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Fuzzy rules emulated network adaptive controller
with unfixed learning rate for a class of unknown

discrete-time nonlinear systems
Chidentree Treesatayapun

Abstract—A direct adaptive controller for a class of unknown non-
linear discrete-time systems is presented in this article. The proposed
controller is constructed by fuzzy rules emulated network (FREN).
With its simple structure, the human knowledge about the plant is
transferred to be if-then rules for setting the network. These adjustable
parameters inside FREN are tuned by the learning mechanism with
time varying step size or learning rate. The variation of learning rate
is introduced by main theorem to improve the system performance
and stabilization. Furthermore, the boundary of adjustable parameters
is guaranteed through the on-line learning and membership functions
properties. The validation of the theoretical findings is represented
by some illustrated examples.

Keywords—Neuro-Fuzzy, learning algorithm, nonlinear discrete-
time.

I. INTRODUCTION

Adaptive controllers for a class of nonlinear discrete-
time have been received more efforts recently. Under the
assumption that only linear parameters are all unknown, the
successful adaptive schemes have been introduced in [1] and
its companion article [2]. Recently, with some applications of
artificial neural networks, the nonlinearities have been assumed
to be unknown. In the case of indirect adaptive controllers,
neural networks have been implemented as nonlinear system
identifications to support control algorithms for the unknown
constrains and plants. The linearization feedback controller
has been developed in [3] for unknown nonlinear discrete-time
systems. The control algorithm has been constructed by neural
networks linearization models. Thus the system performance
and the stability analysis have been related to the models
accuracy. To ensure the system performance, in the case of
NN controllers, the adaptation algorithm with a robust term has
been attempted in [4]. This controller has been designed for
systems which have output linear with the control effort. The
stabilized tracking control based on NN has been introduced
in [5]. Only unknown nonlinearities have been assumed to be
unknown thus high-order neural networks have been employed
to approximate.

In the adaptation, small learning rates or step sizes are
often used in gradient search methods because of the system
stability [6]. On the other hand, the small step size can slow
down the reaching solution. Usually, these learning rates are
all fixed as the suitable constants which can be obtained by
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some algorithms such as [7] for adaptive controllers based on
neural networks.

In this article, however, a direct adaptive controller for a
class of unknown nonlinear discrete-time systems is devel-
oped with the associate of the fuzzy rule emulated network
or FREN. The initialization of parameters and if-then rules
is given by human knowledge of controlled plants. Those
parameters are automatically adjusted by an on-line learning
mechanism. The time-varying learning is determined by the
main theorem to guarantee the closed-loop system perfor-
mance. Illustration examples are utilized to represent the
system validation.

II. CONTROL ALGORITHM

A. System configuration

In this work, we consider the system formulation which can
be written in the format as

(1)

when denotes the output, is the controller effort and

. These nonlinear functions and are assumed
to be unknown. For the convergence and stability analysis, the
function the upper limit should be determined or possible
for estimation. The control signal is directly generated
my FREN with this formulation

(2)

when is adjustable parameter vector defined by
and is basis function vector for

FREN fuzzy mechanism or
where denotes as the number of fuzzy rules.

��������	

�����


���	����	
������


����� ������
����

� ����

�

�����

����

�����
���������
� ��!���
����"# $��%������

�	

Fig. 1. System configuration.

Fig. 1 illustrates the system configuration. The controller
unit is designed to generate the control effort that forces the



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1470

system output to track the desired trajectory . It is clear
that the knowledge about controlled plant is directly integrated
to the adaptive controller FREN by if-then rules format. In
this work, only on-line leaning mechanism is applied with
the associate of an estimated variable call which will be
discussed next.

B. Parameters adaptation

To update the parameter for , the gradient
descent technique is implemented with time varying step size
or learning rate. Let us define the cost function at time
index as

(3)

where

(4)

The tunable parameter can be obtained in the next time
index by

(5)

when is a time varying learning rate which will be
discussed next for system stability and convergence. Apply
the chain rule through (3), (4) and (2), we obtain

(6)

Thus, the tuning law can be rewritten as

(7)

where denotes . Let us consider the system
formulation in (1), clearly, we have

(8)

As we mentioned in the previous, in this work,
is assumed to be unknown but the tuning law needs this
information to adjust the parameter. To overcome this prob-
lem, we need to design the new adaptation law which will
be represented in the next subsection with the convergence
analysis.

C. Convergence and stability analysis

The key of this work is to determine the learning rate
for every tunable parameter for every time index .

Substitute the control effort given by (2) into the system
formulation (1), we have

(9)

Thus, the next time step error can be rewritten as

(10)

where and denote for and , respec-
tively. Substitute (10) into (7), the adaptation equation can be
obtained as

(11)

With this result, let us select learning be

(12)

when is the upper bound of and is the
designed parameter. Consider (12), thus only the upper bound
of is needed to be known and the convergence of the
tunable parameters can be demonstrated with the following
lemma.

Lemma: The convergence of tunable parameters
With the system given by (1), let the control effort generated
by (2) and the adjustable parameters be tuned by (7). If the
learning rate is given by (12) where and is
the upper bound of then the convergence of adjustable
parameters is guaranteed.
Proof Substitute (12) into (7) and associate (1) for the next
time index error (10), we have

(13)

where and
. By setting the designed parameter as the

above, is always lest than 1 .

The previous lemma shows about the convergence of the
adjustable parameters but the system stability dose not discuss
yet. The convergence of closed-loop systems will be intro-
duced by this following theorem.

Theorem: System stability(Closed loop system conver-
gence)
Let the desired trajectory be bounded and the upper
bound of be known as . Determine the control effort

by (2) and tune parameters by (7) with the varying
learning rate given by (12) when . Then the tracking
error defined by (4) is bounded for the nonlinear system
given by (1).

Proof Let define the Lyapunov function candidate as

(14)
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thus the change of Lyapunov function can be given as

(15)

Let consider the next time index error can be written by

(16)

where can be estimated by

(17)

when . To simplify,
we obtain

(18)

From the tuning law obtained by (11), the change of
adjustable parameters can be rewritten as

(19)

Substitute (19) into (18), we have

(20)

By using (16), we can rearrange (20) as

(21)

Substitute (21) into (15), we obtain

(22)

With the learning rate give by (12), the change of Lyapunov
function candidate can be rearranged by

(23)

The validation of the proposed controller and our claim
about the closed-loop performance will be presented by sim-
ulation systems in the next section.
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Fig. 2. Membership function for .

III. ILLUSTRATED EXAMPLES

A. Controller design

The nonlinear discrete-time system which is selected to
demonstrate the performance is described as

(24)

when denotes the output and stands for the control
effort. The controller receives the error signal defined by (4)
and generates the control effort to track the desired
trajectory given by

(25)

For generality, the range of error should be designed to be
and the membership functions are all given to cover this range
as described in Fig. 2.

The next step is to define IF-THEN rules set which is
suitable for this system. Consider to the fact that if the error
signal is so large in the positive side then the system output
should be increased to compensate this error. At the sense
of human, the controller should give more the control effort
to the plant. With this knowledge, the IF-THEN rule can be
constructed as the followings:

If is PL Then ,
If is PS Then ,
If is Z Then ,
If is NS Then ,
If is NL Then ,

when N, Z and P denote “negative”, “zero” and “positive”
linguistic levels respectively, L stands for “large” and S intends
for “small”. These adjustable parameters will be discussed
next to follow those initial methods.

B. Human based initialization

Based on the knowledge of system, the control effort has
a suitable range that is . At the first IF-THEN rule, the
“PL” for should be the larger value at the positive side.
On the other hand, those remaining parameters can be given
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Fig. 3. :Human Initial setting.
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Fig. 4. :Human Initial setting.

as the same sense. Thus, for this initial setting, all parameters
are defined by this following list:

Parameter Value

1,
0.5,
0,

-0.5,
-1.

Let us define , the time variation of
is illustrated in Fig. 3. In Fig. 4, it is clearly attained

that the learning rate is varied by following the proposed
algorithm. The tracking result is displayed in Fig. 5. Because
of the initial setting based on the best knowledge of system,
we can obtain the good result at the fist running state.

The effects of initial setting and the performance of the
learning algorithm will be discussed in next subsections.

C. Zero initial setting

In this case, all parameters are given to be “zero”
at the initial setting. With the parameter adaptation, Fig. 6
displays the time variation of along the simulation.
The learning rate can be shown in Fig. 7. Fig. 8 represents
the tracking performance. It is clear that the learning algorithm
can provide the better results at the final state with “zero”
initial setting.
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Fig. 5. :Human Initial setting.
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Fig. 6. :Zero Initial setting.

D. Random initial setting

The initial setting of those parameters is given by random
values with in and normal distribution. The colored track-
ing result is occurred at the beginning as depicted in Fig. 11.
At the final state, we can obtain the satisfied result because
of the on-line learning process. Fig. 9 and 10 show the time
varying of and , respectively.
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Fig. 7. :Zero Initial setting.
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Fig. 8. :Zero Initial setting.

0 50 100 150 200 250 300 350 400 450 500
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

||β
(k

)||

Time index: k

Fig. 9. :Random Initial setting.

IV. CONCLUSION

In this article, we have developed a direct adaptive controller
for discrete-time nonlinear systems. These adjustable parame-
ters inside an adaptive network called FREN are automatically
tuned by an on-line algorithm. The step size of learning
rate is determined on-line to guarantee the system stability.
This proposed algorithm can be implemented even the plant
mathematic model is unknown. With the simulation example,
only the estimated is needed to operate the controller. An
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Fig. 10. :Random Initial setting.
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Fig. 11. :Random Initial setting.

advantage point of FREN is the integrated human knowledge
through IF-THEN rules. The initial setting for membership
functions and adjustable parameters can be designed by that
knowledge. The simulation results confirm our claim with
human sense setting as the better tracking performance than
“zero” and “random” settings.

Eventually, if the good initial setting can not be contributed
by the designer then the satisfied tracking results can be
obtained by the on-line learning algorithm at the last state.
Not only the tracking performance is guaranteed but also the
convergence of adjustable parameters is verified by lemma and
time variations of .
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