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 
Abstract—The study is devoted to define the optimal conditions 

for the nitriding of pure iron at atmospheric pressure by using NH3-
Ar-C3H8 gas mixtures. After studying the mechanisms of phase 
formation and mass transfer at the gas-solid interface, a mathematical 
model is developed in order to predict the nitrogen transfer rate in the 
solid, the -carbonitride layer growth rate and the nitrogen and 
carbon concentration profiles. In order to validate the model and to 
show its possibilities, it is compared with thermogravimetric 
experiments, analyses and metallurgical observations (X-ray 
diffraction, optical microscopy and electron microprobe analysis). 
Results obtained allow us to demonstrate the sound correlation 
between the experimental results and the theoretical predictions. 
 

Keywords—Gaseous Nitrocarburizing, Kinetic Model, Diffusion, 
Layer Growth Kinetic. 

I. INTRODUCTION 

HE thermochemical surface treatments of iron and steels 
called nitriding / nitrocarburizing are of great importance 

for the practice. These treatments have long been applied in 
industry to improve the surface quality (fatigue, wear and 
corrosion resistance). There is a strong desire to process 
control and automation, then among other things, we should 
have available accurate models for describing the kinetics and 
microstructural evolution of the iron nitride / iron carbonitride 
compound layer. Modeling layer growth due to reaction 
diffusion is also very interesting from a scientific point of 
view: Does the local equilibrium concept apply? What about 
the interaction of layer growth and stress development and 
relaxation?  

For rate control by the inward diffusion of nitrogen and 
carbon, a mathematical description of the diffusive flux of the 
interstitially dissolved elements (nitrogen and carbon) through 
the case produced is sought. This flux can be calculated using 
Fick's laws if the composition ranges of the phases, as well as 
the corresponding diffusion coefficients are known. Although 
some papers have been published, a straightforward prediction 
of the growth rate and the constitution of the compound layer 
for nitrocarburizing is still lacking 1]-[3. The diffusion 
coefficients of nitrogen in the  and ' phases have been 
evaluated previously by several authors 4]-[9 from the 
growth rate of the compound layer formed during the iron 
nitriding. Moreover, the diffusion coefficients of carbon in the 
 and ' phases are not available. This can be ascribed to 
imprecise knowledge of the homogeneity range of these 
phases 4. 
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The first attempt of drawing up a comprehensive phase 
diagram of the ternary Fe-N-C system was made several years 
ago by Naumann and Langenscheid 10 and has frequently 
been referred to in the nitrocarburizing literature. However, 
many observations are in disagreement with this diagram. 
Taking into account the available nitrocarburizing 
experimental information, Slycke, Sproge and Agren 11 
were the first to propose a modified Fe-N-C phase diagram at 
570°C. The major difference between the new diagram and the 
one published by Naumann and Langenscheid is that it allows 
the frequently observed direct contact between the ferrite  
and the  phase such equilibrium has been indicated by 
frequent observations during nitrocarburizing but was not 
shown by Naumann and Langenscheid. Kunze 12 also 
presented a roughly calculated Fe-N phase diagram under 
different carbon activities and came to a similar conclusion as 
Slyke and al. 11; an equilibrium between the  and  exists 
around 570-590°C. 

The thermodynamic properties of the Fe-N and Fe-N-C 
systems have been reassessed by Du 13. Under local 
equilibrium assumption, mathematical model has been 
developed by Du and Agren 14 for nitrocarburizing of iron. 
The analytical solution is obtained for the /' bilayer growth 
assuming constant diffusion coefficients and taking for the 
intrinsic diffusivity of carbon in the  and ' the same ratio of 
carbon to nitrogen diffusivities as in -iron. It was found by 
these authors that the off diagonal diffusivities of the  and ' 
phases must be taken into account in the analytical solution in 
order to obtain reasonable results. 

Up to now, the structures produced by nitrocarburizing, 
where nitrogen and carbon are introduced into the work piece 
are, even in the case of an initially pure iron specimen, much 
more complicated than for the case of nitriding 15. It is then 
reasonable at this stage, to assume that the growth of the 
compound layer during nitrocarburizing is controlled by 
nitrogen and carbon diffusion through the layer itself and that 
thermodynamic equilibrium prevails locally at moving phase 
interfaces. Under these conditions, it is possible to establish a 
diffusion model in the solid state, from the resolution of 
diffusion equations in a semi-infinite medium and to predict 
the nitrogen and carbon transfer rate in the solid, as well as the 
carbonitride layer growth rate and the nitrogen and carbon 
concentration profiles. 

By limiting our study to pure iron and XC38 steel, we are 
going to show on the one hand, that the analytical solution 
may be obtained for growth of  into a substrate  using a 
simple boundary conditions, and on the other hand, that is 
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- The interaction between nitrogen and carbon is negligible 
and concentration profiles of nitrogen and carbon in the  
carbonitride layer can be calculated as: 
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- The growth of the  layer obeys a parabolic law 
 

for  x0 ;   t.b         (6) 
 

where b is the constant of the parabolic rate dependent on 

the surface nitrogen and carbon concentration imposed during 
the treatment, the phase composition at / interface at a given 
temperature and the effective diffusion coefficients in the  
and  phases. 
- The effective diffusion coefficient of nitrogen in the  

phase is the same than the one evaluated previously in the 

binary Fe-N system 5. It is assumed constant and 
independent of concentration for a composition of the  
carbonitride between 7 and 9.5 (Wt. pct). This coefficient 
is taken as the average intrinsic diffusion coefficient of 
nitrogen throughout the thickness of the  layer and is 

only dependent on temperature 4], [5 
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with: a = CN
1  and b = CN

S  
The intrinsic diffusion coefficient of nitrogen is related to 

the self-diffusion coefficient D *N
φ  by 21], [22: 
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where 
Clnd
alnd

N

N



  is the thermodynamic factor, aN
 being the 

activity of nitrogen corresponding to concentration CN
 . 

With the assumed boundary conditions, the nitrogen and 
carbon concentration profiles in the  and  phases can be 
expressed as follows: 
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and for  x ; 
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After differentiating (9) and (10) and substituting into (1), 
we obtain the following flux balance equation at the / 
interface: 
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If the surface nitrogen and carbon concentration is assumed 

constant during nitrrocarburizing, then the constant b of (11) 

can be determined. From (6), (9) and (10) we deduce the 
nitrogen concentration profiles in the  and  phases and the  
layer thickness. 

According to Fick's first law, the total nitrogen mass that 
crosses the carbonitrided surface SL of the sample at the 

instant t of treatment is: 
 

dt.
x

(x,t)C
DS)t(M

t

0 0x

CN
N

L
CN

, 







 











  

 



























 










t.D.
)

D2

b
erf(

)CC(S2
)t(M

N

N
ε

CN
1

CN
SLCN

,
   (12) 

 

In order to limit the growth rate of the  carbonitride layer 
during nitrocarburizing treatment, we choose to vary over time 
the surface concentration of carbon and nitrogen. The 
theoretical curve of the sample mass variation can be 
calculated from (12) and the following relation: 

 

))t(C.0074.09510.0ln(b CN
S
       (13) 

 
By using the same value of the effective diffusion 

coefficient of nitrogen in the  phase evaluated previously in 
the binary Fe-N system, the constant of parabolic rate (13) is 
determined by simulation and validated experimentally after 
many experiments of nitrocarburizing performed at 843K on 
pure iron specimens. The results obtained show that the 
effective diffusion coefficient of nitrogen in the  carbonitride 
is constant and remains valid in the (carbon + nitrogen) 
concentration range 7 to 9.5 Wt. pct. 16. 

III. EXPERIMENTAL APPROACH 

The mathematical model is developed in order to calculate 
and to predict the weight gain of sample and thickness of  
layer as a function of time and surface nitrogen and carbon 
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concentration. Nitrocarburizing treatments are performed in a 
thermobalance furnace on pure iron specimens (13x13x49mm) 
at a temperature 843K and atmospheric pressure. We 
conducted the treatment by adjusting the gas flow rate (NH3-
Ar-C3H8) at the inlet of the reactor in order to follow the 
theoretical curve of mass variation calculated by (12) for a 
constant or variable surface nitrogen and carbon 
concentration. After treatment, the samples are quenched in 
water in order to avoid the transformation of  phase during 
cooling. The experimental results, determined by X-ray 
diffraction, light microscopy and electron microprobe analysis 
are compared with theoretical prediction given in Table I. 

 
TABLE I 

THE CALCULATED THICKNESS OF  LAYER AS A FUNCTION OF TREATMENT 

TIME AND SURFACE NITROGEN AND CARBON CONCENTRATION 

Times (hours) 0.5 0.5 - 1.5 4 10 
Surface Concentration (N+C) 
Variable (Wt. pct) 

9 9 - 7 7 7 

 Layer Thickness (µm) 5.6 5.6 - 8.5 11 14.7 
Surface (N+C) Concentration 
Constant (Wt. pct) 9 

 Layer Thickness (µm) 5.6 5.6 - 9.7 15.8 25 

IV. EXPERIMENTAL RESULTS 

The model is validated after many experiments of 
nitrocarburizing performed at 843K for several times between 
0.5 to 10 hours and for nitrogen and carbon concentrations 
between 7 to 9 Wt. pct. Fig. 2 shows the experimental and 
theoretical weight gain of the sample per unit area (M/S) as a 
function of nitrocarburizing time (t) for growth of the  
carbonitride layer into a substrate  with: a constant surface 
nitrogen and carbon concentration 9 Wt.pct. (curve 1), and a 
variable surface nitrogen and carbon concentration 9 to 7 Wt. 
pct. (curve 2). 

 

 

Fig. 2 Experimental and theoretical curves of weight gain of the 
sample per unit area (M/S) 

 
During the treatments, we have chosen the operating 

conditions so that the transport of species in the gaseous phase 
and the chemical reactions on the surface of the specimens do 
not impose a limitation on the reaction of nitrocarburizing. For 
this case, a surface nitrogen and carbon concentration can be 
fixed and controlled from the beginning of the treatment and 

the  phase is formed instantaneously. 
 

 

Fig. 3 Gas flow rate variation as a function of nitrocarburizing time 
for growth  into  (surface of specimen SL = 28.60x10-4 m2 - total 

gas flow rate NH3-Ar-C3H8 constant 5.95 mol/s) 
 
We can see (Fig. 3) that the ammonia gas flow rate 

introduced in the reactor decreases regularly: very high at the 
beginning of the treatment to allow the immediate formation 
of the  carbonitride and it rapidly decreases to become very 
low at the end of the treatment. The carbon concentration is 
fixed by addition of the propane in the gas mixtures (for t > 
5mn, the propane partial pressure is equal to 0.25atm). The 
characteristics results of micrographic measures of  layer 
thickness and quantitative analysis of the surface nitrogen and 
carbon concentration (Table II) allow us to confirm on the one 
hand, that the different tests were performed at constant and 
variable surface nitrogen and carbon concentration and on the 
other hand, the good correspondence between experimental 
and theoretical thickness of  carbonitride layer. 

 
TABLE II 

COMPARISON BETWEEN EXPERIMENTAL (EX) AND THEORETICAL (IN BOLD) 

VALUES OF SURFACE NITROGEN AND CARBON CONCENTRATION AND LAYER 

THICKNESS AS A FUNCTION OF NITROCARBURIZING TIME AND SURFACE 

NITROGEN AND CARBON CONCENTRATION: (PURE IRON SPECIMENS 

CARBONITRIDED AT T = 843K) 

Time 
Surface Nitrogen and Carbon 

Concentration (Constant) 
 Layer Thickness 

(m) 

t (h) )(C EX
C
S )(C EX

N
S )(C Th

CN
S
  )(EX ︶︵Th

0.5 1.00 8.15 9 5.40 5.60 

1.5 1.15 8.10 9 9.70 9.70 

4.0 1.30 8.05 9 15.70 15.80 

Time 
Surface Nitrogen and Carbon 

Concentration (Variable) 
 Layer Thickness 

(m) 

t (h) )(C EX
C
S )(C EX

N
S )(C Th

CN
S
  )(EX ︶︵Th

0.5 1.00 8.15 9 5.40 5.60 

1.5 1.05 6.15 7 8.60 8.50 

4 1.15 6.10 7 10.90 11.00 

10 1.20 6.00 7 14.80 14.70 

 

The evolution of the  carbonitride layer thickness as a 
function of the square root of diffusion time shows (Fig. 4) 
that the  layer growth is parabolic. Therefore, from the 
present experiments it seems that the thermodynamic 
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