
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1248

Fractional Order Feedback Control of a Ball and
Beam System

Santosh Kr. Choudhary

Abstract—In this paper, fractional order feedback control of a ball
beam model is investigated. The ball beam model is a particular
example of the double Integrator system having strongly nonlinear
characteristics and unstable dynamics which make the control of
such system a challenging task. Most of the work in fractional order
control systems are in theoretical nature and controller design and its
implementation in practice is very small. In this work, a successful
attempt has been made to design a fractional order PIλDμcontroller
for a benchmark laboratory ball and beam model. Better performance
can be achieved using a fractional order PID controller and it is
demonstrated through simulations results with a comparison to the
classic PID controller.

Keywords—Fractional order calculus, fractional order controller,
fractional order system, ball and beam system, PIλDμ controller,
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I. INTRODUCTION

benchmark laboratory equipment with high non-linearity in its
dynamics. The system (shown in Fig. 1) [12] is very simple
but important class of second order systems as they model
single degree of freedom translation and rotational systems. A
ball is placed on a beam where it is allowed to roll with one
degree of freedom along the length of the beam. The sensor
placed on one side of the beam detects the ball roll along the
beam and its position. A lever arm is attached to the beam
at one end and a servo gear at the other. As the servo gear

Fig. 1. Ball and beam system

turns θ, the lever changes the angle of the beam α. When the
angle is changed from the vertical position, gravity causes the
ball to roll along the beam. The control job is to automatically
regulate the position of the ball x on the beam by changing
the angle of the beam α. It is a difficult control task because
the ball does not stay in one place on the beam but moves with
an acceleration that is proportional to the tilt of the beam. The
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ball and beam system is an inherent open-loop unstable system
[11] because the system output (the ball position) increases
without limit for a fixed input (beam angle). These properties
have made the ball and beam system a suitable device to test
various control techniques.

Fig. 2. Schematic diagram

Fraction order control [3], [7] is the non-conventional
control technique and developed during the last few decades.
Most of the work in fractional order control systems are in
theoretical nature and controller design and its implementation
in practice is very small but there are some limited practical
application as for example, flexible spacecraft attitude control
[8], temperature control [9], motion control [10], etc. The
significance of fractional order control system is that it
is a generalization of classical control theory which could
lead to more adequate modelling and more robust control
performance. Despite of this fact, the integer-order controls
are still more welcome due to absence of accurate solution
methods for fractional order differential equations (FODEs).
But recently, many progresses in the analysis of dynamic
system modelled by FODEs [1] have been made and
approximation of fractional derivatives and integrals can be
used in the wide area of fractional order control systems. It is
also observed that PID controllers which have been modified
using the notion of fractional order Integrator and differentiator
applied to the integer order or fractional order plant to enhance
the system control performance. References [2], [4]–[6] give
the idea of simple tuning formulas for the design of PID
controllers. In this work, the main objective is to apply the
fractional order PID control to enhance the ball and beam
system control performance. The paper presents few results
and does not at all do justice to extensive real time simulation
results.

Some MATLAB function files are used in this paper to
simulate the fraction order dynamic system using reference

we present a mathematical modelling of ball and beam system.

THE ball and beam system is one of the most popular
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[3]. The rest of the article is organized as follows: In Section II,
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and technical formulations for fractional order PID controller

paper with some remarks and conclusion.

II. MATHEMATICAL MODELLING OF BALL AND BEAM
SYSTEM

The basic mathematical description of ball and beam system
consists of (a) DC servomotor dynamic model and (b) ball on
the beam model.

Modelling DC servomotor can be divided into electrical and
mechanical two subsystems. The electrical subsystem is based
on Kirchhoff’s voltage law:

Lmİm +RmIm +Kbθ̇ = U (1)

where U is the input voltage, Im is armature current, Rm and
Lm are the resistance and inductance of the armature, Kb is
back emf constant and θ̇ is angular velocity.
Since compared to RmIm and Kbθ̇, the term Lmİm is very
small, therefore in order to simplify the modeling, the term
Lmİm
reduced to

RmIm +Kbθ̇ = U (2)

The mechanical subsystem is given by
1

Kg

(
Jmθ̈ +Bmθ̇

)
= τm (3)

where Kg is the gear ratio, Jm is the effective moment of
inertia, Bm is viscous friction coefficient, τm is the torque
produced at the motor shaft.
The electrical and mechanical subsystems are coupled to each
other through an algebraic torque equation

τm = KmIm (4)

where Km is the torque constant of motor.

1

Kg

(
Jmθ̈ +Bmθ̇

)
= KmIm

⇒ Im =
Jmθ̈ +Bmθ̇

KmKg
(5)

Substituting the value of Im in (2), the differential equation
for DC motor model is obtained as

RmJm
KmKg

θ̈ +

(
Kb +

RmBm

KmKg

)
θ̇ = U (6)

Taking the Laplace transform of (6), the DC servomotor model
for ball and beam system is obtained as

RmJm
KmKg

s2Θ(s) +

(
Kb +

RmBm

KmKg

)
sΘ(s) = U(s)

⇒ Θ(s)

U(s)
=

KmKg

RmJms2 + (RmBm +KbKmKg)s
(7)

Consider the schematic diagram of the ball-beam model as
shown in Fig. 2. The Lagrangian equation of motion of the
model is written as:(

J

R2
+m

)
ẍ+mg sinα−mx (α̇)

2
= 0 (8)

Equation (8) is linearized about the beam angle α = 0, which
gives the following linear approximation of the system:(

J

R2
+m

)
ẍ = −mgα (9)

Since the beam angle α and the angle of the gear θ are not
same, therefore Fig.3 is used to calculate them. Since the arc

Fig. 3. Relation between motor position and beam angle

distances in the two circles are equal, therefore, the equation,
which relates the beam angle α to the angle of the gear θ can
be approximated by the linear relationship:

αL = θd

α =
d

L
θ (10)

On substituting (10) in (9),:(
J

R2
+m

)
ẍ = −mg

d

L
θ (11)

Taking Laplace transform of (11),(
J

R2
+m

)
X(s)s2 = −mg

d

L
Θ(s)

⇒ X(s)

Θ(s)
=

−mgd

Ls2
(

J
R2 +m

) (12)

The physical parameters for a ball and beam system [12] are

TABLE I
PHYSICAL PARAMETERS OF BALL AND BEAM SYSTEM

Parameter’s name Unit Value
Mass of the ball (m) Kg 0.011

Radius of the ball (R) m 0.015
Acceleration due to gravity (g) m/s2 −9.8

Length of the beam (L) m 0.4
Radius of the gear (d) m 0.04

Section III illustrates a brief introduction of fractional order
system and fractional calculus. Section IV gives the basic ideas

design. Section V deals with fractional order PID controller
design for ball beam system. Section VI discuss about the
results and simulation analysis and Section VII concludes the

A. DC Servomotor Dynamic model

is neglected. Equation (1) for DC motor model is

Using (4), (3) can be written as

B. Ball on the Beam model

listed in Table I Finally, on substituting the value of physical

parameters from Table I in (12) yields the ball and beam
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system transfer function:

X(s)

Θ(s)
=

−0.11×−9.8× 0.4

0.4× (
2×0.11

5 + 0.11
)× s2

⇒ P (s) =
0.7

s2
(13)

The obtained ball beam model (13) is a particular example of
double integrator system and it indicates unstable behavior as
ball position (output) increases without limit for a fixed servo
gear angle (input). It is also illustrated in Fig.4.
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Fig. 4. Open-loop system response

III. FUNDAMENTALS OF FRACTIONAL ORDER CONTROL
SYSTEM

Fraction order control is the non-conventional way of robust
control based on fractional order derivative. Most of the works
in fractional order control systems are in theoretical nature and
controller design and implementation in practice is very small.

A. A Brief Introduction to Fractional Calculus

Fractional calculus is the generalization of integration
and differentiation to fractional order fundamental operator
αDβ

t f(t), where α and t are the limits and β ∈ R is the order
of the operation. The continuous integro-differential operator
is defined as [3]

αDβ
t f(t) =

⎧⎪⎪⎨
⎪⎪⎩

dβ

dtβ
: β > 0,

1 : β = 0,∫ t

α
(dτ)−β : β < 0.

(14)

There are several definitions of fractional integration
and differentiation. The most often used are the
Grunwald-Letnikov (GL) definition and the Reimann
Liouville definition (RL). For a wide class of functions, the
two definitions-GL and RL are equivalent.
The GL is given as [3]:

αDβ
t f(t) = lim

h→0
h−β

[ t−α
h ]∑

j=0

(−1)j

(
β

j

)
f(t− jh), (15)

where [.] means the integer part.
The RL definition is given as [3]:

αDβ
t f(t) =

1

Γ (n− β)

dn

dtn

∫ t

α

f(τ)

(t− τ)β−n+1
dτ, (16)

for (n− 1 < β < n) and where Γ(.) is the Gamma function.
For many engineering applications, the Laplace transform are
often used. The Laplace transform of the GL and RL fractional
differointegral under zero initial conditions for order β is given
by

L
[
αD±β

t f(t); s
]
= s±βF (s) (17)

The fractional-order system is the direct extension of
classical integer-order systems. It is obtained from the
fractional-order differential equations. A typical n-term linear
fractional order differential equation (FODE) in the time
domain is given by

αnDβn

t y(t) + · · ·+ α1Dβ1

t y(t) + α0Dβ0

t y(t) = 0 (18)

Consider the control function which acts on the FODE system
(18) as follows:

αnDβn

t y(t) + ..+ α1Dβ1

t y(t) + α0Dβ0

t y(t) = u(t) (19)

On taking the Laplace transform of (19), we get

αns
βnY (s) + ..α1s

β1Y (s) + α0s
β0Y (s) = U(s) (20)

From (20), we can obtain a fractional order transfer function
as

G(s) =
Y (s)

U(s)
=

1

α0sβ0 + α1sβ1 + ..+ αnsβn
(21)

In general, the fractional-order transfer function (FOTF) of a
single variable dynamic system can be defined as

G(s) =
b0s

γ0 + b1s
γ1 + · · ·+ bmsγm

a0sβ0 + a1sβ1 + · · ·+ ansβn
(22)

where bi(i = 0, 1 · · ·m), ai(i = 0, 1 · · ·n) are constants and
γi(i = 0, 1 · · ·m), βi(i = 0, 1 · · ·n) are arbitrary real or
rational numbers and without loss of generality they can be
arranged as γm > γm−1 > · · · > γ0 and βm > βm−1 > · · · >
β0.
The incommensurate fractional order system (22) can also be
expressed incommensurate form by the multivalued transfer
function

H(s) =
b0 + b1s

1
ν + · · ·+ bms

m
ν

a0 + a1s
1
ν + · · ·+ ans

n
ν

, (ν > 1). (23)

Note that every fractional order system can be expressed in
the form (23) and domain of the H(s) definition is a Riemann
surface with ν Riemann sheets.

B. Fractional Order Transfer Function



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1251

C. Stability of Fractional Order System

A linear time-invariant system is stable if the roots of
the characteristic polynomial are negative or have negative
real parts if they are complex conjugate. It means that they
are located on the left half of the complex plane. In the
fractional-order LTI case, the stability is different from the
integer one. The interesting point is that a stable fractional
system may have roots in the right half of the complex plane
(see Fig.5).

Fig. 5. Stability region of LTI fractional order systems

Theorem 1: (Matignon’s stability theorem) [3]:The
fractional transfer function G(s) = N(s)

D(s) is stable if and
only if |arg(σi)| = q π

2 , where σ = sq, (0 < q < 2) with
∀σi ∈ C, ith root of D(σ) = 0.

Remark 1: When s =0 is a single root of D(s), the system
cannot be stable.

tends to the whole s-plane when q = 0, corresponds to the
Routh-Hurwitz stability when q = 1 and tends to the negative
real axis when q = 2.
It should be noted that, only the denominator is meaningful
in stability assessment and the numerator does not affect
the stability of a FOTF. The stability of the fractional order
system can be analyzed in another way also. Consider the
characteristic equation of a general fractional order system in
the form as:

α0s
β0 + α1s

β1 + · · ·+ αns
βn =

n∑
i=0

αis
βi = 0. (24)

For βi =
νi

ν , we transform (24) into σ-plane:

n∑
i=0

αis
νi
ν =

n∑
i=0

αiσ
νi = 0 (25)

where σ = s
k
m and m is the least common multiple of ν.

For given αi, if the absolute phase of all roots of (18) is
|φσ| = |arg(σ)|, we can summarize the following facts of
stability for fractional order systems :

1) The condition for stability is π
2m < |arg(σ)| < π

m .
2) The condition for oscillation is |arg(σ)| = π

2m .

Otherwise the system is unstable.

IV. DESIGN PHILOSOPHY

In this section, main objective is to discuss the
fractional-order PIλDμ controller design methodology for
the system model. In theory, the control system can include
both the fractional order plant to be controlled and fractional
order controller. However, in control practice, more common
is to consider the fractional order controller and integer order
plant. Here we demonstrate the design methodology for the
scenario where integer order system model is being controlled
by fractional order controller.

The fractional-order PIλDμ generalizes the PID controller
with integrator of real order λ and differentiator of real order
μ and expands it from point to plane. This expansion adds
more flexibility to controller design and we can control our
real world processes more accurately.

Fig. 6. Expanding from point to plane

The differential equation of fractional order PID controller is
described by

u(t) = KP e(t) +KID−λ
t e(t) +KDDμ

t e(t) (26)

The continuous transfer function of FOPID is also obtained
through Laplace transform, which is given by is given by

C(s) = KP +
KI

sλ
+KDsμ, (λ, μ > 0) (27)

It is obvious to note that the FOPID controller not only needs
to design the three parameters KP ,KI and KD but also
need to design two orders λ and μ of integral and derivative
controllers. The orders λ and μ are not necessarily integers.
It can be any real numbers. Taking λ = 1 and μ = 1, we
obtain a classical PID controller. If μ = 0, we can obtain PIλ

controller, etc. All these type of controllers are particular case
of the PIλDμ controller, which is more flexible and gives an
opportunity to better adjust the dynamical properties of the
fractional-order control system. In this article, we have used
particle swarm optimization (PSO) [13] technique to design
fractional order PIλDμ controller.
The Particle swarm optimization algorithm attempts to mimic
the natural process of group communication of individual
knowledge, which occurs when a social swarm elements
flock, migrate, forage, etc. in order to achieve some optimum
property such as configuration or location. The swarm is

For theorem 1, the stability region suggested by Fig. 5
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initialized with a population of random solutions. Each particle
in the swarm is a different possible set of the unknown
parameters to be optimized. Representing a point in the
solution space, each particle adjusts its flying toward a
potential area according to its own flying experience and shares
social information among particles. The goal is to efficiently
search the solution space by swarming the particles toward the
best fitting solution encountered in previous iterations with the
intent of encountering better solutions through the course of
the process and eventually converging on a single minimum
error solution. The investigated PSO-based method for finding
a solution to the FOPID controller design problem is described
as follows:
Step-01: Create a uniformly distributed population of particles.
Step-02: Evaluate each particle’s position according to the
objective function.
Step-03: If a particle’s current position is better than its
previous best position, update it.
Step-04: Determine the best particle (according to the particle’s
previous best positions).
Step-05: Update particle’s velocities.
Step-06: Move particles to their new positions.
Step-07: Go to step 2 until stopping criteria are satisfied.
Step-08: Latest position vector of the best particle is the
optimized values of controller design parameters.

V. FRACTIONAL ORDER CONTROLLER DESIGN FOR BALL
AND BEAM SYSTEM

Let transfer function of fractional order feedback control
system is given by

Pcl(s) =
P (s)C(s)F (s)

1 + P (s)C(s)F (s)
(28)

Let φm is required phase margin of the system. In order
to achieve required phase margin, our controller C(s) must
satisfy

|P (jω)C(jω)F (jω)| = 1

⇒ C(jω) =
1

|P (jω)F (jω)|e
jφm (29)

If 1
|P (jω)F (jω)| = K, we can write (29) as

C(jω) = Kejφm

⇒ C(jω) = K cos(φm) + jK sin(φm) (30)

Now on substituting s = jω in (27), we can get

C(jω) =KP +
KI

(jω)λ
+KD(jω)μ

⇒ C(jω) =KP +KIω
−λ cos

(π
2
λ
)
+KDωμ cos

(π
2
μ
)

+ j
(
−KIω

−λ sin
(π
2
λ
)
+KDωμ sin

(π
2
μ
))

(31)

On equating real and imaginary parts of (30) and (31) for
C(jω) we get,

f1 (λ, μ) = R =KP +KIω
−λ cos

(π
2
λ
)
+KDωμ cos

(π
2
μ
)

−K cos(φm) = 0 (32)

f2 (λ, μ) = I =−KIω
−λ sin

(π
2
λ
)
+KDωμ sin

(π
2
μ
)

−K sin(φm) = 0 (33)

P =tan−1

(
I

R

)
(34)

where R=real part of the complex expression, I=imaginary part
of the complex expression and P=phase

(
= tan−1

(
I
R

))
.

Now define an objective function

f = |R|+ |I|+ |P | (35)

and minimize f using particle swarm optimization
(PSO) technique to find out the optimum solution set
{KP ,KI ,KD, λ, μ} for which f = 0.
The solution space is five-dimensional, the five dimensions
being KP ,KI ,KD, λ and μ. So each particle has a five
dimensional position and velocity vectors.
The limits on the position vectors of the particles (i.e. the
controller design parameters) are set by us as follows.
As a practical assumption, we allow KP to vary between
1 and 1000, KI and KD between 1 and 500, λ and μ
between 0 and 2. Initializations of the five variables are also
done in the above mentioned ranges. For unity feedback
loop, we also consider the gain margin for our plant model
K = 1

|P (jω)F (jω)| = 1 at phase crossover frequency
ω = 0.8367.
After running the PSO algorithm in MATLAB, we obtained
the position vector of the best particle, i.e. the optimized
values of controller design parameters {KP ,KI ,KD, λ, μ}
as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

KP = 20.4501

KI = 1.43

KD = 10.233

λ = 0.9191

μ = 0.8845

(36)

On substituting the value of design parameters from (36) into
(27), we got the following fractional order PID controller for
ball and beam system:

C(s) = 20.4501 +
1.43

s0.9191
+ 10.233s0.8845 (37)

VI. SIMULATION AND RESULTS ANALYSIS

The transfer function of unity feedback control loop with
fractional order controller (37) and the ball beam system (13)
has the following form:

Gcl =
Go(s)

1 +Go(s)
=

P (s)C(s)

1 + P (s)C(s)

=
7.1631s1.8036 + 14.3151s0.9191 + 1.001

s2.9191 + 7.1631s1.8036 + 14.3151s0.9191 + 1.001
(38)



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1253

where Go(s) is the transfer function of the open control loop
with

Go(s) =
7.1631s1.8036 + 14.3151s0.9191 + 1.001

s2.9191
(39)

The fractional order ball beam feedback control system
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Fig. 7. Stability region of ball beam system controlled by fractional order
PIλDμ controller

is simulated in MATLAB environment under fotf class
using reference [3]. The stability region of ball beam system
controlled by fractional order PIλDμ controller is shown in
Fig.7.
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Fig. 8. Comparison of unity step response of ball beam feedback system
with integer order PID controller and with fractional order PID controller

To compare the system performance, we also consider the
integer order classic PID controller for our plant model. Using
MATLAB PID tool, we got the following PID controller:

C(s) = 1.36 +
0.032

s
+ 1.73s (40)

In Fig.8, comparison of the unit step response of the ball
beam feedback system controlled by fractional order PID

controller and integer order classic PID controller is given.
The fractional order PID controller design exhibits a very
negligible overshoot and effectively achieves its steady state
within 2 second only, whereas classic PID controller exhibits
a large overshoot and achieves its steady state after 8 second.
The conclusion is that the use of the fractional order controller
leads to an improvement of performance of the system
(see Fig.8). We also find that the fractional order controller
increases the stability region of the system (see Fig.7).
The bode diagram of the controlled model is also presented
in Fig.9. It can be seen that phase margin φm ≈ 60◦ which
satisfy our desired specifications.
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Fig. 9. Comparison of frequency response of ball beam feedback system
with integer order PID controller and with fractional order PID controller

VII. CONCLUSION

In this paper, a case study of fractional order feedback
control of the ball and beam system is presented. Stability and
performance analysis of fractional order control for the ball
and beam system is investigated. The basic ideas and technical
formulations for the analysis of fractional order control
systems are also briefly illustrated. The design algorithm
for fractional order PIλDμ parameters uses a phase margin
specification of open control loop. Simulation results show
that fractional order PIλDμ controller outperforms in ball
beam plant model. The major purpose of this paper is to draw
attention to the non-conventional way of system analysis and
its control. We believe that fractional order control can benefit
control engineering practitioners in a number of ways.
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