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 
Abstract—The free vibration behavior of thick pretwisted 

cantilevered functionally graded material (FGM) plate subjected to 
the thermal environment is investigated numerically in the present 
paper. A mathematical model is developed in the framework of 
higher order shear deformation theory (HOST) with C0 finite element 
formulation i.e. independent displacement and rotations. The material 
properties are assumed to be temperature dependent and vary 
continuously through the thickness based on the volume fraction 
exponent in simple power rule. The finite element model has been 
discretized into eight node quadratic serendipity elements with node 
wise seven degrees of freedom. The effect of plate geometry, 
temperature field, material composition, and the modal analysis on 
the vibrational characteristics is examined. Finally, the results are 
verified by comparing with those available in literature. 
 

Keywords—FGM, pretwisted plate, thermal environment, HOST, 
simple power law.  

I. INTRODUCTION 

GM is a new advanced composite in which the properties 
of the constituent material vary continuously in a 

predetermined direction along thickness in a smooth pattern. 
Generally, FGM plate is preferred over conventional 
composite plate material to overcome the mode of failure due 
to interlaminar debonding of the constituent lamina that lead 
to instability of the fiber-reinforced laminated composite 
structure. FGMs are generally made from a mixture of ceramic 
and metal. The ceramic material due to its low thermal 
conductivity provides high-temperature resistance, and the 
ductile metal due to the high-temperature gradient helps in 
preventing fracture caused by stresses. Hence, the gradation in 
the properties reduces both thermal and residual stresses. In 
first order shear deformation theory (FOST), shear correction 
factors (SCFs) are introduced to rectify the discrepancy 
between the actual shear force distribution and those 
computed from the kinematic relation. HOST undergoes a 
cubic variation of the displacement such that, a more accurate 
stress distribution can be yielded. Pretwisted plates are 
structural elements with considerable technical significance. 
Extensive practical use of pretwisted plate can be found in 
aerospace, turbomachinery and other applications like aerial 
propeller and turbofans.  

Nabi and Ganesan [1] analyzed the vibrational 
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characteristics of glass fiber reinforced pretwisted composite 
blade using cylindrical, triangular shell element. Kee and Kim 
[2] studied the vibration analysis of a pretwisted rotating 
composite blade considering the Reissner-Mindlin’s 
assumptions to examine the effect of Coriolis acceleration and 
centrifugal force. Leissa and Kadi [3] studied the influence of 
curvature on the frequency of shallow shells. Leissa et al. [4] 
employed Ritz method along with displacement functions in 
terms of the algebraic polynomial for the doubly curved 
cantilevered shallow shell. Jari et al. [5] investigated the static, 
free vibration, thermo-mechanical buckling of FGM plate 
using isogeometric approach and HOST. Based on third order 
shear deformation theory (TOST), Li et al. [6] presented the 
static and free vibration analysis of laminated composite plate 
using non-uniform rational B-splines (NURBS). Further, Li et 
al. [7] calculated the natural frequency using the three-
dimensional linear theory of elasticity. Leissa et al. [8] 
obtained the theoretical and experimental result for free 
vibration of twisted, cantilevered plate of rectangular 
planform. Using the Rayleigh-Ritz technique, Sinha and 
Turner [9] investigated the free vibration behavior of the plate 
and derived the governing equation for the rotating pretwisted 
cantilever plate considering the Kirchhoff-von Karman’s plate 
theory. A node based strain smoothening finite element is used 
for analyzing the static, free vibrational, thermal/mechanical 
buckling problems by Xuan et al. [10]. Reddy [11] derived the 
theoretical formulation for FGM plate that includes 
thermomechanical coupling and geometric nonlinearity using 
TOST. Reddy and Phan [12] adopted a refined shear 
deformation theory to present the exact solution for vibration 
and stability of the simply supported isotropic, orthotropic and 
laminated plate. Bazoune [13] considered the Southwell 
coefficient to present the in-plane and out of–plane 
frequencies to study the relation between rotating and non-
rotating structures. Chandrashekhara [14] studied the free 
vibration behavior of laminated composite shells using 
isoparametric doubly curved quadrilateral shear element based 
on FOST. Zhu [15] studied the vibration analysis of rotating 
pretwisted Timoshenko beam and derived the kinetic energy, 
potential energy and the hybrid deformation variable using 
Rayleigh-Ritz method. The effect of rotating speed and 
pretwist angle on the frequency and damping ratio of the 
piezoelectric fiber reinforced composite material have been 
studied by Choi and Kim [16]. Hashemi [17] calculated the 
frequency for the rotating thick plate using Mindlin plate 
theory combined with assumptions regarding second order 
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strain displacement. Kane dynamic method has been 
employed for the non-linear strain analysis. Hu and Tsuiji [18] 
modeled a blade as a cylindrical panel with a twist and 
spanwise and chordwise curvature and derived governing 
equations for thin shell theory using the principle of virtual 
work using Rayleigh-Ritz method. Sreenivasmurthy and 
Ramamurti [19] investigated the effect of Coriolis acceleration 
term in kinetic energy expression on the first bending and first 
torsional frequency using finite element method for a flat 
rotating cantilever plate. Yang and Shen [20] analyzed the free 
and forced vibration FGM plate in uniform temperature using 
Galerkin approach. Kim [21] calculated frequency for the 
initially stressed plate employing the Rayleigh–Ritz 
procedure. Dokainish and Rawtani [22] employed the inertia 
force in addition to centrifugal force in order to calculate the 
natural frequency and mode shape of rotating cantilever plate. 
Huang and Shen [23] studied the nonlinear vibration 
characteristics of the FGM plate in the thermal environment. 

There is hardly any literature available that deals with the 
pretwisted functionally graded thick plate in the framework of 
HOST in thermal environment using finite element method 

(FEM). The present work involves an eight-noded 
isoparametric element with nodal seven degrees of freedom 
using MATLAB. This paper presents an optimized 
displacement equation that satisfies the zero shear stress 
condition on either side of the plate. The material properties 
are graded along the plate thickness as per simple power law 
of distribution in terms of volume fraction. The material 
properties of the constituents are considered as temperature 
dependent. Comparison studies are provided to verify the 
accuracy and stability of the present method. The influences of 
parameters like volume fraction index, aspect ratio, thickness 
parameter, twist angle and the temperature on the frequency 
characteristics of the pretwisted FGM plate have been 
examined in details. 

II. MATHEMATICAL FORMULATION  

Consider a pre-twisted plate with geometric dimensions of 
length L, width B and total thickness h clamped at its one side 
(left) with the opposite edge twisted at an angle   as shown in 

Fig. 1.  

 

 

Fig. 1 A pretwisted plate 
 

 

Fig. 2 Variation of volume fraction Vc through the dimensionless 
thickness (z/h) 

 

A. Material Properties 

The mechanical and thermal properties vary continuously 
along the interface between the two surfaces due to a gradual 
change in volume fraction of the constituent material obeying 
the simple power-law distribution of constituent volume 
fraction as shown in Fig. 2.  

The material properties ( f ) are determined using the 

simple rule of mixture (Voigt model). 
 

( ) c c m mf z f V f V   
 

where, ,  c mf f  and ,c mV V  are the temperature-dependent 

material properties and volume fraction with subscript and c
and m  refers to ceramic and metal constituents. The volume 
fraction of the constituents (ceramic, metal) are obtained using 
the simple power law of distribution as  
 

1c mV V        (1) 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:8, 2017

1525

 

 

1 1
,  1

2 2

n n

c m

z z
V V

h h
          
   

,         (2) 

 
where, ‘ z ’ is the thickness coordinate ( / 2 / 2)h z h    and ‘

n ’ is the volume fraction index (0 )n   responsible for 

generating an infinite number of varying composition.  
 The temperature-dependent material properties of the 

constituents like Young’s modulus E , mass density  , 

thermal expansion coefficient  , Poisson’s ratio   and the 

thermal conductivity effK  are expressed in terms of non-linear 

function of temperature, [25], as 
 

  1
( , ) ( ) ( ) ( )

2

n

b t b

z
f z T f T f T f T

h
     
 

    (3) 

 

where, f denotes an effective material property, tf  and bf  

are properties of constituents at the top and the bottom of the 
plate. In this paper, metal is at the bottom ( / 2)z h   and 

ceramic is at the top ( / 2)z h  . 
 

 2 3
0 1 1 2 3( ) and ( ) / 1m cf T f T f f T f T f T f T            (4) 

 

where, 0 1 1 2, , ,f f f f and 3f  are the coefficients of temperature 

T (in K) responsible for characterizing the constituents.  
 

 

Fig. 3 FGM Plate before and after deformation 
 
B. Kinematics 

The FGM plate subjected to HOST presenting the parabolic 
distribution of transverse shear stress is shown in Fig. 3. 

The displacement field for higher order theory, [26], is: 
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              (5) 

 
where, u , v and w  are the displacements of any point along 

the ( , , )x y z  coordinates. 0 0 0, ,  and ,x yu v w    are the in-plane 

displacements and the rotations of transverse normal about the 
x  and y  axes, respectively. Due to the parabolic distribution 

of transverse shear stress, it represents a traction-free theory 
without any need of SCF, unlike FOST. 

To convert the displacement equation into simple 0C

continuity, two new variables x  and y are introduced by  
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                      (6) 

 

where,   2
1 0, 0,4 3 ,  ,  x x y yc h w w       

C. The Stress-Strain Relationship 

The constitutive relation of an FGM plate in thermal 
environment is presented as 
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The strains can be expressed as  
 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:8, 2017

1526

 

 

30
1

30
1

0 0 2

            

y y x
xx

x

yx x
yy

y

y x
xy

xy

uu w
z c z

x x R x x x

vv w
z c z

y y R y y y

u vu v w v u
z C

y x y x R y x x y

  


 


 


     
              

     
                

                                   

 

 

3
1

20
2

20
2

                                y yx x

xz y y x
x xy

yz x x y
y xy

c z
y y x x

wu w u v
c z

z x x R R

wv w v u
c z

z y y R R

  

   

   

   
         

  
            

  
              

  (8) 

 

where,   
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C
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 is the result of Sanders theory for 

the condition of zero strain meant for rigid body motion. 
Equation (8) can be expressed as  
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Considering the displacement components of the HOST the 

governing equations of motion for twisted FGM plate are 
obtained using Hamilton’s principle as  
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where, ( , , ), ( , ) and ( , , )x y xy x y x y xyN N N Q Q M M M present the 

total inplane force, shear force and moment resultant and 
( , , ) and ( , )x y xy x yP P P R R presents the higher order stress resultant. 
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III. NONLINEAR TEMPERATURE RISE 

The nonlinear temperature rise along plate thickness can be 
obtained by solving one-dimensional Fourier equation of heat 
conduction. The heat conduction equation through the 
thickness is given by  
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The temperature variation through the thickness of an FGM 

plate can be calculated by imposing the boundary condition of 

mT T  at / 2z h   and cT T  at / 2z h .           

Substituting (3) for thermal conductivity in (12), the 
solution to the above equation can be solved using polynomial 
series. Considering the first seven terms, the obtained solution 
becomes  

 
1 2 12

2

3 1 4 13 4

3 4

5

5

1 1 1

2 ( 1) 2 2(2 1)

1 1
( )

2 2(3 1) (4 1)

                                                 
(5 1)

n n
cm cm

m m

n n
cm cm

m

m m

cm

m

K Kz z z

h n K h hn K

K KT z z
T z T

h hn K n K

K z

hn K

 

 

                    

                 

 


5 1
1

2

n

 
 
 
 
 
 
 
  
  

   

 

(13) 
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and cm c mK K K  . The stress resultant defined in (11) is 

related to the strains by  
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         (14) 

 

where,  TN ,  TM and  TP  are the thermal force and 

moment resultants  
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where,  
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                  (16)                                                       

 
and ,  ,  ,  ,  ,  A B C E F H  are the plate stiffness   
 

/ 2
2 3 4 6

/ 2

( , , , , , ) (1, , , , , )    ( , 1, 2, 6)
h

ij

h

A B C E F H Q z z z z z dz i j


 
 

and ijQ is the transformed elastic constant.                                                                

IV. FINITE ELEMENT METHOD 

For the present analysis, an eight noded isoparametric 
quadratic serendipity plate element with nodal seven degrees 
of freedom (DOFs) has been considered for the finite element 
modeling, as given in Fig. 4.  

 

 

Fig. 4 An eight noded isoparametric serendipity element 
 

The displacement vector in (6) can be presented as 
 

   
8

1

( , ) e
i i

i

N   


     (17) 

 

where,    0 0 0, , , , , ,i i i i xi yi xi yiu v w      is the node wise 

displacement field vector and iN is the interpolating vector 

dealt with ith node. 

A. Thermal Stiffness Matrix  

The stress resulted due to thermal expansion in an FGM 
twisted plate  
 

( , ) ( , )th

A

R E z T z T TdA    (18) 

 

where, ( , )z T is the co-efficient of thermal expansion of 

thermal expansion and T  is the steady state temperature 
change. 

The work done by thermal load can be presented as  
 

    1

2

T

th thW K       (19) 

 
The elemental thermal stiffness matrix 
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where,  J is the Jacobian matrix that transforms the global 

coordinate into local coordinate. 
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B. Elastic Stiffness Matrix 

The strain energy of the twisted FGM plate can be 
expressed as   

 

   1
[ ]

2

T

i e iU K        (21) 

 
The elemental stiffness matrixes is the collective sum of 

elemental bending and shear stiffness matrices and expressed 
as 
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       
1 1

1 1

T

s s s se
K B D B J d d 

 

               (23b) 

 

where,  bB and  sB are bending and shear strain 
displacement matrices, respectively. 
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C. Mass Matrix 

The kinetic energy of the twisted FGM plate can be written 
as 

 

     1

2

T

i ie
T M     (24) 

 
Elastic mass matrix,    
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where, [ ]I  and [ ]N  are the inertia and interpolating function 

matrix, respectively. 
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where, iN  is the interpolating function at each node (i=1, 2, 3, 

4, 5, 6, 7, 8) 

V. RESULTS AND DISCUSSIONS 

The numerical results of free vibration analysis of 
pretwisted FGM plate are calculated using the proposed finite 
element model of HOST using MATLAB. An eight noded 
quadratic serendipity finite element with nodal seven DOFs 
has been employed to discretize the plate. The validation and 
the accuracy test of the proposed method are done by 
comparing the obtained results with the published results 
available in the literature. 

A. Validation 

To validate the present finite element model, the calculated 

natural frequencies of a flat simply supported FGM plate are 
compared with those given by Bishop [24] as shown in Table 
I. The plate is made of Ti-6Al-4V/Aluminium Oxide and the 
geometric properties of FGM plate are a=b=0.4 m, h=0.005 m. 
Table II gives the comparison of non-dimensional frequency 
parameter ( )  of a cantilevered twisted plate for different 

angle of twists with published results of Nabi and Ganeshan 
[1] and Kee and Kim [2]. The notation B  denotes the 
spanwise bending frequency, T  the torsional frequency, CB 
the chordwise frequency, EB the edgewise bending frequency 
and A the axial extension frequency. Table III shows the 
comparison of natural frequency parameter of Si3N4/SUS304 
FGM plate with the results of Huang and Shen [23] at three 
different thermal loading conditions. It can be seen that the 
results agrees well with published results of Bishop [24], Nabi 
and Ganeshan [1], Kee and Kim [2] and Huang and Shen [23]. 
The mathematical formulations can be well trusted. 

 
TABLE I 

COMPARISON OF NATURAL FREQUENCY (HZ) FOR SIMPLY SUPPORTED TI-6AL-
4V/ ALUMINIUM OXIDE FGM PLATE 

Mode 
0n   2000n   

Present Bishop [24] Present Bishop [24] 

1 144.9 145.04 271.28 271.23 

2 362.4 362.61 677.93 678.06 

3 362.4 362.61 678.00 678.06 

4 580.3 580.18 1085.31 1084.9 

5 726.9 725.22 1359.17 1356.1 

6 727.0 725.22 1359.29 1356.1 

7 947.3 942.79 1771.76 1763.0 

 
TABLE II 

COMPARISON OF FREQUENCY PARAMETER ( )  OF ISOTROPIC PRETWISTED 

PLATE 
Twist 

Angle (ϕ) 
Mode Nabi and Ganeshan [1] 

Kee and 
Kim [2] 

Present 

0o 

1B 3.46 3.49 3.46 

2B 21.44 22.01 20.99 

1T 8.53 8.51 8.35 

1CB 27.05 27.33 26.70 

30o 

1B 3.41 3.42 3.402 

2B 18.88 19.51 18.83 

1T 16.88 14.43 15.96 

1CB 27.98 27.41 27.38 

45o 

1B 3.36 3.35 3.32 

2B 16.51 17.22 16.29 

1T 22.31 20.45 24.35 

1CB 30.40 28.76 29.93 

 
TABLE III 

NATURAL FREQUENCY PARAMETER FOR SI3N4/SUS304 SQUARE PLATE IN 

THERMAL ENVIRONMENT A=B=0.2M, H= 0.025M 

Temp(K) Work 
Volume fraction index (n) 

Ceramic n=0.5 n=1 n=2 Metal

Tc=300 
Tm=300 

Present 12.587 9.094 7.656 6.780 5.445

Huang and Shen [23] 12.495 8.675 7.555 6.777 5.405

Tc=400, 
Tm=300 

Present 12.387 8.615 7.510 6.642 5.311

Huang and Shen [23] 12.397 8.615 7.474 6.693 5.311

Tc=600, 
Tm=300 

Present 11.971 8.272 7.186 6.327 4.989

Huang and Shen [23] 11.984 8.657 7.544 6.669 4.971
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B. Parametric Study 

Non-dimensional frequency parameter  
 

22 2 (1 )m

m

a

h E

  


  

 

where, the material properties ,   and m m mE   refer to the 

values of metal at the reference temperature T0=300K. Table 
IV shows the temperature-dependent properties of 
Si3N4/SUS304 FGM as given in Li et al. [7]. 

 
TABLE IV 

TEMPERATURE DEPENDENT MATERIAL PROPERTIES OF CERAMIC AND METAL 

Material f0 f-1 f1 f2 f3 f(at 300K) 

Si3N4 

E 348.43 0 -3.07e-13 2.160e-16 -8.946e-20 322.271 

ν 0.240 0 0 0 0 0.24 

α 5.8723e-6 0 9.095e-6 0 0 7.4746e-6 

ρ 2370 0 0 0 0 2370 

K 9.19 0 0 0 0 9.19 

SUS304 

E 201.04 0 3.079e-13 -6.534e-16 0 207.788 

ν 0.3262 0 -2.002e-4 3.797e-7 0 0.3178 

α 12.330e-6 0 8.086e-6 0 0 15.321e-6 

ρ 8166 0 0 0 0 8166 

K 12.04 0 0 0 0 12.04 

 

 

(a) Mode 1 
 

 

(b) Mode 2 

 

(c) Mode 3 
 

 

(d) Mode 4 

Fig. 5 Variation of first four modes of frequency for different twist 
angles at thickness ratio (a/h=10) (a) mode1 (b) mode 2 (c) mode 3 

(d) mode 4 
 

Figs. 5 (a)-(d) show the effect of volume fraction index on 
first four natural frequencies for the thick cantilevered 
pretwisted FGM plate with the side thickness ratio (a/h=10) 
and unity aspect ratio with different twist angles. The 
frequency decreases with increase in twist angle and volume 
fraction index. The first mode represents the first bending 
mode (1B), the second mode represents the torsion mode (1T); 
the third mode represents the edgewise bending mode (1EB), 
and the fourth mode represents the second bending mode (2B). 
The spanwise bending (1st mode) frequency decreases with 
increase in twist angle. The decrease may be due to shear 
deformation and rotary inertia. The torsional mode increases 
with increases in pretwist angle, and this may be due to 
stretching of axially oriented elements near the parallel edges. 
It can be clearly noted that the increase in pretwist angle has a 
softening effect on first and third eigenvalue and a stiffening 
effect on second and fourth. The frequency decreases with 
increase in volume fraction index. This is because, with an 
increase in volume fraction index, the ceramic component 
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decreases thereby reduces the stiffness.  
 

 

(a) Mode 1 
 

 

(b) Mode 2 

Fig. 6 Variation of first two modes of frequency for different twist 
angles with side-thickness ratio (a/h=10) (a) mode 1 (b) mode 2 
 
Figs. 6 (a) and (b) show the influence of aspect ratio on first 

two natural frequencies (Hz) of square Si3N4/SUS304 thick 
FGM plate with volume fraction index (n=2) of side-thickness 
ratio a/h=10 with varying twisting angle. The spanwise 
bending (1st mode) frequency decreases with increase in 
pretwist angle. The decrease may be due to shear deformation 
and rotary inertia. The second mode increases with increase in 
twisting angle that represents the torsional mode, and this may 
be due to stretching of axially oriented elements near the 
parallel edges. The effect of the pretwist angle seems to be 
significant with the plates of low aspect ratio than with higher 
aspect ratio.  

Figs. 7 (a) and (b) represent first two natural frequencies for 
the cantilevered square pretwisted FGM plate (n=2) with 
varying thickness ratio (a/h=5, 10, 20, 30, 40, 50). In the first 
mode, the frequency decreases slightly with an increase in 
twist angle and also decreases with increase in thickness ratio. 
In the second mode, the frequency increases with increase in 

twist angle for low thickness ratio. The frequency of the FGM 
plate increases with increase in side thickness ratio and 
decreases with increase in twist angle. Fig. 8 shows the mode 
shape of functionally graded pretwisted plate with pretwist 
angle ϕ=15˚ with varying aspect ratio and thickness ratio (a) 
a/b=1, b/h=20 (b) a/b =1, b/h =5 (c) a/b =3, b/h =20 (d) a/b 
=3, b/h =5 

 

 

(a) Mode 1 
 

 

(b) Mode 2 

Fig. 7 Variation of first two mode frequency with twist angle with 
a/b=1 (a) mode 1 (b) mode 2 

 
In order to verify the present approach for vibration analysis 

in thermal environment, numerical results obtained for 
Si3N4/SUS304 square FGM plate in the thermal environment 
are compared with those of Huang and Shen [23] and is 
presented in Table IV. For further analysis in the thermal 
environment, the cantilevered pretwisted Si3N4/SUS304 FGM 
plate will be considered under different material properties (n), 
plate geometry (aspect ratio, thickness ratio) and temperature 
field. 
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Mode 1 (1F) 

 
Mode2 (1T) 

 
Mode 3 (2F) 

 
Mode 4 (1EB) 

(a) First four modes for FGM plate with a/b=1, h=1/20, ϕ =15˚ 
 

Non-dimensional frequency considered is defined as 
 

2 2
m

m

a

h E

   

 

where, the material properties and  m mE  refer to the values 

of metal at the reference temperature T0=300K. 
Fig. 9 shows the frequency vs. temperature gradient for 

different volume fraction index (n). The frequency decreases 
with rise in temperature. This is because; with an increase in 
temperature the modulus of elasticity weakens and thereby 
reduces the stiffness. With the increase in volume fraction 
index, the ceramic component decreases and hence reduces the 
stiffness. Fig. 10 shows the frequency versus aspect ratio (a/b) 
for Si3N4/SUS304 twisted FGM plate (ϕ =15˚) at an elevated 
temperature of 100 K with the side thickness ratio a/h=10. 
Frequency decreases with increase in aspect ratio and volume 
fraction index.  

 

 
Mode 1 (1F) 

 
Mode2 (1T) 

 
Mode 3 (2F) 

 
Mode 4 (2T) 

(b) First four modes for FGM plate with a/b=1, h=1/5, ϕ =15˚ 

Fig. 8 Mode shapes of pretwisted FGM plate with pretwist angle ϕ 
=15˚ at different aspect ratio and thickness (a) a/b=1, h=1/20 (b) 

a/b=1, h=1/5 
 

 

Fig. 9 The effect of temperature rise T  on frequency parameter 
( )  with varying the volume fraction-index of a cantilevered pre-

twisted Si3N4/SUS304 
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Fig. 10 The effect of volume fraction index on frequency parameter 
( )  with varying aspect ratio ϕ =150, ΔT=100 K 

 

 

Fig. 11 First four modes of frequency for Si3N4/SUS304 FGM plate 
with varying temperature on ceramic surface 

 

 

Fig. 12 The effect of side-thickness ratio on frequency parameter 
with varying temperature on ceramic surface of a twisted 

Si3N4/SUS304 FGM plate 
 

Fig. 11 shows the effect of temperature and frequency for 
first four modes of frequency of pretwisted FGM plate (ϕ=15˚) 
with side-width ratio a/h=10 and volume fraction index n=1. 
The frequency decreases with increase in temperature. This is 
because with an increase in temperature the young’s modulus 

decreases. Fig. 12 shows the influence of side-thickness ratio 
on the fundamental frequency (Hz) for different temperature 
on ceramic surface for a pretwisted square Si3N4/SUS304 
FGM plate (ϕ =15˚) with the aspect ratio a/b=1, n=1. The 
frequency decreases with increase in side thickness ratio. This 
is due to the effect of shear deformation and rotary inertia. 

VI. CONCLUSIONS 

A higher order displacement field representing the inplane 
displacements and transverse displacement has been used to 
study the free vibration analysis of pretwisted cantilevered 
plate in the thermal environment using C0 isoparametric 
formulation. The model is discretized into an eight-noded 
isoparametric element with seven degrees of freedom per 
node. The developed finite element model proves its accuracy 
by comparing the obtained results with the published results. 
The effect of various geometric parameters (twist angle, aspect 
ratio and side thickness ratio and temperature rise have been 
discussed in details. 
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