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Abstract—In this paper, a fractional-order FIR differentiator 

design method using the differential evolution (DE) algorithm is 
presented.  In the proposed method, the FIR digital filter is designed to 
meet the frequency response of a desired fractal-order differentiator, 
which is evaluated in the frequency domain.  To verify the design 
performance, another design method considered in the time-domain is 
also provided.  Simulation results reveal the efficiency of the proposed 
method. 
 

Keywords—Fractional-order differentiator, FIR digital filter, 
Differential evolution algorithm.   

I. INTRODUCTION 
HE research topic regarding the fractional calculus has 
been proposed since about 17th century.  The fractional 

calculus is concerned with mathematical analyses and 
operations for noninteger-order integration and differentiation 
[1].  In fact, many systems in the real world are known to show 
the fractional-order dynamics, i.e., their dynamical equations 
involving noninteger-order derivatives, such as 
electrode-electrolyte polarization, electromagnetic waves, 
viscoelastic systems, mass diffusion, heat conduction, fractal 
porous media, and so forth [2][3].  On the other hand, the actual 
implementation of fractional-order derivatives on electrical 
circuit devices could also be found in the literatures as [4] and 
[5].  Such a device is called the fractance and is with the 
intermediate property between resistance and capacitance.  Due 
to its successive developments in the mathematical theory and 
real implementation, the concept and application about the 
fractional-order derivative have drawn the attention of some 
researchers.  In [6], for example, the author proposed an 
effective and easy-to-use means to the time-domain analysis of 
fractional-order systems.  A new type of PID controller with 
fractional-order integrator and differentiator was first presented 
in the study.  Furthermore, a generalized van der Pol chaotic 
system with fractional orders was investigated in [3].  The 
chaotic dynamics of the proposed fractional-order systems 
could be observed and verified via numerical analyses in the 
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phase portraits, bifurcation diagrams, and Poincare maps, etc.   
As for the fractional-order digital differentiator, it is an 

extended version of general digital differentiator, which 
modifies the integer order to the fractional case.  To deal with 
the digital differentiating system, it plays an important role and 
provides a more flexibility to design.  The main function of a 
fractional-order digital differentiator is to provide a 
fractional-order differentiation on a given digital input signal.  
Compared with the general integer-order filter design, a 
fractional-order design is more difficult and complicated.  In 
recent years, many researchers have paid attention to this study 
and also proposed some new design algorithms as 
demonstrated in [7]-[9].  In [7], the author presented a 
time-domain method for designing the fractional-order FIR 
digital differentiator.  An input signal is first expanded using a 
Taylor series, and further based on this series its impulse 
response may be computed from the linear equations of 
Vandermonde form.  The resulting FIR filter is then an 
approximate model of a desired fractional-order digital 
differentiator.  In addition, for a uniformly sampled polynomial 
input signal a discrete-time signal processing system was 
designed as fractional-order derivatives of Riemann-Liouville 
[8].  The proposed scheme is discussed and analyzed in the time 
domain.  Another time-domain design method for fractional 
differentiators may be also found in [9].  They used the 
least-squares method to design a digital rational approximation; 
that is, infinite impulse response (IIR) filter, to be a 
fractional-order integrator or differentiator.  Some 
approximation approaches, such as Pade approximation, 
Prony’s method, and Shanks’ method are suggested.  Different 
from these studies, this paper provides alternative 
frequency-domain design method for such a fractional-order 
digital differentiator.  An optimal algorithm called the 
differential evolution (DE) is proposed to solve this issue.  Our 
main purpose is that FIR filter coefficients are efficiently 
determined using the proposed DE algorithm so that its 
corresponding magnitude response may satisfy a desired 
fractional-order digital differentiator behavior.  The DE 
algorithm possesses many numerical features such as using 
real-valued manipulations, global searching optimization, and 
quicker convergence [10]-[13].  The detailed descriptions for 
DE algorithms will further be demonstrated in the following 
section.   
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II. DESCRIPTION OF FRACTIONAL-ORDER DIFFERENTIATOR 
In the beginning, some mathematical expressions related to 

the integer-order and fractional-order derivatives described in 
the time domain is introduced.  For a power function of time, 

λt , its qth order derivative where q is a positive integer can be 
expressed by  

λλ t
dt
dtD q

q
q
t =   

( )( ) ( ) ( )
qq t

q
tq −−

−
=+−−−= λλ

λ
λλλλλ

!
!121 L  (1) 

According to Eq. (1), the positive integer q can further be 
generalized to an arbitrary order α  when !λ  and ( )!q−λ  in 
Eq. (1) are replaced by the gamma functions ( )1+Γ λ  and 

( )1+−Γ αλ , respectively [7], and it becomes  
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Furthermore, let us consider a time function ( )tf  and 
suppose that its Taylor series expansion exists.  It is interesting 
to explore its fractional-order derivative with respect to time t.  
First, taking Taylor series expansion for ( )tf  at 0=t  yields  
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Using (2), the thα  fractional-order derivative of ( )tf  can 
be obtained by  
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Eq. (4) represents an analytically mathematical formula for 
solving the fractional derivative of a time function ( )tf .   

Alternatively, the aim of this paper is to propose a 
fractional-order differentiator design method considered in the 
frequency domain.  The architecture of a digital FIR filter is 
employed.  The difference equation of FIR filter is expressed 
by  

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]NnxNhnxhnxhnxhny −++−+−+= L22110 ,   

[ ] [ ]∑
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k
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where x is the input signal, y is the output signal of FIR filter, N 
denotes the filter order, and [ ]kh , Nk ,,1,0 L= , is the 
impulse response sequence (also called the filter coefficient) 
which dominates the filter characteristic.  In order for analysis 
in the frequency domain, it further needs to take z transform on 
both sides of Eq. (5) getting  
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Consequently, the transfer function of FIR digital filter, [ ]zH , 
is of the form  
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Moreover, if let Ω= jez  where Ω  represents the digital 
frequency, the frequency response of the filter is derived as  
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For convenience, let [ ] [ ] [ ] [ ][ ]NhhhN LL ,1,0,, 121 ==Θ +θθθ  
be a parameter vector. This vector will be used in the DE 
algorithm.   

On the other hand, a prototype of an ideal fractional-order 
differentiator may be characterized by 

( ) ( ) πα ≤Ω≤Ω=Ω 0,jD ,  (9) 
where α  is a fractional-order value.  Our main aim is that the 
impulse response [ ]kh  of FIR filter can be determined well so 
that its corresponding frequency response has a characteristic 
of fractional-order derivative as described by Eq. (9).    

III. DE-BASED DESIGN METHOD 
The differential evolution is a simple and effective means for 

solving engineering optimization problem, which was 
proposed by Storn and Price in 1997 [10].  There are three 
fundamental variables in the DE algorithm, including 
population size S, mutation constant factor F, and crossover 
rate C.  In the beginning, the algorithm randomly generates an 
initial population of S parameter vectors.  These parameter 
vectors will be repeatedly updated to produce new better 
offspring.  To achieve that, some important evolutionary 
operations, including mutation, crossover and selection, are 
performed, which are kind of similar to genetic algorithms.  
The convergence of this algorithm toward the optimal solution 
is guided only by the size of the cost function.  Thus it is 
considerably reasonable to define the cost function as  

( ) ( )( )∫ ΩΩ−Ω=
π

0

2 dHDCF , (10) 

for the fractional-order FIR differentiator design.  Minimizing 
the defined cost function by using the proposed DE algorithm is 
the main purpose of this paper.  The following will clearly 
explain the evolutionary operations of the DE algorithm [13].   

To perform the mutation operation, three different parameter 
vectors αΘ , βΘ , and γΘ  are randomly selected from the 

population.  The vector αΘ  is mutated to be the donor vector 
[ ]121 ,,, += NvvvV L  by adding the weighted difference between 

another two parameter vectors βΘ  and γΘ , i.e.,  

( )γβα Θ−Θ⋅+Θ= FV , (11) 
where F is a positive constant and called the mutation constant 
factor.  Then this donor vector further goes through a crossover 
operation with a target vector [ ]121 ,, +=Θ Nθθθ L  in order for 
producing a new vector, called the trial vector.  It needs to 
replace some elements of target vector Θ  by the elements of 
donor vector V correspondingly.  To achieve that, let 
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[ ]121 ,, += NwwwW L  be a trial vector and generate a set of 
1+N  random numbers { }121 ,,, +Nrrr L  uniformly chosen from 

the interval ( )1,0 .  According to these random numbers, 
another set of binary sequences { }121 ,,, +Nbbb L  is constructed 
by setting  
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where ( )1,0∈C  is called the crossover rate.  Finally, the trial 
vector W is obtained according to the following formula  
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This completes the crossover operation.  Having determined 
the trial vector W, a selection operation is further performed.  
The cost function of the resulting trial vector is evaluated and 
then compared with that of the target vector, and if the cost 
function of the trial vector is less than that of the target vector 
(i.e., the trial vector is better than the target vector), then the 
trial vector replaces the target vector; otherwise, the trail vector 
is rejected and the target vector still survives in the next 
generation.  In the DE algorithm, the complete execution of the 
mutation, crossover and selection operations on each parameter 
vector is referred to as “one generation”.  The iterations of the 
DE algorithm are terminated when the pre-specified number of 
generations G has been achieved.  The following shows the 
whole steps of the DE-based optimization process for 
designing the fractional-order FIR digital differentiator:  
 
1.  Randomly generate an initial population of S parameter 

vectors chosen from the interval [ ]1,1− .   
2.  If the pre-specified number of generations G is completed, 

then stop the algorithm. 
3.  For 1=i  to S 

Evaluate the cost function ( )iCF Θ  of each target vector 

iΘ  in the population using Eq. (10). 
         Generate a donor vector V using Eq. (11).   
         Obtain a set of binary sequences { }121 ,,, +Nbbb L  using 

Eq. (12).   
        Apply the crossover formula of Eq. (13) to obtain a trial 

vector W.   
        Evaluate the cost function ( )WCF  of the trial vector W 

using Eq. (10) as well.   
        Perform the selection operation for both W and iΘ  to 

obtain new offspring .new
iΘ   If ( ) ( )iCFWCF Θ< , then 

Wnew
i =Θ , otherwise i

new
i Θ=Θ .   

    End 
    For 1=i  to S; 
       new

ii Θ=Θ . 
End 

4. Go back to Step 2.   

IV. SIMULATION RESULTS  
In order to verify the proposed design method, some 

simulations are required.  In the present search, the values 
assigned to the variables of the DE algorithm for designing the 
fractional-order digital FIR differentiator are given by 
population size 50=S , number of generations 3000=G , 
mutation constant factor 2.0=F , and crossover rate 5.0=C , 
respectively, for simulations.  The FIR filter with order 10=N  
is designed to match the digital fractional-order differentiator 
with 5.1=α  as in Eq. (9).  The DE-based design algorithms 
are numerically programmed by using Matlab software under 
the PC environments.  After executing the DE algorithm, Fig. 1 
shows the convergence of the cost function with respect to 
number of generations and Fig. 2 depicts the magnitude 
responses of the designed FIR filter and the desired 
fractional-order digital differentiator with 5.1=α , 
respectively.  A time-domain design method, on the other hand, 
proposed by [7] is also compared.  The simulation result is 
further shown in Fig. 3.  It can easily be seen from these two 
figures that better approximation, especially for higher 
frequency response, is achieved by our proposed method than 
another time-domain design method.     

 
Fig. 1 Convergence of cost function 

 
Fig. 2  Magnitude responses of the ideal and obtained fractional-order 

differentiators by the DE algorithm 
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Fig. 3 Magnitude responses of the ideal and obtained fractional-order 

differentiators by Tseng’s method [7] 

V. CONCLUSION 
This paper has successfully applied the DE algorithm to the 

design of the FIR digital fractional-order differentiator.  Filter 
coefficients are iteratively evolved by the DE algorithm so that 
its corresponding magnitude response matches the desired 
fractional-order digital differentiator.  From simulation results, 
it can be concluded that the DE-based design method is better 
than another design method which works in the time domain. 
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