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Abstract—The myoelectric signal (MES) is one of the Biosignals 

utilized in helping humans to control equipments. Recent approaches 
in MES classification to control prosthetic devices employing pattern 
recognition techniques revealed two problems, first, the classification 
performance of the system starts degrading when the number of 
motion classes to be classified increases, second, in order to solve the 
first problem, additional complicated methods were utilized which 
increase the computational cost of a multifunction myoelectric 
control system. In an effort to solve these problems and to achieve a 
feasible design for real time implementation with high overall 
accuracy, this paper presents a new method for feature extraction in 
MES recognition systems. The method works by extracting features 
using Wavelet Packet Transform (WPT) applied on the MES from 
multiple channels, and then employs Fuzzy c-means (FCM) 
algorithm to generate a measure that judges on features suitability for 
classification. Finally, Principle Component Analysis (PCA) is 
utilized to reduce the size of the data before computing the 
classification accuracy with a multilayer perceptron neural network. 
The proposed system produces powerful classification results (99% 
accuracy) by using only a small portion of the original feature set.  
 

Keywords—Biomedical Signal Processing, Data mining and 
Information Extraction, Machine Learning, Rehabilitation. 
 

I. INTRODUCTION 
HE fields of human-computer interaction and robotics 
emphasize the necessity of humanizing machine 

interaction thus calling for more intuitive interfaces. The 
Electromyography (EMG) signal, also referred to as the 
myoelectric signal (MES), acquired from the forearm skin 
surface provides valuable information about neuromuscular 
activities and has been recognized as an efficient and 
promising resource for human-machine interface (HMI) that 
can be used for the rehabilitation of people with mobility 
limitations and those with severe neuromuscular impairment. 
The MES is utilized in a noninvasive control scheme, and used 
in many diverse applications including clinical diagnosis, a 
source of control of assistive devices, and schemes of 
functional electrical stimulation [1]. 
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The MES is a complicated signal controlled by the central 
nervous system (CNS). It is affected by anatomical and 
physiological properties of muscles, the control scheme of the 
peripheral nervous system, and the characteristics of the 
instrumentation used to detect and measure the signal [2, 3]. 

 There has been considerable research in the development of 
control strategies and techniques for controlling multiple 
degree-of-freedom (DOF) prosthesis. The ultimate goal of 
these systems is to produce a control system which can 
perform simultaneous coordinated control of several DOFs 
[4]. One of the control strategies being extensively researched 
is known as myoelectric control strategy, in which a prosthetic 
arm is controlled by utilizing pattern recognition to classify 
the MES patterns based on either a priori knowledge or on 
statistical information extracted from the patterns to select a 
specific robot arm movement.  The MES patterns exhibit 
distinct differences in their temporal waveforms for different 
actions. Within a set of patterns derived from the same 
contraction, the structure that characterizes the patterns is 
sufficiently consistent to maintain a visual distinction between 
different types of contraction. Hudgins [5, 6] aligned the 
patterns using a cross-correlation technique and managed to 
show that the ensemble average of patterns within a class 
preserves this structure. 
 One of the limitations of the current myoelectric control 
systems is the huge amount of data extracted from the 
myoelectric signal required to be processed and used as a 
control input for the prosthesis [7]. The processing of the huge 
amount of data introduces a time delay in the myoelectric 
control system which hinders the development of a continuous 
control. The second limitation is imposed by the first one, as 
in order to reduce the computational cost of such a system, 
several techniques are utilized but many of them do not take 
into account the interaction of the features with specific class 
labels thus decreasing the accuracy of such systems. This 
paper focus on multifunction myoelectric control of prosthetic 
devices, and introduce a new method on feature extraction 
utilizing fuzzy c-means algorithm in judging on wavelet 
packet based features suitability in classification, thus 
maximizing the class separability of the features, which are 
later projected linearly into a smaller dimension using PCA, a 
method of features projection. 

The paper is organized as follows: section II presents the 
background and related work. The fuzzy wavelet packet 
algorithm proposed is described in section III. In section IV, 
experimental results are presented. Conclusion is given in 
section V. 
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II. BACKGROUND 

A. Continuous Multifunction Myoelectric Control 
Controlling prosthetic devices can be performed on 

continuous steady state or transit MES signals. Initial attempts 
were based on the utilization of transit MES signals, but recent 
studies proved that the MES classification is enhanced when 
performed on a continuous steady-state data, switching from 
one contraction type to another, and reflected in more natural 
control to the robot arm movements by means of pattern 
recognition.  

The first stage in any pattern recognition system is the 
features extraction. Although the literature includes many 
published works which explore the extraction of features from 
the MES for controlling prosthetic limbs, there have been few 
works which make quantitative comparison of their quality. 
Recently, most of the attempts to extract features from the 
MES can be generally classified into two categories: temporal 
and spectral approaches[8]. Some of the temporal approaches 
attempts employ zero crossing rate [9], mean absolute value 
[5], and Cepstrum coefficients [10] methods. Multiple 
temporal feature parameters extracted for MES pattern 
classification were also the focus of many researchers in this 
field. The justification behind using multiple features 
parameters is that each of the temporal approach methods can 
reflect a specific property of the signal in the generated feature 
set, thus the grouping of those sets might work best together 
presenting a better image of the information contained in the 
signal. Park & Lee[11] combined Integral Absolute Value 
(IAV), Difference Mean Absolute Value (DAMV), Variance 
(VAR), Autoregressive Model Coefficients (ARC), Linear 
Cepstrum Coefficients (LCC),and  Adaptive Cepstrum Vector 
(ACV), to prove that the desired motions were recognized 
efficiently. 
  Although pattern recognition using features extracted by 
those time domain methods were successful to some limit, 
However the pattern recognition results using these feature 
vectors have not had a high success rate because such methods 
assume that MES signal is stationary, while the MES signal is 
non-stationary in its nature [12, 13], thus changing the 
researchers trend toward the use of information contained in 
frequency domain as it leads to better solution for encoding 
the MES signal, that guide to the spectral approach. Many 
researchers investigated various time frequency approaches to 
signal processing in myoelectric control problem ranging from 
Fast Fourier Transform (FFT) [14] , Short Fourier Transform 
(STFT) [15], the Wigner–Ville distribution (PWVD), the 
Choi–Williams distribution (RWED), the Continuous Wavelet 
Transform (CWT) [16], and finally the wavelet packet 
transform (WPT) that has been adopted in this paper [1].  

 The second stage in a pattern recognition system is the 
dimensionality reduction stage. It is required with this 
approach to deal with the reduction of problem 
dimensionality, which is generally fundamental to increasing 
the classification performance. It works to preserve as much of 
the relevant information as possible while reducing the 
number of dimensions. The wide variety of existent techniques 
for feature extraction presents two problems: which techniques 
should be used and how to select from among of the features 
that each extraction technique generates. 

 
Selected features are “best” only by some standard (i.e. 

criterion): therefore techniques for generation of features tend 
not to be very portable from one pattern processing problem to 
another. Many techniques do not generate independent 
features; therefore there is redundancy in the data, which 
potentially affects both efficiency and accuracy in pattern 
recognition. The two main strategies for dimensionality 
reduction are feature selection and feature projection [17]. In 
the field of myoelectric control, PCA proved to present 
powerful results, this was shown by many researches done in 
this filed [1, 18, 19]. A variation to the approach of using PCA 
alone was introduced recently, in which PCA is combined 
with Kohonen self organizing feature map (SOFM) to produce 
a linear-nonlinear projection of data proving to be very 
suitable for real time implementation [20]. It is true that using 
PCA on time frequency features provide good classification 
accuracy, but it is noticed that when the number of motion 
classes to be classified increases the performance of the MES 
pattern recognition system starts degrading. This paper deals 
with this problem by proposing a new fuzzy wavelet packet 
based feature extraction method in MES driven systems, for 
which the functionality will be proven to outperform other 
methods in this field. 

III. METHODOLOGY 

A. Myoelectric Signal Dataset Acquisition 
The MES dataset used to test the proposed method was 

acquired by the University of New Brunswick in Canada [21]. 
The dataset consisted of ten motions associated with three 
degrees of freedom (DOF’s) of the wrist, two different hand 
grips, and a rest state. In particular they were: forearm 
pronation, forearm supination, wrist flexion, wrist extension, 
radial deviation, unlar deviation, key grip, chuck grip, hand 
open, and a rest state, as shown in Fig.1. Each session of the 
database consisted of two trials or two repetitions of each 
motion. Six subjects (AW, KS, LH, MW, SM, and WM) were 
prompted to complete medium force isometric contractions of 
5 seconds duration followed by a brief rest period. Each record 
was 256 ms in duration (256 points sampled at 1024 Hz, pre-
filtered between 10-500 Hz using the 4th order Bessel band 
pass filter with a gain of 2000 and a CMRR greater than 96 
db/channel). 

B. Wavelet Packet for Feature Extraction 
Wavelet packets (WP) were introduced by Coifmann, 

Meyer and Wicker Hauser [22]. It works by generalizing the 
link between multiresolution approximation and wavelet 
bases.  A signal space jV of a multiresolution approximation is 
decomposed in a lower resolution space 1jV +  plus a detail 
space 1jW + . The decomposition is achieved by dividing the 

orthogonal basis { ( 2 )}j
j n Zt nφ ∈−  of jV into two new 

orthogonal bases 1
1{ ( 2 )}j

j n Zt nφ +
+ ∈−  of 1jV + and 

1
1{ ( 2 )}j

j n Zt nϕ +
+ ∈−  of 1jW + , were ( )tφ and ( )tϕ are scaling and 
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Fig. 1 Ten classes of motion used in this research acquired from 16 

MES surface electrodes. 
 
wavelet functions respectively.  

The decomposition for WP can be implemented by using a 
pair of Quadrature Mirror Filter (QMF) bank that divides the 
frequency band into equal halves. Due to the decomposition of 
the approximation space (low frequency band) as well as the 
detail space (high frequency band), the frequency division of 
the MES signal take place on both the lower and higher sides. 
This recursive splitting of vector space is represented by 
admissible WP tree.  

Features are usually generated by taking the energy of the 
wavelet coefficients in the subband according to the 
normalized filter bank energy ( )S l  that is given by.  
 

    2

1
log( ( )) log ( ( , ) / )l

m
S l Wx l m N

∞

=

= ∑                   (1) 

 
Wx = Wavelet packet transform of signal . 
l    = Subband frequency index. 

lN  = Number of wavelet coefficients in the 'l th subband. 
 

The wavelet packet transform have received more 
considerable attention in the analysis of non-stationary signals 
like the MES because the time-frequency analysis produces a 
high dimensional feature vector thus providing more 
information about the signal. However the high dimensionality 
of the feature vector causes an increase in the learning 
parameters of the pattern classifier, and the convergence of the 
learning error deteriorates. Therefore, dimensionality 
reduction is essential before applying the feature vector, to the 
pattern classifier.  

First of all a sliding window is incremented in position by a 
specific amount and passed on the MES signal records to 
choose portions of signal each time. In addition to the type of 
feature set to be used; the parameters which affect the 
classifier’s performance include the record length and the 
window increment. The response time of a myoelectric hand 
control system should be less than 300 ms, so that the user 
operates the hand without perceiving a time delay [23]. In our 
system the record length was N = 256 samples and the 
windows increment was M = 32 samples (Blackman type 
window). WPT was applied on each sample window to extract 
features. 

There are two categories of classification methods 
employing WPT in features extraction. The first uses abstract 
aggregates of the original wavelet packet features such as: 
energy, distance, or clusters[24]. The second category is based 
on using the decomposition coefficients to form a feature 
space by merging specific nodes of the WPT tree and splitting 
others in order to produce a WPT tree that represent the best 
reflection of the properties of the signal. The features are then 
extracted as the energy of wavelet coefficients in the terminal 
nodes of the resultant optimized tree. The common methods 
known,  in the second category, are the joint best basis (JBB), 
the local discriminant basis (LDB) methods, and fuzzy 
wavelet packets based features extraction method (denoted as 
FWP throughout the rest of this paper) that was developed in 
[24] and proved  to outperform both the JBB and the LDB 
methods in classification of biomedical signals. The FWP used 
FCM to determine the optimal wavelet packets 
decompositions and ranked the features based on their 
membership in the classes, thus that forming a kind of features 
selection method. Although the FWP proved very successful 
on certain kinds of biomedical signals, but using such method 
based on features ability to separate different classes alone 
doesn't perform well on the MES signals, due to the high 
variance of the signal and consequently of WPT features [1], 
This situation was analyzed by Englehart [25], as he compared 
feature selection and feature projection (employing PCA) on 
MES patterns and proved that PCA outperformed feature 
selection methods in MES pattern recognition.  

Recently, Chu et al [13, 20] proved that the approach of 
extracting the features by WPT followed by dimensionality 
reduction by PCA could not provide an effective result in 
recognition accuracy because PCA learning merely produces a 
well-described coordinate system for the distribution of all 
features without consideration of the separation of class 
distribution, and proposed their approach of using PCA 
followed by a self organizing feature map (SOFM). The use of 
such linear-nonlinear feature projection method in real time 
control of a prosthetic arm achieved an accuracy of 97% in 
average across 10 subjects. In the linear-nonlinear projection 
approach a SOFM is utilized along each channel. If the same 
method is applied on the MES dataset with 16 channels it will 
require 16 SOFM to be trained, thus increasing the overall 
complexity of the problem and the computational cost. 
Another point in the SOFM based approach is that, in their 
approach they recognized that the problem is caused by PCA 
because it doesn’t take into account the relation of features 
with the class, but they apply PCA and later try to remove the 
error induced by PCA through the utilization of SOFM. It 
would be preferred if care is taken before applying PCA and 
not after that, so as to reduce the probability of error before it 
actually take a place.  This paper presents a new technique to 
reduce the computational cost and increase the MES 
recognition performance in an efficient simple manner.  

The block diagram of the proposed system of this paper is 
shown in Fig.2. It consists of four stages. In the first stage, 
WPT is applied on the MES records to generate a wavelet tree, 
through decomposing the original signals using a Symmlet 
family, with four level of decomposition for the wavelet tree 
and taking the energy of wavelet coefficients
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Fig. 2 The proposed MES recognition system. 

 
as features, without applying the JBB and LDB method to 
optimize the tree. In stage two, our version of the FCM 
based measure for removing nondistinguishing features is 
presented, which represents an enhanced version of the 
measure used in [24] as their measure of removing 
nondistinguishing features took into consideration the 
distance between only the maximum and minimum  class 
centers along each feature, but the fact that certain centers 
might be close to one of either the maximum or minimum 
centers deviates this measure from a true indication of the 
feature suitability in classification. This paper propose to 
remove only the features that prove to be absolutely has no 
significance in classification, and retain other features even 
if they have small power in separating the clusters (to 
account for robustness in features), as shown in the next 
section. The features that are not very important are 
retained because such features might not work well alone, 
but with the inclusion of them in a set of features with other 
they might prove very successful. Finally, PCA (stage 
three) is employed to reduce the dimensionality of the 
features retained after removing the nondistinguishing 
features and use a multilayer perceptron (stage four) to 
classify them into classes. 

 

C. Fuzzy C-Means based Cluster Separation Index 
(FSCI) 

Fuzzy logic proved to bring new possibilities into control, 
modeling, data analysis, decision making, and other fields 
in biomedical sciences. One problem in using clustering-
based classification is setting the number of clusters to use 
in each class. An optimal number does not always exist but 
one is satisfied with a number that is large as necessary to 
yield perfect classification of the samples, and yet as small 
as possible so that the ensuing generalization is acceptable 
[26].  The approach of using fuzzy c-means algorithm in 
MES classification was found in many attempts in the 
literature, each reported excellent classification accuracy 
yielded from using fuzzy logic to cluster the data into 
varying number of motion classes [27-29].  

The fuzzy c-means algorithm attempts to cluster 
measurement vectors by searching for local minima of the 
generalized within group sum of squared errors functions 
(WGSSE). It was proposed by Trivedi and Bezdeck [30] 
and is given by: 

2

1 1
( , ) ( ) , 1

n c
m

m ik k i A
k i

J U v u x v m
= =

= − < < ∞∑∑      (2) 

Where 
c   : is the number of clusters,  
n   : is the number of vectors,  

kx  : is the 'k th  measurement vector, n
kx R∈  

iv   : is the 'i th  centroid vector,  
m  : is the fuzzy coefficient,  
.

A
 : is an inner product norm,  
2 T
A

Q Q AQ= , and A  is a *d d positive definite matrix 
where d is the dimension of the pattern vectors. 
When 1m = , the objective function mJ in (2) is the classical 
WGSSE function and the algorithm reduces to the crisp k-
means clustering algorithm. For 1m > under the assumption 
that k ix v≠ , ( , )U v may be a local minimum of mJ only if: 
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In the proposed approach, the centers across each feature 
are normalized to [0, 1] and denote ,ij kFSCI as the fuzzy 
cluster separation index along feature k  is given by: 

,
,

,

1

0
ij k ik jk

ij k
ij k

f if v v r
f

f otherwise

⎧ ⎫+ − >⎪ ⎪= ⎨ ⎬
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           (5) 

1

,
1 1

c c

k ij k
j i i

FSCI f
−

= + =

= ∑ ∑                                           (6) 

Where 0 1r< < , as r approaches 0, more features will be 
retained. This measure indicates the relative ability of 
feature k to separate all distinct pairs of the c subclasses, 
where as a comparison with the approach adopted in [24] 
their cluster separation measure took into account only the 
difference between max mink kv v− . Only features with 

0kFSCI = , are removed and not used in classification. 
Fig.3 shows an example after applying the FCM method to 
the features tree generated by WPT with four levels of 
decomposition, retaining only part (depending on r value) 
of the original feature set produced by the WPT (gray). The 
PCA is applied after removing the nondistinguishing 
features, thus further reducing the dimensionality. 

The justification for our approach is as follows: WPT was 
employed to generate a tree with large number of features 
to provide more descriptive information about the signal,  
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Fig. 3 Example of WPT features selection based on the fuzzy cluster separation index (FSCI). 
 
after this stage, the FCM method was used to select only the 
features that maximizes the class separability, thus removing 
features that play no role in the classification results, thus 
retaining only features that does contribute to the problem, 
even if they have small contribution to account for interaction 
between features. Till this point the best features from the 
interaction with class point of view were selected, but this 
doesn’t ensure that there is no redundancy between the 
selected features. Thus PCA is employed to remove 
redundancy by projecting the features onto their eigenvectors 
and retaining those which corresponds to the largest 
eigenvalues. As a result of this process specific features are 
extracted, because our motivation is toward the evaluation of 
MES features in ways which are not tied to accurate estimates 
of signal characteristics, but rather to the intrinsic quality of 
those features as control signals for a desired device, in our 
case the prosthetic arm device. 

The resultant features comply with the high quality MES 
features properties, suggested by Boostani [31], and providing 
the following qualities:. 

• Maximum class separability. A high quality feature 
space results in clusters that have maximum class 
separability or minimum overlap. This ensures that the 
resulting misclassification rate will be as low as 
possible; this is achieved in the proposed system using 
the (FCM) method.  

• Robustness. The selected feature space should 
preserve the cluster separability in a noisy environment 
as much as possible, as was explained in section III.  

• Complexity. The computational complexity of the 
features should be kept low so that the related 
procedure can be implemented with reasonable 
hardware and in a real-time manner that is achieved by 
employing PCA technique in the proposed method. 

IV. EXPERIMENTAL RESULTS 
During the experiments, WPT was applied on the MES 

records of 256 samples each, to generate a wavelet tree 
presenting us with 16 features (level 4 of decomposition) for 
each channel, for a 16 channel problem this process produced 
a total of 256 features concatenated from different channels. 

Due to the size of the feature vector it is impractical to 
consider using all 256 in the classification process directly. the 
FCSI measure was applied to remove non-significant features, 
and PCA to reduce the dimensionality of what is left of 
features. The value of r varied to range from 0.1 to 0.5 after 
which any further increase in r can lead to a negative impact 
on classification accuracy (subject dependant as a value of 

0.5r = can degrade classification accuracy on certain datasets 
while increasing the accuracy for other – AW datasets results), 
as it was seen from experiments. Each of the six person's 
datasets was tested to study the impact of this method on the 
testing accuracy on each subject. Only the first 20 principle 
components were used in the analysis. Testing was performed 
employing a back propagation neural network with 20 nodes 
in the hidden layer. The results acquired from each person 
datasets are shown in Fig.4, for which only the results for 
three values of r are plotted that shows the most significant 
differences in their results (to produce clear graphs).  

In the experiment that were carried out, large number of 
features were utilized first and moved toward smaller number 
of features that were projected into their eigenvectors, this is 
done by taking different values for the variable r . Usually the 
experiment started with small values for r  thus keeping most 
of the features, and later increasing the value of r slightly, till 
a point that actually degrades the performance of the system is 
reached. In most cases, the maximum value was 0.5r = , 
although for some datasets (like AW dataset) the value of 

0.5r = did show an enhanced performance, but further 
increase lowered down the testing accuracy for all the 
datasets. When plotting the trade-off between the number of 
principle components used and the classification accuracies of 
the neural network, it was shown (for all the datasets) that a 
value of  0.3 0.4r≤ ≤ can represent a common value that 
have a good effect on the final results, even if it does not 
represent the optimum value for each of the datasets, but this 
value is reasonable as it does not necessitates removing large 
number of features, so that the system can generalize better on 
unseen data during the real time process. To better understand 
the effect of choosing the value of r , Table I include in the 
percentages of the features number retained with varying 
values for r , showing that certain values of r  might remove 
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more features from one subject dataset than another making 
the exact amount of features retained subject dependant.  

In another experiment, the value of 0.35r = was fixed, and a 
search, for the regions from which the features were removed 
mostly, was run. It was found that most of the features that 
were dismissed from classification (depending on the value of 
r ) were actually from the region of the channels (4, 
5,6,7,8,12,13,14, and part of channels 2, 3, and 11). When 
looking at the original figure for the channels distribution 
around the forearm[21], that is represented here in this paper 
in Fig.5 (for the sake of comparison), it appeared that most of 
the features the method retained were acquired from surface 
electrodes placed over the extensors/supinator, flexor carpi 
ulnaris, and flexor digitorum subliminus. This is a significant 
foundation, as those are the most interesting locations on 
human forearm on which three surface electrodes achieved an 
accuracy of 97% by using time domain features concatenated 
with 6th order AR model, reduced in dimensionality with PCA 
[21]. Thus the suggested system functions in an accurate way 
by removing features from non important channels. 

In the final test, experiments employing the FWP method 
mentioned earlier were carried out. In order to produce a 
competent comparison to prove that using the new measure 
with PCA can produce better results than that in [24] by using 
the separation measure followed by a method of ranking 
features based on their classes membership. FSCI measure is 
first applied rather than the one they proposed, as the FSCI 
takes into consideration the feature ability to separate all 
distinct classes rather than the maximum and minimum along 
each feature, and later ranked features according to their total 
membership value in all classes. The results are given in Fig.6 
for each of the six datasets, plotting the FWP results in 
conjunction with the proposed new method denoted as NFWP-
PCA. It is clear from the figures that the new method 
outperform the FWP method, as the later one does not take 
into consideration the relationship between features, but only 
the membership of features in each class, in which the case 
there exist a large amount of redundancy of information. Thus 
it requires more features to be used to achieve the same results 
as those achieved by the NFWP-PCA method which takes into 
account the relationship between features and classes, and 
adds to that it further reduce the redundancy by employing the 
principle components analysis method. Thus achieving higher 
accuracies at smaller number of principle components used. 
The smaller number of principle components reduce the total 
computational cost for such a system when implemented in 
real time.   
In general 20 principle components were enough to produce a 
classification accuracy of 99% for the NFWP- PCA method, 
while it took 40 – 65 features (depending the 

dataset used) using the FWP method to achieve the same 
results achieved by our new method.  

When comparing to the classification results that were 
acquired by Levi et al., that originally used those databases 
they achieved an average accuracy ranging between 95% and 
99% using the first 40 principle components in the final 
decision making [21]. In our case an average accuracy of 99% 
was achieved when using the first 20 principle components in 
final decision making when using the fuzzy clustering method 
followed by PCA, and also  various results are achieved 
depending on the number of features kept as shown in Fig.4. 
This proves that the features extracted using wavelet packets 
gives comparable results (even better) to those obtained using 
the AR coefficients if the features used in classification are 
selected with the proper approach. It was also proved that the 
proposed system computational cost was less than that in [21], 
and also was more accurate than the work in [20] as they 
achieved an average of 97% across nine classes of hand 
motion, were as 99% of accuracy was achieved for ten classes 
of motion in this proposed system, also in their system a 
SOFM was utilized along each channel, were as proposed 
system used one FCM algorithm along the whole features 
extracted from 16 channels, thus our system being of less 
computational cost that SOFM based one. 

 

V. CONCLUSION 
A new approach for wavelet packet based features 

extraction was presented in this paper. The approach was 
based on the use of FCM algorithm to judge on features 
suitability in classification by measuring the degree of 
overlapping between the clusters, thus measuring the ability of 
each feature to separate between the different problem classes. 
Accurate results were obtained from the system using different 
number of features selected from the original 256 features that 
represents the total number from 16 channel myoelectric 
signals concatenated with each other. It was proved that by 
using WPT method with fuzzy logic followed by PCA, the use 
of only the first 20 principle components (although achieved 
with smaller number of principle components but included to 
account for generalization) achieved an accuracy of 99% 
across six subjects who participated in the MES dataset 
collection. 

TABLE. I   
PERCENTAGES OF THE NUMBER OF FEATURES RETAINED     WITH 

DIFFERENT VALUES FOR r  

Datasets AW LH KS MW WM SM 

 Percentage of features left % 

r = 0.5 91 45 114 85 103 53 

r = 0.4 133 101 129 143 146 130 

r = 0.3 175 194 178 188 173 196 

r = 0.2 227 256 242 221 227 245 

r = 0.1 250 256 256 251 253 256 
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i. Accuracy of testing using AW datasets. 
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ii. Accuracy of testing using KS datasets. 
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iii. Accuracy of testing using MW datasets. 
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iv. Accuracy of testing using LH datasets. 
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v. Accuracy of testing using WM datasets. 
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vi. Accuracy of testing using SM datasets. 

Fig. 4 Plot of the tradeoff between the number of principle components retained and classification accuracy achieved by MLP. 
 
It was also found that most of the features retained were from 
specific regions on the human forearm, for which it is 
currently known from research in this field till day that those 
regions are the most important for consideration in MES 
classification, thus proving the efficiency of the proposed 
fuzzy wavelet packet method. 
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Fig. 5 A cross-section of the upper forearm showing the surface 

electrodes locations on human forearm. 
 

REFERENCES   
 
[1] K. Englehart, B. Hudgin, and P.A. Parker, "A wavelet-based 

continuous classification scheme for multifunction myoelectric 
control," IEEE Transactions on Biomedical Engineering, vol. 48, pp. 
302 - 311, 2001. 

[2] C. J. De Luca, "Physiology and mathematics of myoelectric signals," 
IEEE Transactions on Biomedical Engineering, vol. BME-26, pp. 313-
325, 1979. 

[3] R. Merletti and P. Parker, "Electromyography physiology, Engineering, 
and noninvasive applications," IEEE Press Engineering in Medicine 
and Biology Society., 2004. 

[4] J. Hunt, "A 3-degree-of-freedom myoelectric control suitable for easy 
implementation in hardware," in Electrical and Computer Engineering, 
vol. Master of Science. Fredericton, NB Canada: University of 
NewBrunswick, 1998. 

[5] B. Hudgins, P. Parker, and R. N. Scott, "A new strategy for 
multifunction myoelectric control," IEEE Transactions on Biomedical 
Engineering, vol. 40, pp. 82-94, 1993. 

[6] C. M. Lighty, P. H. Chappelly, B. Hudgins, and K. Englehart, 
"Intelligent multifunction myoelectric control of hand prostheses," 
Journal of Medical Engineering & Technology, vol. 26, pp. 139– 146, 
2002. 

[7] S. Leowinata, "A new strategy for multifunction myoelectric control 
using an array of surface electrodes," in Electrical and Computer 
Engineering, vol. Master: University of New Brunswick, 2000. 

[8] M. Vuskovic and D. Sijiang, "Classification of prehensile EMG 
patterns with simplified fuzzy ARTMAP networks," Proceedings of the 
International Joint Conference on Neural Networks, IJCNN '02. , vol. 
3, pp. 2539-2544, 2002. 

[9] J. J. Im, D. H. Rho, Y. J. Jeon, N. B. Lee, and J. I. Chung, "Extraction 
of parameters from EMG signals for the biofeedback electrical 
stimulation," presented at Proceedings of the Second Joint 
EMBS/BMES Conference, 2002. 

[10] S-P. Lee, S-H. Park, J-S. Kim, and I.-J. Kim, "EMG pattern recognition 
based on evidence accumulation for prosthesis control," 18th Annual 
International Conference of the IEEE Engineering in Medicine and 
Biology Society, Amsterdam, The Netherlands, pp. 1481-1483, 1996. 

[11] Sang-Hui Park and S.-P. Lee, "EMG Pattern Recognition Based on 
Artificial Intelligence Techniques," IEEE Transactions on 
Rehabilitation  Engineering, vol. 6, pp. 400-405, 1998. 

[12] L. Seok-Pil, P. Sang-Hui, K. Jeong-Seop, and K. Ig-Jae, "EMG pattern 
recognition based on evidence accumulation for prosthesis control," 
18th Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society, Amsterdam, vol. 4, pp. 1481-1483 vol.4, 
1996. 

[13] Jun-Uk Chu, Inhyuk Moon, Shin-Ki Kim, and M.-S. Mun., "Control of 
multifunction myoelectric hand using a real-time EMG pattern 

recognition," IEEE/RSJ International Conference on Intelligent Robots 
and Systems (IROS 2005). pp. 3511 - 3516, 2005. 

[14] Y. H. Kim, I. J. Shim, and G. T. Park, "A method of controlling 
household electrical appliance by hand motion in LonWorks," 
Proceedings of the 41st SICE Annual Conference SICE. , vol. 5, pp. 
2849-2854, 2002. 

[15] B. Hannaford and S. Lehman, "Short time fourier analysis of the 
electromyogram: fast movements and constant contraction," IEEE 
Transactions on Biomedical Engineering, vol. BME-33, pp. 1173-
1181, 1986. 

[16] S. Karlsson, Y. Jun, and M. Akay, "Time-frequency analysis of 
myoelectric signals during dynamic contractions: a comparative study," 
IEEE Transactions on Biomedical Engineering, vol. 47, pp. 228-238, 
2000. 

[17] M. Zecca, S. Micera, M. C. Carrozza, and P. Dario, "Control of 
multifunctional prosthetic hands by processing the electromyographic 
signal," Critical Review in Biomedical Engineering, vol. 30, pp. 459-
485, 2002. 

[18] K. Englehart, B. Hudgins, P. A. Parker, and M. Stevenson, "Improving 
myoelectric signal classification using wavelet packets and principal 
components analysis," IEEE Engineering in Medicine and Biology 
Society, Atlanta, vol. 1, pp. 569, 1999. 

[19] J.-U. Chu, I. Moon, and M.-S. Mun, "A real-time EMG pattern 
recognition based on linear-nonlinear feature projection for 
multifunction myoelectric hand," Proceedings of the IEEE 9th 
International Conference on Rehabilitation Robotics, pp. 295-298, 
2005. 

[20] J. U. Chu, I. Moon, and M. S. Mun, "A real-time EMG pattern 
recognition system based on linear-nonlinear feature projection for a 
multifunction myoelectric hand," IEEE Transactions on Biomedical 
Engineering, vol. 53, pp. 2232-2239, 2006. 

[21] L. Hargrove, K. Englehart, and B. Hudgins, "A comparison of surface 
and intramuscluar myoelectric signal classification," IEEE 
Transactions on Biomedical Engineering, Accepted for future 
publication. 

[22] R. R. Coifman, Y. Meyer, and M. V. Wickerhauser, "Wavelet analysis 
and signal processing," in Wavelets and Their Applications, M. B. 
Ruskai, Ed. Boston: Jones and Bartlett, 1992. 

[23] K. Englehart and B. Hudgins, "A robust, real-time control scheme for 
multifunction myoelectric control," Biomedical Engineering, IEEE 
Transactions on, vol. 50, pp. 848-854, 2003. 

[24] L. Deqiang, W. Pedrycz, and N. J. Pizzi, "Fuzzy wavelet packet based 
feature extraction method and its application to biomedical signal 
classification," IEEE Transactions on Biomedical Engineering, vol. 52, 
pp. 1132-1139, 2005. 

[25] K. Englehart, "Signal representation for classification of the transient 
myoelectric signal " in Electrical and Computer Engineering 
Department., vol. PhD Dissertation: University of New Brunswick, 
1998. 

[26] I. Drummond and S. Sandri, "A clustering-based fuzzy classifier," in 
Artificial Intelligence Research and Development, B. Lopez, Ed.: IOS 
Press, 2005. 

[27] Y. KOÇYİĞİT and M. KORÜREK, "EMG signal classifıcation using 
wavelet transform and fuzzy clustering algorithms," presented at Proc. 
of ELECO'2003, Bursa, Turkey, 2003. 

[28] B. Karlik, M. Osman Tokhi, and M. Alci, "A fuzzy clustering neural 
network architecture for multifunction upper-limb prosthesis," IEEE 
Transactions on Biomedical Engineering, vol. 50, pp. 1255-1261, 
2003. 

[29] A. D. Boca and D. C. Park, "Myoelectric signal recognition using fuzzy 
clustering and artificial neural networks in real time," IEEE 
International Conference on  Neural Networks, vol. 5, pp. 3098-3103 
1994. 

[30] M. M. Trivedi and J. C. Bezdeck, "Low-level segmentation of aerial 
images with fuzzy clustering," IEEE Transactions on Systems, Man and 
Cybernetics, vol. SMC-16, pp. 589- 598, 1986. 

[31] R. Boostani and M. H. Moradi, "Evaluation of the forearm EMG signal 
features for the control of a prosthetic hand," Physiological 
Measurement, vol. 24, pp. 309-319, 2003. 

 
 
 
 
 
 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:1, 2008

87

 

 

5 10 15 20 25
30

40

50

60

70

80

90

100

Number of principle Components (NFWP-PCA)/ Features (FWP)

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

%

 

 

NFWP-PCA
FWP

 

i. Accuracy of testing using AW datasets. 
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ii. Accuracy of testing using KS datasets. 
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iii. Accuracy of testing using MW datasets. 
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iv. Accuracy of testing using LH datasets. 
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v. Accuracy of testing using WM datasets. 
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vi. Accuracy of testing using SM datasets. 

Fig. 6 Comparison between the classification results acquired from NFWP-PCA method and the FWP method on the same datasets for the 
same value of r  


