
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:2, 2019

50

Functional and Efficient Query Interpreters:
Principle, Application and Performances’

Comparison
Laurent Thiry, Michel Hassenforder

Abstract—This paper presents a general approach to implement
efficient queries’ interpreters in a functional programming language.
Indeed, most of the standard tools actually available use an imperative
and/or object-oriented language for the implementation (e.g. Java for
Jena-Fuseki) but other paradigms are possible with, maybe, better
performances. To proceed, the paper first explains how to model
data structures and queries in a functional point of view. Then, it
proposes a general methodology to get performances (i.e. number of
computation steps to answer a query) then it explains how to integrate
some optimization techniques (short-cut fusion and, more important,
data transformations). It then compares the functional server proposed
to a standard tool (Fuseki) demonstrating that the first one can be
twice to ten times faster to answer queries.

Keywords—Data transformation, functional programming,
information server, optimization.

I. INTRODUCTION

THE availability of a growing number of structured

information requires dedicated tools to query, in an

efficient manner, a specific information. If standards exist

to describe information (e.g. knowledge models/graphs,

ontologies, etc.) or queries (SPARQL and DL languages in

particular), and if some tools are proposed to deal with these

elements (e.g. triple stores such as Jena-Fuseki), there is no

real formalism to describe both the behavior and performances

of these tools. To solve this limitation, the article explains how

to use functional paradigm to formalize both the syntax and

the semantic of the languages used to specify information’s

structure and queries. From this, it extends this formalization

to integrate performances’ calculation and uses it to make

optimizations. Finally, it presents an implementation of the

concepts introduced to get a functional server and shows,

by the way of a concrete example (Wikipedia pages’ links),

how this one can be 10 times faster than existing tools (e.g.

Fuseki). More precisely, the main elements presented consist

in: 1) a datatype language d usable to describe various data

organizations (e.g. tables, maps, graphs, etc.) and a query

language q, 2) a semantic function e : d × q → r to evaluate

queries, 3) a methodology to integrate performances in the

model oe : d × q → N, 4) a set of possible transformations

t : d → d′ that are optimizations - formally: oe′(t(d), q) ≤
oe(d, q). These elements are implemented into the functional

programming language Haskell and can be compiled to get

M. Hassenforder is with the IRIMAS Lab., 12, rue des frères Lumière,
68093 Mulhouse, France.

L. Thiry is with the IRIMAS Lab., 12, rue des frères Lumière, 68093
Mulhouse, France (e-mail: laurent.thiry@uha.fr).

a concrete tool (executable) to start an information server or

send it queries. Most of the code is presented in the article

to: 1) show how functional paradigm leads to simple code

(to be compared with existing tools such as Fuseki that has

25Mo of code, for instance), 2) be precise as much as possible

- functional code being very close to mathematical model,

and 3) help the reader to see the rigor used to get the results

presented (e.g. performances calculation).
This document is divided in five sections. Section II

gives an overview of the elements related to the work

presented and helps to understand its interest. Section III

introduces the fundamental elements required to understand

the elements proposed. More precisely, it introduces some

important concepts from functional programming, and how

it helps to specify simply datatypes and data transformations

(required for optimizations). Then, it proposes an approach

to measure performances of a functional program (to count

computation steps). Section IV then proposes an interpreter

for a subset of the attributive language AL. It also studies

its performances and detailed possible improvements - what

illustrates how data transformations can lead to optimized

programs. Section V uses a concrete example (Wikipedia

links) to study the performances of the server proposes and

compare them with a standard triple store (Fuseki). Section

VI summarizes the main elements presented and gives an

overview of the perspectives considered.

II. RELATED WORKS

It is a well-known fact that the data structures used by a

program has a direct impact on its performances, i.e. memory

usage or time consumption, as explained in [1]. For instance,

the search of an element in a list as a complexity O(n),
where n is the number of elements, while the search in a

(balanced) binary tree as a O(log(n)) complexity. Next, if

imperative and object-oriented programming languages are

the most used languages in an industrial context, functional

languages keep having many interest as explained in [2] (e.g.

shorter code by using generic and higher-order functions such

as map, filter, etc. - these ones are used again in this paper).

As a complement, a study of data structures and functional

programs’ performances can be found in [3], and [4] shows

how a modern functional programming language such as

Haskell (the language considered in this paper) can also leads

to industrial applications.
In the particular context of Semantic Web, whose a general

presentation can be found in [5], tools proposed are mainly

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:2, 2019

51

presented by the way of their usage or architecture (e.g.

classes) but not really by the way of their behavior and

performances. The most complete presentations can be found

in [6]-[8] or [9]. Our previous works have tried to solve this

lacks with in particular [10] that presents, in a detailed manner,

a knowledge management platform integrating a triple store,

a query interpreter, an inference system and a web browser

to navigate within or manage a knowledge model. A more

recent work is given by [11] that studies the performances of

the preceding system and studies possible optimizations based

on data transformations. This paper then synthesizes the results

obtained with an extension to a subset of Description Logic

[12].

III. BACKGROUND

This part gives an illustrated presentation of fundamental

concepts used in functional programming (and the paper) and

detailed the process proposed to get the performances of the

programs.

A. Functional Descriptions

1) Illustrated Presentation: Functional paradigm uses

functions such as s : N → N , and constants - e.g. z : N , to

describe ”things”. In particular, the preceding examples define

a set N = {z, s(z), ..., sn(z), ...} corresponding here to the

Peano representation of natural numbers N. Operators on this

set are then defined by using functions and rewriting rules

such as: e1 : p(z,m) = z and e2 : p(s(n),m) = s(p(n,m)).
These rules correspond to the addition, and one can check that

p(s2(z), s1(z)) = s3(z) by applying e2 twice then e1. Now,

the expressions defining N can formalized by the way of a

grammar:

<N> := z | s(<N>)

Or by using a datatype definition in any (functional)

programming language. The code below then gives an

implementation of (N, p) in the Haskell programming

language.

data N = Z | S(N)

p(Z,m) = m
p(S(n),m) = S(p(n,m))

2) Data Collections: As another example, lists of N can be

specified by a constant for the empty list e : LN , and a function

to add a value to a list a : N×LN → LN . Thus, an expression

such as a(n1, a(n2, e)) will be interpreted as a list [n1, n2].
The catenation operator is then defined in a similar manner

of the plus operator on numbers with: p1 : pl(e, l′) = l′ and

p2 : pl(a(x, l), l′) = a(x, pl(l, l′)). One can then check for

instance that pl([1, 2], [3]) = [1, 2, 3] by applying p2 twice

then p1.

Lists can be generalized by using a parameterized datatype

L(x) where x is a type variable replacing N in the previous

definition (and thus LN = L(N)). Some generic functions,

used in the rest of the document, can then be defined to:

concatenate a list of lists (cat), apply a function to all the

elements of a list (map(f)), select the elements satisfying

a predicate (filter(p)), etc. The implementation of these

functions in Haskell are given below.

data L x = E | A (x,L x)

pl(E ,l’) = l’
pl(A(x,l),l’) = A(x,r)
where r = pl(l,l’)

cat(E) = E
cat(A(x,l)) = pl(x,r)
where r = cat(l)

map(f,E) = E
map(f,A(x,l)) = A(f(x),r)
where r = map(f,l)

filter(p,l) = r’
where f(x) = if (p(x)) then A(x,E) else E

r = map(f,l)
r’ = cat(r)

B. Performance Measurement & Optimizations

1) Principle: The performance of a functional program

depends on the number of computation steps to get a result.

To get this value, we propose to add an extra result to the

functions as illustrated below, e.g. pl : L(x) × L(x) → L(x)
is transformed into opl : L(x) × L(x) → L(x) × N. All the

functions are prefixed by ”o” (to show that they embedded the

complexity O) and are constructed in a systematic manner on:

taking the original functions, replacing results ri by (ri, ni),
and summing the various performances Σini when functions

are composed.

opl(E ,l’) = (l’,0)
opl(A(x,l),l’) = (A(x,r),n+1)
where (r,n) = opl(l,l’)

ocat(E) = (E,0)
ocat(A(x,l)) = (r’,n+n’)
where (r,n) = ocat(l)

(r’,n’) = opl(x,r)

omap(f,E) = (E,0)
omap(f,A(x,l)) = (A(r’,r),n+n’)
where (r,n) = omap(f,l)

(r’,n’) = f(x)

ofilter(p,l) = cat(map(f,l))
where f(x) = if (r) then (A(x,E),n+1) else (E,n+1)

where (r,n) = p(x)
(r,n) = omap(f,l)

Thus, performance measurement is now possible. For

instance, opl([1, 2], [3]) = ([1, 2, 3], 2) - more generally

opl(l, l′) = (pl(l, l′), n) where n is the length of l (what is

also written ”pl is O(n)”). Or again, ofilter(odd, [1..10]) =
([1, 3, 5, 7, 9], 25).

2) Sample Optimization: Optimizations consist

in transforming code to reduce the number of

computation steps. For instance, the code below

proposes another realization of the filter function, and

ofilter′(odd, [1..10]) = ([1, 3, 5, 7, 9], 10) what requires half

of the computations ! The change realized is based on a

well-known ”short-cut fusion” [13] and consists simply in

eliminating intermediate functions (here, cat and map) by

using their definition. Other examples of this principle will

be detailed in the rest of the document.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:2, 2019

52

ofilter’(p,E) = (E,0)
ofilter’(p,A(x,l)) = if (r) then (A(x,r’),n+n’)

else (r’,n+n’)
where (r,n) = p(x)

(r’,n’) = ofilter’(p,l)

IV. INFORMATION SERVER

This part proposes: 1) an interpreter for a query language

using a particular data structure (table), 2) a quick data

transformation that leads to 3) an optimized interpreter using

another data structure (map).

A. Presentation

An information server is mainly defined by a set of data d,

queries on this one q, and an evaluator e for these queries, i.e.

e : d× q → r where r represent the set of results.

1) Syntax & Semantic: Datatypes d can be simple values

d0, records d×d, or lists L(d). Some examples are d1 = L(x×
t) and d2 = L(t × L(x)), and the code below gives sample

values for these types. The first value v1 can be interpreted as

the table represented in Fig. 1, and v2 as another representation

of the same information similar to a map t → L(x) - this point

is detailed later in the document.

v1 = [("x1","T1"),("x2","T1"),("x3","T1")
,("x2","T2"),("x4","T2")]

v2 = [("T1",["x1","x2","x3"]),("T2",["x2","x4"])]

Value Tag

x1 T1

... ...

x4 T2

Fig. 1 Sample data (v1)

By considering the example illustrated in Fig. 1, sample

queries q can consist in finding the values having a particular

tag q0, values having two tags q ∧ q′, or values not having

a specific tag ¬q - what corresponds to a subset of class

expressions found in Description Logic (DL).

A semantic function for this language is then simply defined

as follow:

e1(v1,q0) =map(\(x,y)->x,filter(\(x,y)->y==q0,d1))
e1(v1,q1/\q2)=inter(e1(v1,q1),e1(v1,q2))
...

In the code, an expression such as λx → e corresponds

to a anonymous function f(x) = e, and the function inter
returns the common elements of two lists (similar to set’s

intersections).

2) Performances: The principle introduced in Section

III-B1 is now applied to get the performance of the

implementation (see code below). The function elem that tests

the presence of an element into a list is introduced to define

the function intersection.

oelem(x,[]) = (False,1)
oelem(x,y:z) = let (r,n)=oelem(x,z) in
if (x==y) then (True,1) else (r,n+1)

ointer(x,y) = ofilter(\z->oelem(z,y),x)

oe1(v1,q0)=let (r,n) = ofilter(\(x,y)->(y==q0,1),v1)
(r’,n’)= omap(\(x,y)->(x,1),r)

in (r’,n+n’)
oe1(v1,q1/\q2) = let (r,n) = oe1(v1,q1)

(r’,n’) = oe1(v1,q2)
(r’’,n’’)= ointer(r,r’)

in (r’’,n+n’+n’’)

As an illustration, oe1(v1, T1 ∧ T2) = ([x2], 27).

B. Optimization

1) New Data Structure & Semantic: A well-known

optimization technique is ”caching” that consists in

memorizing the result of a query. With the elements

presented, this technique can be viewed as a datatype’s

transformation to:

v2 = [(T1, [x1, x2, x3]), (T2, [x2, x4])].
This change implies a new semantic function that can be

defined as follow:

e2(v2,q0) =
head(map(\(x,y)->y,filter(\(x,y)->x==q0,v2)))

e2(v2,q1/\q2)=inter(e2(v2,q1),e2(v2,q2))
...

2) New Performances: The performance is obtained with

the same principles already used, and the code:

oe2(v2,q0)=let (r,n) =ofilter(\(x,y)->(x==q0,1),v2)
(r’,n’)=omap(\(x,y)->(y,1),r)

in (head(r’),n+n’+1)
oe2(v2,q1/\q2) = let (r,n) = oe2(v2,q1)

(r’,n’) = oe2(v2,q2)
(r’’,n’’)= ointer(r,r’)

in (r’’,n+n’+n’’)

As an illustration, oe2(v2, T1 ∧ T2) = ([x2], 13) with a

difference of 12 computations (twice faster) from the original

implementation. The reasons can be: 1) the use of the head
function returning the first element of a list that eliminates

extra computations (on the tail of the list), and 2) the length

of the list analyzed (i.e. number of tags rather than (value,tag)

pairs).

3) (Optimized) Data Transformation: The transformation

t21 : d2 → d1 can be defined by:

t21(v2) = concat(map(\(x,y)->map(\z->(z,x),y),v2))

ot21(v2) = let off(x,y) = omap(\z->((z,x),1),y)
(r,n) = omap(off,v2)
(r’,n’) = ocat(r)

in (r’,n+n’)

An interesting point here is the possibility to use the

”short-cut fusion” principle mentioned before to define a

equivalent function:

t21’([]) = []
t21’((x,[]):xs) = t21’(xs)
t21’((x,(y:ys)):xs) = (y,x):t21’((x,ys):xs)

ot21’([]) = ([],1)
ot21’((x,[]):xs) = let (r,n)=ot21’(xs) in (r,n+1)
ot21’((x,(y:ys)):xs) = let (r,n)=ot21’((x,ys):xs)
in ((y,x):r,n+1)

A comparison of the performances gives: ot21(v2) =
(v1, 16) and ot′21(v2) = (v1, 8) what shows that the new

version of the transformation is twice faster than the first one.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:2, 2019

53

V. REAL-WORLD APPLICATION & COMPARISON

As a sample application, we have used a dataset representing

the Wikipedia pages’ links of the web site, and available at:

snap.stanford.edu/data/wikispeedia.html. The data

is store in a tsv file (with size 3Mo) and consists in 119882

links between 4600 pages.

A. IO & Servers

In the application, the data is first parsed, transformed

into a list of records (d1), then serialized in a file V1.txt -

see the createV 1 function given in Appendix VI-A. Next, a

command line utility as been defined (see the main function

in the appendix) to load the file, read a query, and print the

result. The source is then compiled by using the Glasgow

Haskell Compiler (ghc) in a command called ”query”. Two

sample queries have been considered with: a simple one,

q1 = Apollo 11, to get the pages pointing to ”Apollo 11”,

and a complex one to get the pages pointing both to two given

pages, q2 = Moon ∧ Florida.

The tool is then used to get the answer of these queries -

this, with the Linux ”time” command to get the duration of

the evaluation function, as follow:

> time(./query "Q0 \"Apollo_11\"")
([...,"Wernher_von_Braun"],119901)
real 0m1,755s

> time(./query "And (Q0 \"Moon\") (Q0 \"Florida\")")
(["Apollo_11",...,"George_W._Bush"],260214)
real 0m1,800s

Next, the command line utility has been transformed into a

service by using the code given in Appendix VI-B. Thus, the

data is now loaded in memory what eliminates the file reading

from the preceding examples. The code below then presents

the usage of the new utility: the first line starts the server on

a port, and the second one send query to the server.

./query server1 9000 &

time(./query query localhost 9000 "Q0 \"Apollo_11\"")
real 0m0,060s

time(./query query localhost 9000
"And (Q0 \"Moon\") (Q0 \"Florida\")")

real 0m0,111s

The code has then be adapted to use the optimized

interpreter (oe2) and has given the following performances:

q1
real 0m0,928s (in file storage)
real 0m0,007s (in-memory/server)

q2
real 0m0,903s (in file storage)
real 0m0,015s (in-memory/server)

B. Triples & Fuseki

Finally, the dataset has been: 1) transformed into a list of

triples (N-Triples notation), and 2) loaded into the Fuseki

server. The command line utilities proposed with the server

distribution have then been used as follow to get performances:

time (./s-query --service="localhost:3030/wiki/query"

"SELECT ?x WHERE { ?x <o:linkto> <o:Apollo_11> . }")
real 0m0,100s

time (./s-query --service="localhost:3030/wiki/query"
"SELECT ?x WHERE { ?x <o:linkto> <o:Moon> .

?x <o:linkto> <o:Florida> . }")
real 0m0,107s

C. Synthesis

Fig. 2 summarizes the various performances obtained for

the standard triples’s store Fuseki, and the server proposed in

its initial version (e1) and its optimized one (e2) - this for a

simple query (q1) and a more complex one (q2).

Server q1 q2
e1 0,060 0,111

e2 0,007 0,015

Fuseki 0,100 0,107

Fig. 2 Global performances (s)

Thus, the original/functional version of the server and

Fuseki have similar performances for complex queries, while

the optimized version is 10x faster.

VI. CONCLUSION

This paper has illustrated how functional concepts can

be used to organize or transform information, and query a

specific element in an efficient manner. Queries are expressed

with a subset of DL language and two semantic functions

are proposed depending on how data are structured. Then,

performances measurement and comparison show that a simple

interpreter for the language can be dramatically improved

(twice to ten time faster) by using data transformations.

Most of the concepts are implemented in the functional

programming language Haskell, and the total code of the

resulting server is approximatively 5.3Ko - what can be

compared to more standard tools such as Fuseki, for instance,

that has 25Mo. Sure, this later offers more functionalities but

can be more difficult to manage and optimize. As another

comparison, the paper has shown that this tool is globally ten

times slower than the server proposed (Fig. 2).

The main perspectives considered now will consist in 1)

looking for other possible optimization (e.g. splitted data and

concurrent computations), and 2) extending the query language

with other constructs. Indeed, if the language is actually

more general than the one presented (e.g. expressions such

as ∃hasTag {Ti} are possible but have not been detailed for

clarity reasons), it is not a full DL language.

APPENDIX

A. Command Line Utility
main = do
[q] <- getArgs
f <- readFile "v1.txt"
let v1 = read f :: [(String,String)]
let q_ = read q :: Q
let r1 = oe1(v1,q_{})
print r1

createV1 = do

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:2, 2019

54

f <- readFile "Wikipedia.tsv"
let r = splitOn "\n" f
let r2= map (splitOn "\t") r
let r3= map (\[x,y]->(x,y)) r2
writeFile "d1.txt" (show r3)

B. Information Server
main = do
xs <- getArgs
case xs of
["server1",p] -> service1 (read p)
["server2",p] -> service2 (read p)
["query" ,h,p,q] -> transmit h (read p) q

service1 :: PortNumber -> IO ()
service1 port = withSocketsDo $ do
f <- readFile "d1.txt"
let d1 = read f :: [(String,String)]
sock <- listenOn $ PortNumber port
servicebody1 sock d1

servicebody1 sock d1 =
forever $ do
(handle, host, port) <- accept sock
t <- hIsEOF handle
if t then return ()
else
do
q2’ <- hGetLine handle
let q2 = read q2’ :: Q
let r1 = oe1(d1,q2)
hPutStrLn handle (show r1)
hFlush handle
hClose handle

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. Ullman, Data Structures and
Algorithms, 1st ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1983.

[2] J. Hughes, “Research topics in functional programming,” D. A. Turner,
Ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1990, ch. Why Functional Programming Matters, pp. 17–42.

[3] C. Okasaki, Purely Functional Data Structures. New York, NY, USA:
Cambridge University Press, 1998.

[4] B. O’Sullivan, J. Goerzen, and D. Stewart, Real World Haskell, 1st ed.
O’Reilly Media, Inc., 2008.

[5] P. Hitzler, M. Krtzsch, and S. Rudolph, Foundations of Semantic Web
Technologies, 1st ed. Chapman & Hall/CRC, 2009.

[6] O. Cur and G. Blin, RDF Database Systems: Triples Storage and
SPARQL Query Processing, 1st ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2014.

[7] M. Martin, J. Unbehauen, and S. Auer, “Improving the Performance
of Semantic Web Applications with SPARQL Query Caching,” in
Proceedings of 7th Extended Semantic Web Conference (ESWC 2010),
30 May – 3 June 2010, Heraklion, Crete, Greece, ser. Lecture Notes in
Computer Science, L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije,
H. Stuckenschmidt, L. Cabral, and T. Tudorache, Eds., vol. 6089. Berlin
/ Heidelberg: Springer, 2010, pp. 304–318.

[8] R. Verborgh, O. Hartig, B. De Meester, G. Haesendonck, L. De Vocht,
M. Vander Sande, R. Cyganiak, P. Colpaert, E. Mannens, and R. Van de
Walle, “Querying datasets on the Web with high availability,” in
Proceedings of the 13th International Semantic Web Conference, ser.
Lecture Notes in Computer Science, P. Mika, T. Tudorache, A. Bernstein,
C. Welty, C. Knoblock, D. Vrandei, P. Groth, N. Noy, K. Janowicz, and
C. Goble, Eds., vol. 8796. Springer, 2014, pp. 180–196.

[9] A. Hogan, A. Harth, J. Umrich, S. Kinsella, A. Polleres, and S. Decker,
“Searching and browsing linked data with swse: the semantic web search
engine,” Web Semantics: Science, Services and Agents on the World Wide
Web, vol. 9, no. 4, 2011.

[10] L. Thiry, M. Mahfoudh, and M. Hassenforder, “A functional inference
system for the web,” IJWA, vol. 6, no. 1, pp. 1–13, 2014.

[11] L. Thiry, H. Zhao, and M. Hassenforder, “Categories for (big) data
models and optimization,” Journal of Big Data, vol. 5, no. 1, p. 21,
Jul 2018.

[12] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and
P. F. Patel-Schneider, The Description Logic Handbook: Theory,
Implementation and Applications, 2nd ed. New York, NY, USA:
Cambridge University Press, 2010.

[13] A. Takano and E. Meijer, “Shortcut deforestation in calculational form,”
in Proceedings of the Seventh International Conference on Functional
Programming Languages and Computer Architecture, ser. FPCA ’95.
New York, NY, USA: ACM, 1995, pp. 306–313.

Laurent Thiry is Professor of Computer Science at University of Mulhouse
(France). His main research interests are Software and Model-Driven
Engineering, Formal Methods and Functional Programming for complex
software, He has published several research articles in peer-reviewed
international journals and conferences, and has served several conferences
as a program chair, on these topics. The elements proposed result mainly
from its participation to various international, european or national projects.
Dr Laurent Thiry is the corresponding author and can be contacted at:
laurent.thiry@uha.fr.

Michel Hassenforder is Full Professor of Computer Science at University
of Mulhouse (France). His research interests are Software Engineering,
Information Systems and Programming Languages. He has published several
research articles in peer-reviewed international journals and conferences, and
has participated to many international, european or national projects, on these
topics. Michel Hassenforder can be contacted at: michel.hassenforder@uha.fr.

