee
selects one position of the food source with probability of
Fi(Ω[i])/

∑Ns

p=1 Fp(Ω[p]).
(6-2) Calculate the new positions of the food sources V[i]

corresponding to the selected positions Ωi from (23).
(6-3) Construct Ns candidates of the covariance matrix K[i]

using V[i] (i = 1, 2, · · · , Ns).
(6-4) Estimate Ns candidates for ϑml[i] (i = 1, 2, · · · , Ns)
from (19).
(6-5) Calculate the fitness value Fi(V[i]) = exp(−Ji(V[i])
from (24).
(6-6) Carry out the greedy selection with the same way of step
5 (5-5).

If the counter for abandonment triali is greater or equal
to the prespecified number limit, carry out the following
procedure.
(7-1) Differentiate the corresponding employed bee into the
scout bee and generate the new position of the food source
Ω[i] for the scout bee randomly from (20).
(7-2) Construct the covariance matrix K[i] using the
corresponding Ω[i].
(7-3) Estimate θml[i] from (19).
(7-4) Calculate the fitness value Fi(Ω[i]) = exp(−Ji(Ω[i])
from (22).

This step means that if the solution is not improved limit
times through search by the employed and onlooker bees, the
corresponding employed bee gives up to search around his
food source and transforms himself to the scout bee to search
around randomly selected food source. Since the number limit
is usually set to be the product of the employed bee size and
the dimension of the search space [16], this number is taken
to be limit = Ns × 3 in this paper.

Set the iteration counter to l = l+ 1 and go to step 5 until
the prespecified iteration number lmax.

Determine the vector Ω̂ = θ̂c = [σ̂y, �̂, σ̂n]
T and the

corresponding parameter vector θ̂ml = [θ̂T
m, θ̂T

l ]
T using the

best position of the food source. Construct the suboptimal prior
mean function and prior covariance function:

m(wf (t)) = (wf (t))Tθ̂m (25)⎧⎨
⎩

s(wf (tp),w
f (tq)) = σ̂2

y exp

(
−||wf (tp)−wf (tq)||2

2�̂2

)

k(wf (tp),w
f (tq)) = s(wf (tp),w

f (tq)) + σ̂2
nδpq,

(26)
where s(wf (tp),w

f (tq)) is an element of covariance matrix
Σ, k(wf (tp),w

f (tq)) is an element of covariance matrix K,
and δpq is the Kronecker delta, which is 1 if p = q and 0
otherwise.

B. Estimation of the Nonlinear Function
For a new input wf

∗ (t) and the corresponding function
f(wf

∗ (t)), we have the following joint Gaussian distribution:[
y

f(wf
∗ (t))

]
∼ N

([
m(w) +Gθ̂l
m(wf

∗ (t))

]
,

[
K Σ(w,wf

∗ (t))
Σ(wf

∗ (t),w), s(wf
∗ (t),w

f
∗ (t))

])
(27)

From the formula for conditioning a joint Gaussian
distribution [18], the posterior distribution for specific test data
is

f(wf
∗ (t))|w,G,y,wf

∗ (t) ∼ N (f̂(wf
∗ (t)), σ̂2

∗(t)) (28)

where the mean function f̂ is given as

f̂(wf
∗ (t)) = m(wf

∗ (t))
+Σ(wf

∗ (t),w)K−1(y −m(w)−Gθ̂l) (29)

which is used as the estimated nonlinear function of the
objective system. And its covariance function σ̂∗ is evaluated
as

σ̂2
∗(t) = s(wf

∗ (t),w
f
∗ (t))−Σ(wf

∗ (t),w)K−1Σ(w,wf
∗ (t))

(30)
which is used for the confidence measure of the estimated
nonlinear function.

V. ILLUSTRATIVE EXAMPLE

Consider an electric power system [19] described by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẍ(t) + a1ẋ(t) = f(z(t))

f(z(t)) = −Pe

M̃
+

Pin

M̃

= −Pem

M̃
(1 + u(t)) sinx(t) +

Pin

M̃
y(t) = x(t) + e(t)

(31)

where x(t) = δ(t): phase angle, u(t) = ΔEfd(t): increment
of excitation voltage, M̃ : inertia coefficient, D̃: damping
coefficient, Pe: generator output power, Pin: turbine output
power. In numerical example, M̃ = D̃ = 0.06, Pem = 1.0,
Pin = 0.8 and a1 = D̃/M̃ = 1.0 are set. The measurement
noise e(t) is white Gaussian noise, where noise-to-signal
ratio is about 1.5%. The number of input and output data
for identification is taken to be N = 800. The third-order
Butterworth filter with the cutoff frequency ωc = 10 [rad/s] is
utilized as a delayed state variable filter. The setting parameters
of ABC algorithm are chosen as follows:

(i) employed bee size Ns = 50
(ii) maximum iteration number lmax = 100
The hyperparameter vector of the covariance function has

been determined by ABC algorithm as θ̂c = [σ̂y, �̂, σ̂n]
T =

[36.190, 0.342, 0.180]T. Estimate of the parameter in the linear
term is â1 = 0.962, which is very close to the true value
a1 = 1.0. The true nonlinear function f(z(t)), the estimated
nonlinear function f̂(z(t)), the absolute error between
f(z(t)) and f̂(z(t)), and the double standard deviation
confidence interval (95.5% confidence region) around the

Step 6: Search by the onlooker bees

Step 7: Search by the scout bees

Step 8: Repetition

Step 9: Determination of the GP prior model
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Fig. 2 Estimated nonlinear function

estimated nonlinear function are shown in Figs. 1 ∼ 4,
respectively, where the thick curves depict the trajectories of
the identification data. Clearly the estimated nonlinear function
f̂(z(t)) is shown to be very close to the true nonlinear function
f(z(t)) on the data region. The confidence region of the
estimated nonlinear function grows as z(t) goes away from
the data region. On the other hand, the confidence region of
the estimated nonlinear function is very small on the data
region. Fig. 5 shows the true output x(t) and the output x̂(t)
by the estimated model, where the outputs were generated
by the inputs for validation. This figure indicates that x̂(t)
matches x(t) considerably. Consequently, we can confirm that
the proposed method gives an accurate model of the objective
electric power system.

VI. CONCLUSIONS

In this paper, we have proposed an identification method of
continuous-time nonlinear systems using the GP model. The
GP prior model is trained by the aid of ABC algorithm so that
the negative log marginal likelihood of the identification data is
minimized. The proposed identification method is categorized
into the nonparametric identification and does not need the
determination of the model structure. Since ABC algorithm
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Fig. 5 True output and output by the estimated model

has a few setting parameters, the proposed training algorithm is
efficient for system identification. Simulation results show that
the proposed method can be successfully applied to modeling
of the electric power system.
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