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Abstract—In this paper, an magnetorheological (MR) mount with 

fuzzy sliding mode controller (FSMC) is studied for vibration 
suppression when the system is subject to base excitations. In recent 
years, magnetorheological fluids are becoming a popular material in 
the field of the semi-active control. However, the dynamic equation of 
an MR mount is highly nonlinear and it is difficult to identify. FSMC 
provides a simple method to achieve vibration attenuation of the 
nonlinear system with uncertain disturbances. This method is capable 
of handling the chattering problem of sliding mode control effectively 
and the fuzzy control rules are obtained by using the Lyapunov 
stability theory. The numerical simulations using one-dimension and 
two-dimension FSMC show effectiveness of the proposed controller 
for vibration suppression. Further, the well-known skyhook control 
scheme and an adaptive sliding mode controller are also included in 
the simulation for comparison with the proposed FSMC. 
 

Keywords—adaptive sliding mode controller, fuzzy sliding mode 
controller, magnetorheological mount, skyhook control.  

I. INTRODUCTION 

AGNETORHEOLOGICAL fluids were proposed by 
Bitter and Elmore in 1930. MR fluids are materials that 

typically consist of non-colloidal suspensions of polarizable 
iron particles dispersed in a carrier medium such as mineral or 
silicon oil. One nice property of MR fluids is the maximum 
yield stress that monotonically increases with applied magnetic 
field. By this property, MR fluids are shown on the market but 
their application fields are restricted to devices such as valves, 
brakes, clutches, dampers, mounts, etc. MR mount is often used 
as a kind of semi-active suspension control. A semi-active 
control technique can provide real-time dissipation of the 
system energy, which has proved to provide better performance 
than the passive control. Karnopp et al. [1] used semi-active 
force generators to vibration control. Tseng and Hedrick [2] 
compared the suspension of vehicle system in semi-active 
control. Lu [3] studied active and semi-active air-spring 
suspension systems and compared the performances. MR fluids 
had been studied in many applications of semi-active control. 
Dyke and Spence [4] proposed the MR dampers for seismic 
protection. Kim and Roschke [5] employed a linearization 
scheme for MR damper behavior using a neural network. 
Yokoyama et al. [6] presented a model following sliding mode 
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controller for semi-active suspension systems with MR 
dampers. In the same year, Shen et al. [7] improved the 
semi-active car suspension with MR damper. Choi [8, 9] 
studied the effects of ∞H  and skyhook control for full vehicle 

suspensions featuring MR by using the method of HILS 
(hardware-in-the-loop simulation). Although the dynamic 
equations of MR mount were derived in many research 
literatures, however it is difficult to solve the inherent problems 
of time-varying and nonlinear characteristics. Recently, many 
studies proposed all kinds of control methods to achieve better 
vibration suppression. Many of these robust control techniques 
can diminish disturbances, but requiring some uncertainties to 
be defined in several compact sets. 

The first successful laboratory experiment of the fuzzy logic 
control was steam engine control (Mamdani, 1974) [10]. The 
fuzzy logic control (FLC) is suitable for controlling systems 
with complex, ill-defined, time-varying, and nonlinear 
dynamics. In recent years, FLC had been applied to control 
many devices/machines, like camcorders, air conditioners, 
servo motors, etc. In order to further improve the control 
performance, the FLC can be combined with other control 
algorithms, e.g. fuzzy neural network controller and adaptive 
fuzzy logic controller [11-14]. 

The traditional fuzzy logic controller depends on a human 
expert or an experienced operator to build the fuzzy knowledge 
base. Furthermore, it is not easy to prove the stability of a FLC 
system. In recent years, several researchers suggested 
combining the concept of a sliding mode control in the fuzzy 
logic control. Chen and Chang [15] employed an optimal 
design method to FSMC. Huang and Lin [16] used adaptive 
fuzzy control with sliding surface to vehicle suspension 
control. Yu et al. [17] applied FSMC to control an uncertain 
time-delayed system with nonlinear input. 

In this paper, a FSMC is proposed to deal with modeling 
uncertainties and unknown disturbances. The stability of the 
proposed controller can be ensured by using Lyapunov stability 
theorem. Furthermore, the developed one-dimension and 
two-dimension FSMC will compare performances with the 
often used skyhook control and adaptive sliding mode control 
(ASMC, [18]). This paper is organized as follows. In Section II, 
a brief formulation of the MR mount model is given. In Section 
III, we derive the one-dimension and two-dimension FSMC in 
detail. Moreover, we use Lyapunov liked design to obtain the 
stability. In Section IV, results of one-dimension and 
two-dimension FSMC for semi-active control of an MR mount 
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are presented. In addition, the well-known skyhook control 
scheme and adaptive sliding mode control are compared with 
the proposed FSMC. Finally, we make a briefly conclusion in 
Section V. 

  

II. PROBLEM FORMULATION 

The schematic configuration and its corresponding hydraulic 
model of a one-dimensional MR mount [9] is shown in Fig. 1. 
The dynamic equation of this MR suspension system can be 
derived as 
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Fig. 1 Sketch of an MR mount (left) and its hydraulic model (right) 
 
 

It is noticed that A  is the flow area, pA  is the piston area of 

the upper chamber, b  is the damping constant of the rubber, 

1C  and 2C  are the compliance of the upper and lower 

chamber, h  is the gap of the magnetic pole, k  is the stiffness 
of the rubber, L is the length of the magnetic pole, m  is the 
mass, n  is the flow behavior index of Herschel-Bulkey model, 

W  is the width of the magnetic pole, )(tx  and )(ty  

represent the respective displacements at the mass and base, η  

is the viscosity of the MR fluid. We may represent Eqs. (1)-(3) 
in state space form: 
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where xz =1  and xz =2  are state variables, B and u  

represent the unknown input gain and control input. 
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Assumption:  

)z,( tf  is an unknown function with unknown variation 

bound, but it remains continuous and bounded for all 

admissible z  and for all ),[ 0 ∞∈ tt . 

 
Remark: 

Eq. (4) is obtained by assuming that yield stress of the MR 
fluid in driven flow mode )(Hyfτ is much greater than that in 

direct shear mode )(Hysτ  which is thus neglected. 

 

III. FUZZY SLIDING MODE CONTROLLER DESIGN 

In this section, traditional design procedures of sliding mode 
controller for the MR mount of Fig. 1 are first briefly given. In 
the beginning, we define the sliding surface ees λ+= , 

where 11 zze d −= , 22 zze d −= , idz  represents the desired 

value of state, 2,1=i , λ > 0 is a parameter to be properly 

selected. The time derivative of s  can be derived as 
 

ezButzfs d λ++−−= 2),(                           (8) 

 
Next by selecting u  as 
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where k > 0 is a constant, Eq. (8) then can be reduced to 
 

)sgn(sks −=                                                     (10) 

Now we may select the Lyapunov function candidate as 

2

2

1 sV =                          (11) 

Taking time derivative of Eq. (11), we have 
 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:12, 2009

1633

 

 

0≤−== skssV                                   (12) 

 
Hence the closed loop stability of the system can be guaranteed. 
From Eq. (9), the traditional sliding mode control needs to 

know the exact values of B  and ),( txf . The authors [18] 

had applied a function approximation technique to approximate 

the constant B and the unknown function ),( txf , in which a 

Fourier series of 41 terms were used. The update laws of the 
unknown coefficients in these estimates were derived using the 
Lyapunov stability theory. Although the developed adaptive 
sliding mode controller (ASMC) was effective in vibration 
attenuation, two problems needs to be stated. One is 
computational efficiency associated with the number of terms 
used in the Fourier series: the lower the terms used, the higher 
the computational efficiency at the expense of approximation 
accuracy; the higher the terms used, the better the 
approximation but with slower computational efficiency 
resulting in reducing the sampling rate. The other problem is 
singularity encountered in approximating the constant B . 
When the estimated B  is too close to zero, the control force 
becomes large and may go unbound. In order to tackle these 
problems, we propose a FSMC which uses sliding surface as 
input variable and requires neither function approximation nor 
singularity avoidance. 

 
3.1 One-dimension FSMC 

Fuzzy logic controller is employed to control the MR mount, 
in which the sliding surface s is used as the input variable. 
Designing procedures of the one-dimension FSMC are 
described in the following steps. 

 
Step 1: 

Select the sliding surface ees λ+=  to be the input variable 
of the one-dimension FSMC. 

 
Step 2: 
Define the linguistic variables and fuzzy partition for the input 

signal s . Here, we use five linguistic states iF 5,2,1( =i ): 

Negative Big (NB), Negative Medium (NM), Zero (ZE), 
Positive Medium (PM), and Positive Big (PB). The five 
linguistic states with corresponding Gaussian membership 
functions are shown in Fig. 2. The expression of Gaussian 
function is as follows 
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where 5,2,1=i ; m  is the mean value and σ  is the standard 

deviation. These parameters are given in Table I. 
 

 
Fig. 2 The membership functions of the input variable s 

 
 

TABLE. I 
THE PARAMETERS OF GAUSSIAN FUNCTIONS OF s  

s  NB  NM  ZE  PM  PB  

m  -0.2 -0.1 0 0.1 0.2 

σ  0.06 0.06 0.06 0.06 0.06 

 
Step 3: 
Construct the fuzzy control rules according to the Lyapunov 
stability criterion:  

 

Rule i : If s  is iF , Then u  is iθ          (14) 

 

iθ  is the output linguistic state, 5,2,1=i , which is chosen the 

same as those used for input variable s but with different 
membership functions. Here, fuzzy singleton is adopted as the 
membership functions of iθ  for quick fuzzy inference, whose 

nonzero membership value is listed in Table II. Therefore the 
fuzzy control system mentioned in Eq. (14) is in a simple form 
of the TSK fuzzy system [19]. As stated, one requires 

0≤= ssV  for closed loop stability. That is to say, s  and s  
should be in opposite signs for stability. From Eq. (8), it is 

clearly observed that sign of s  can be controlled by the term 
-Bu. Henceforth, the fuzzy control rules can be derived 
accordingly as shown in Table 2, where only 5 rules are needed. 
 
Step 4: 
The firing strength 

iω  of rule i is the grade of membership of s 

belonging to variable iF : 

 
)(sii μω =                                                  (15) 

 
The resulting discrete output signal composing effects of the 5 
control rules can be obtained by using the weighted sum as 
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Remark : 

From Eqs. (4) and (7), it is noted that the MR mount control 
force u is applied only when the following actuating condition 
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is met: 
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TABLE II 
THE DERIVED FUZZY CONTROL RULES 

iFs ∈  NB  NM  ZE  PM  PB  

iu θ∈  NB  NM  ZE  PM  PB  

value  510−  5105.0 x−  0  5105.0 x  510  

 
 
3.2 Two-dimension FSMC 

In this subsection, two-dimension FSMC is to be developed 
with an aim of giving more flexibility to the controller design. 
The design steps are given as follows: 

 
Step 1: 
Select the sliding surface and its derivative as the two inputs to 
the proposed two-dimension FSMC, namely s  and s . 

 
Step 2: 
Define linguistic variables and fuzzy partition for s . The five 
linguistic states 52,1, =iGi  are shown in Fig. 3, whereas 

parameters of the corresponding Gaussian membership 
functions are given in Table III. 

 

 
Fig. 3 The membership functions of s  

 
TABLE III 

THE PARAMETERS OF GAUSSIAN FUNCTIONS OF s  

s  NB  NM  ZE  PM  PB  

m  -7 -3 0 3 7 

σ  2 2 2 2 2 

 
 

Step 3: 
Construct the two-dimension fuzzy IF-THEN rules in 
following form: 

 

Rule:  IF s  is iF  and s  is iG , THEN u  is iθ       (18) 

 
We can derive the 25 fuzzy control rules using again the 

Lyapunov stability criterion: 
 

●If s  is negative and s  is negative, then u  is negative. From 

Eq. (8), if we select negative control output u  to increase s  
from negative to positive. Then the Lyapunov condition may be 
satisfied ( 0<= ssV ). 

●If s  is positive and s  is positive, then u  is positive. The 
arguments for this case are just the opposite to the above case. 

If we select positive control output u  to decrease s  from 
positive to negative. Then the Lyapunov condition can be 
satisfied ( 0<= ssV ). 

●If s  or s  is zero, then u  is zero. That is to say, 0== ssV  
at the moment, no control force is thus applied for the sake of 
conserving energy. 

● If signs of s  and s  are opposite, then the Lyapunov 
condition is satisfied. No control is needed at all. 

The resulting fuzzy control rules are given in Table IV. 
 

TABLE IV 
FUZZY CONTROL RULES OF THE TWO-DIMENSION FSMC 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Step 4: 

The firing strength iω  of rule i is computed by using 

Mamdani’s product rule as 
 

)()( ss GF
i μμω ⋅=                                 (19) 

 
The resulting discrete output signal can be obtained by using 

the weighted sum as 
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where this control force is applied only when the actuation 
condition of Eq. (17) is satisfied (namely, U and )( 2zy − has 

the same sign). 

IV. SIMULATION RESULTS 

The system and control parameters used in the simulation are 

ss /  NB  NM  ZE  PM  PB  

NB  NB  NM  ZE  ZE  ZE  

NM  NB  NM  ZE  ZE  ZE  

ZE  ZE  ZE  ZE  ZE  ZE  

PM  ZE  ZE  ZE  PM  PB  

PB  ZE  ZE  ZE  PM  PB  
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shown in Table V. The sinusoidal disturbance )(ty with single 

frequency between 1Hz~15Hz and amplitude at 1 mm  is 
employed as the base excitation. Numerical simulation is 
carried out by using Runge-Kutta order 4 solver with sampling 
rate at 1000Hz. Simulation results for vibration control are 
shown in Fig. 4. Good vibration attenuations are readily seen 
by the proposed controllers and are even better than the often 
used skyhook controller. Vibration amplitude reductions by the 
one- and two-dimension FSMC near resonant frequency are 
illustrated in Fig. 5. The system had also been studied using an 
adaptive sliding mode control (ASMC) by the Authors, where 
41 terms of Fourier orthogonal basis to approximate the 
uncertainty function ),( tzf  were adopted. Fig. 6 compares the 

vibration suppression capabilities of the proposed controllers 
with that of ASMC. Comparable performances for vibration 
attenuation among theses controllers are easily observed. 

 
TABLE V 

SYSTEM PARAMETERS 

Parameter Specification Value Unit 
m  load mass 60 kg  

b  rubber damping 610 mNs /  

A  flow area 0.0095 2m  
η  MR fluid viscosity 0.8 2/ mNs
h  gap of magnetic pole 0.01 m  

k  rubber stiffness 133240 mN /  

pA  piston area of upper chamber 0.009 2m  

1C  , 
2C  compliance of upper and lower 

chamber 
8103 −×≈ Nm /3

L  length of the magnetic pole 0.03 m  

W  magnetic pole width 0.09 m  

n  flow behavior index of 
Herschel-Bulkey model 

0.8  

λ  10  
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Fig. 4 Frequency responses for 1Hz~15Hz disturbance 

 

 
Fig. 5 Time responses of the proposed controllers (7 Hz). 
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Fig. 6 Comparison of frequency responses by different 

controllers 
 

V. CONCLUSION 

This paper proposed a fuzzy sliding mode control for an MR 
mount for vibration suppression. In section III, we have given a 
detailed derivation of the controller by combining the fuzzy 
logic control and sliding mode control. Fuzzy control rules are 
obtained by applying the Lyapunov stability theory. 
Information on system model concerning parameters and time 
varying functions, as well as the disturbances needs not be 
known for the developed controller. Good vibration controls 
are obtained from the results of numerical simulations in 
section IV. In addition, the proposed controller is easy to derive 
and implement, without using any function approximation 
technique and without bumping into singularity as required by 
the adaptive sliding mode controller. In the near future, the 
experiments for vibration suppression of an MR mount will be 
carried out to validate the effectiveness of the proposed FSMC. 
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