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Abstract—A frictionless contact problem for a two-layer 

orthotropic elastic medium loaded through a rigid flat stamp is 
considered. It is assumed that tensile tractions are not allowed and 
only compressive tractions can be transmitted across the interface. In 
the solution, effect of gravity is taken into consideration. If the 
external load on the rigid stamp is less than or equal to a critical 
value, continuous contact between the layers is maintained. The 
problem is expressed in terms of a singular integral equation by using 
the theory of elasticity and the Fourier transforms. Numerical results 
for initial separation point, critical separation load and contact stress 
distribution are presented.  

 
Keywords—Frictionless contact, Initial separation, Orthotropic 

material, Singular integral equation. 

I. INTRODUCTION 
ONTACT problems for an elastic layer resting on a 
foundation which may be either elastic [1-8] or rigid [9-

11] have been extensively studied by several authors because 
of their possible application to a variety of structures of 
practical interest. In addition, there are few studies on the 
contact problem for layered composites consisting of two or 
more elastic layers with different heights and material 
constants [12-13]. Some authors studied the contact problems 
for a single layer or a layered medium resting on supports [13-
16]. 

In most of the previous studies, isotropic material properties 
were used. In recent years, the use of composites in many 
engineering structures is increased rapidly. Modern 
composites are preferred increasingly in point of some 
properties such as strength, lightness, etc. So, this has brought 
up the need for more extensive analyses of anisotropic 
materials and has prompted the solution to many problems 
involving various composite geometries. 

In this study, frictionless contact problem for a layered 
medium consisting of two orthotropic elastic layers is 
considered. The medium is loaded by a concentrated force 
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through a rigid flat stamp. It is assumed that tensile tractions 
are not allowed and only compressive tractions can be 
transmitted across the interfaces. In the solution, the effect of 
gravity is taken into account. If the external load on the rigid 
stamp is less than or equal to a critical value, continuous 
contact between the layers is maintained. The problem is 
reduced to a singular integral equation. Numerical results for 
initial separation point, critical separation load and contact 
stress are presented by depending on material properties. 

II. FORMULATION OF THE PROBLEM 
Consider a layered elastic medium which consists of two 

orthotropic elastic layers with heights 1h  and 2h  as seen in 
Fig. 1. The layered medium is loaded by a concentrated force 
P on its top surface by means of a rigid flat stamp width of 
which is 2a. Also, the medium is perfectly bonded to a rigid 
plane at its bottom surface. It is assumed that the contact is 
frictionless and no tensile tractions are allowed at interfaces. 
In the solution, the effect of gravity is taken into account. If 
magnitude of the external load exceeds a critical value, a 
separation will occur in a finite region at interface between the 
layers. Separation is avoided in most of engineering 
applications, especially in Geotechnics and foundation 
engineering. Thus, determination of initial separation point 
and corresponding critical load value which causes initial 
separation is a very important problem.   

 

 

 

 

 

 

 

 

 

Fig. 1 Geometry of the continuous contact problem 
 

In plane elasticity, governing equations for an orthotropic 
elastic layer can be written as follows. 
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where ),( yxuu =  and ),( yxvv =  represent displacement 
components in x and y- directions, respectively. xyG , ρ  and 
g  are shear modulus in xy- plane, mass density and 
gravitational acceleration, respectively. Material constants 1β , 

2β  and 3β  shown in (1) are defined as 
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where xE  and yE  represent Young’s moduli in x and y- 

directions, respectively. xyν  and yxν   are Poisson’s ratios. 

Among these elastic constants, xyyyxx EE νν =  relationship is 
satisfied.  

One can write the stress-displacement relationships for an 
orthotropic elastic layer as follows.  
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Let us assume that solutions for u and v are as follows.  
)(),(0 xuyxuu p+= ,     )(),(0 yvyxvv p+= ,        (4) 

where subscripts 0 and p represent homogeneous and 
particular solutions of (1), respectively.  

For a single layer with height h under the effect of its own 
weight, particular solutions to (1) corresponding to the non-
homogeneous term gρ  may be obtained as  
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Substituting (5) into (3b), one may readily obtain the 
particular solution for the stress component, yσ , as follows. 

)( hygyp +−= ρσ .                              (6) 
In order to obtain the homogeneous solutions of (1) for u 

and v, the displacements and stresses may be assumed as the 
Fourier transforms of unknown functions such as 
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Inverse transforms of (7) are 
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In (7) and (8), ξ  represents transform variable.   
Application of (7a) to (1) by neglecting body forces and 

solution of the resulting ordinary differential equation gives 
the displacement expressions in the transform domain as 
follows. 
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In (9), )2,1( =jjα  are real roots of the following 
characteristic equation. 
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Applying (7b) to (3) and substituting (9) into the resulting 
expressions, one may readily obtain the stress expressions in 
the transform domain as follows. 
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where 
])1([ 31 jjxyj RGL αββ −+= , 

])1[( 23 jjxyj RGM αββ +−= , 

][ jjxyj RGN −= α ,     )2,1( =j .               (13) 

In above expressions given in (9) and (12), jA  and 

)2,1( =jB j  are unknown constant coefficients which will be 
determined from boundary conditions of the problem. 

The problem must be solved under the following boundary 
conditions. 
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)0,()0,( 21 xx yy σσ = ,     ∞<<−∞ x ,           (14e) 

)0,()0,( 21 xvxv = ,     ∞<<−∞ x ,             (14f) 
0),( 22 =hxu ,     0),( 22 =hxv ,     ∞<<−∞ x ,   (14g,h) 
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where )(xp  and a represent unknown contact pressure under 
the rigid stamp and contact half-width, respectively. 

Applying (7) to the boundary conditions from (14a) to 
(14h) and substituting the expressions given in (9) and (12) 
into the resulting expressions, the eight unknown coefficients 
may readily be obtained in terms of unknown contact 
pressure, )(xp .  

III. SINGULAR INTEGRAL EQUATION 
For displacements and stresses at any point of the medium, 

it is first needed to obtain unknown contact pressure, )(xp  
under the rigid stamp. Applying (7a) to the boundary 
condition (14i) and substituting the expressions given in (9) 
and (12) into the resulting expression and then using inverse 
transform given in (8a), after some manipulations, a singular 
integral equation may be obtained in terms of the unknown 
contact pressure, )(xp  as follows. 
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The kernel ),( txK  is bounded in the closed interval 
atxa ≤≤− , . Expressions of ),( 11 hV −ξ  and )2,1( =jB js  are 

given in Appendix. From equilibrium, one can also write  
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In order to simplify solution of the singular integral 
equation, the following dimensionless quantities are 
introduced.  

ast = ,     awx = ,     
P
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Substituting expressions given in (18) into (15) to (17), one 
may write the following expressions. 
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Since the contact pressure under the stamp goes to infinity 
at the corners, i.e. ∞→± )1(g , index of the singular integral 
equation is 1+  [17]. Writing the solution 

2/12 )1)(()( −−= ssGsg ,                         (21) 
and using appropriate Gauss-Chebyshev polynomials [17], 
(19) and (20) may be replaced by the following expressions. 
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The system of (22) and (23) constitutes n algebraic 
equations for n unknowns )( isG . Solution of this system and 
use of (21) gives the normalised contact pressure distribution 
under the rigid stamp, Phxp /)( 1 .  

IV. INITIAL SEPARATION POINT AND CRITICAL SEPARATION 
LOAD 

Once )(sg  is obtained, the contact stress between the 
layers can readily be calculated by using stress expression 

),( yxyσ  at 0=y . Applying (8b) to (12b) and adding the 
particular solution given in (6) to the resulting expression, it 
may be written the stress expression for the top layer at 0=y  
as follows. 
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Explicit expression of )0,(1 ξyS is given in the Appendix.  

By making use of dimensionless quantities given in (18), 
(25) may be rewritten as   
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where λ  is called as load factor and defined as  
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By using appropriate Gauss-Chebyshev polynomials, (26) 
may be replaced by   
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In order to be valid the singular integral equation given in 
(19) the contact stress between the layers must be compressive 
everywhere and no sign changing is allowed. Thus, the critical 
load value can be calculated numerically by equating (28) to 
zero and the following expression can be obtained.      
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where crλ  is called as critical load factor for which initial 
separation will occur. 

V. NUMERICAL RESULTS 
The frictionless continuous contact problem for a two-layer 

elastic medium is solved numerically. In the numerical 
analyses, the same material properties are used for both layers. 
Since orthotropic materials have six independent elastic 
constants, a parametric study must be carried out by 
depending on material constants given by (2). Assuming 

xy EE /  ratio is variable while the constants 1β  and xyν  are 

kept constant, only the effect of xy EE /  on numerical results 
for the normalised contact stresses under the stamp and 
between the layers, the initial separation point and the 
corresponding critical separation load is investigated.     

Variation of the initial separation point and the 
corresponding critical load with xy EE /  for various 1/ ha  

values are given in Figs. 2 and 3, respectively. As xy EE /  
increases, the values of initial separation points decrease while 
the corresponding critical load values increase. Figs. 2 and 3 
also show that both 1/ hxcr  and crλ  increase with increasing 
of 1/ ha . In Table 1, values of the initial separation point and 
the corresponding critical loads are given for various 1/ ha  
and xy EE /  values.  

Figs. 4 and 5 show variation of the initial separation point 
and the corresponding critical load with xy EE /  for various 

12 / hh  values, respectively. It is reached to the same results as 
mentioned above for variation of the initial separation point 
and the corresponding critical load values with xy EE / . As 

12 / hh  increases, both 1/ hxcr  and crλ  increase, too. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Variation of 1/ hxcr  with xy EE /  for various 1/ ha  values 

( 00.1/ 12 =hh , 00.1/ 21 =xyxy GG ) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Variation of crλ  with xy EE /  for various 1/ ha  values 

( 00.1/ 12 =hh , 00.1/ 21 =xyxy GG ) 

 
TABLE I 

VARIATION OF THE INITIAL SEPARATION POINT AND CORRESPONDING 

CRITICAL LOAD FOR VARIOUS 1/ ha  VALUES BY DEPENDING ON xy EE /  

( 00.1/ 12 =hh , 00.1/ 21 =xyxy GG ) 

1/ ha  xy EE /  1/ hxcr  crλ  
0.0001 0.04 5.4762 219.437 

 0.20 3.3809 287.458 
 0.40 2.6790 342.947 
 0.60 2.2649 378.837 
 0.80 2.0479 388.615 
 0.1→  1.8385 380.077 
    

0.50 0.04 5.5605 227.071 
 0.20 3.5296 309.982 
 0.40 2.8754 382.818 
 0.60 2.5405 438.657 
 0.80 2.3253 484.082 
 0.1→  2.1365 524.833 
    

1.00 0.04 5.7983 249.277 
 0.20 3.8793 365.952 
 0.40 3.2643 468.579 
 0.60 2.9762 549.235 
 0.80 2.7818 615.281 
 0.1→  2.5911 670.156 
    

2.00 0.04 6.5717 326.976 
 0.20 4.7809 525.533 
 0.40 4.2138 694.122 
 0.60 3.9972 833.138 
 0.80 3.8079 931.439 
 0.1→  3.6057 984.904 
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Fig. 4 Variation of 1/ hxcr  with xy EE /  for various 12 / hh  values 

( 50.0/ 1 =ha , 00.1/ 21 =xyxy GG ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5 Variation of crλ  with xy EE /  for various 12 / hh  values 

( 50.0/ 1 =ha , 00.1/ 21 =xyxy GG ) 

 
Fig. 6 shows normalised contact stress distribution under 

the rigid stamp for various xy EE /  values. As expected, the 
contact stresses become infinite at corners of the stamp. The 
normalised contact stress increases with increasing of xy EE / . 

In Fig. 7, the normalised contact stress distribution at 
interface of the layers for various xy EE /  values is given. It is 
seen in the figure that the normalised contact stress increases 
with increasing of xy EE /  in the region close to 0=x . 
Contact points of the curves to the x- axis represent initial 
separation points. From this figure, it is seen also that initial 

separation points decreases with increasing of xy EE / . The 
contact stress between the layers has maximum value at 0=x  
and decreases along x- axis until the external load effect 
vanishes. From the point at which the external load effect 
vanishes, only the weight of the upper layer has effect in 
occurring of the contact stresses. Therefore, the normalised 
contact stress value becomes equal to 1 and remains constant.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6 Normalised contact stress distribution under the rigid stamp for 

various xy EE /  values ( 00.1/ 1 =ha , 00.1/ 12 =hh , 

00.1/ 21 =xyxy GG ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 Normalised contact stress distribution between the layers for 

various xy EE /  values 

( 00.1/ 1 =ha , 00.1/ 12 =hh , 00.1/ 21 =xyxy GG ) 
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VI. CONCLUSIONS 
The continuous contact problem for a two-layer orthotropic 

elastic medium loaded by a concentrated force through a rigid 
flat stamp is solved numerically. Obtained results show that 
intensity of the applied load, heights and material properties of 
the layers have considerable effect on the contact stress 
distribution at the contact surfaces and, thus, the initial 
separation point and the critical separation load.  

APPENDIX 
Here, explicit expressions of ),( 11 hV −ξ , )0,(1 ξyS  and 

related quantities appearing in (16) and (25) are given.  
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Eight unknown constant coefficients appearing in the 

displacement and stress expressions can readily be obtained 
by solving the following matrix equation. 
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where, subscripts 1 and 2 represent quantities for the upper 
layer while 3 and 4 represent quantities for the lower layer. 

The terms )2,1( =jB js  appearing in (16) can readily be 
obtained by using asymptotic behaviour of the coefficients 

)2,1( =jB j  as ∞→ξ .  
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