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Abstract—Natural resources management including water 

resources requires reliable estimations of time variant environmental 

parameters. Small improvements in the estimation of environmental 

parameters would result in grate effects on managing decisions. 

Noise reduction using wavelet techniques is an effective approach for 

preprocessing of practical data sets. Predictability enhancement of the 

river flow time series are assessed using fractal approaches before 

and after applying wavelet based preprocessing. Time series 

correlation and persistency, the minimum sufficient length for 

training the predicting model and the maximum valid length of 

predictions were also investigated through a fractal assessment.  

 

Keywords—Wavelet, de-noising, predictability, time series 
fractal analysis, valid length, ANN. 

I. INTRODUCTION 

IME series trend, persistency, correlation, long-term 

memory and fractal properties are some important keys to 

judge on the future variations of the natural temporal events as 

well as their past history. Practical time series always contain 

some noise due to random influences (dynamical noise) and 

inaccuracies (additive noise) [1]. The performance of many 

techniques of modeling, prediction and control of hydrological 

systems is significantly affected by noise. Noise removing or 

noise reduction is a non-negligible stage to reach the basic 

trend and geometry of hydrological time series. Moving 

average, low-pass filters, nonlinear smoothing and wavelet-

based de-noising algorithms are the common noise reduction 

techniques. The efficiency and suitability of the wavelet based 

de-noising techniques in order to enhance the predictability of 

river flow time series is investigated through fractal analysis 

approaches in this study. 

Wavelets have been shown to be an indispensable tool for 

scale variant representation and analysis of temporal data [2].  

Fourier Transform (FT) and Fast Fourier Transform (FFT) 

have commonly been used for time series analysis. Fourier 

transform is not fully efficient in analyzing the frequency 

contents of fBm signals [3]. Another insufficiency of the 

Fourier transform is its incapability to determine the occurring 

time of each frequency beside its amplitude 2.  

WT decompose the signals into coefficients of coarser 

scales which define as approximation signals and coefficients 

of finer scales that are called the detail signals (Fig 1). 

Continuous Wavelet Transform (CWT) and Discrete Wavelet 
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Transform (DWT) are two wavelet approaches that have been 

used in this study. 
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Fig. 1 Signal decomposing into the approximation and the detail 

signals using discrete WT (a) Band-e- Bahman approximation signal 

(b) Band-e-Bahman detail signal 

 

As the preprocessing stage the noise components of the 

original signals are reduced using WT. A feed forward Multi-

Layer Perceptron (MLP) artificial neural network (ANN) with 

Levenberg-Marquardt (L-M) training algorithm has been used 

as the predicting model. Based on types of the inputs to the 

ANN three scenarios are developed to assess the model’s 

performance under the influence of the data processing.  
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II. MATERIALS AND METHODS 

A. Wavelet Analysis 

Studying Fourier transform shows its strong limitation to 

deal with the real data. Sine waves which are the basis of 

Fourier analysis do not have limited duration. They extend 

from ∞−  to ∞+  with a smooth and predictable pattern. 

However most natural signals have sharp changes and tend to 

be irregular and asymmetric. Wavelet concept provides a 

method to overcome these limitations. Fourier analysis consist 

of breaking up a signal in to sine waves of various frequencies 

while wavelet analysis is the breaking up of a signal into 

shifted and scaled version of the original wavelet which is 

called the mother wavelet [4]. The mother wavelet should 

have properties that lead to a meaningful interpretation of the 

decomposition [2]. It should be able to split the signal 

recursively in to the actual trend called approximation and the 

residuals or fluctuations which are the detail signals.  

The CWT of a function
f
is an integral transformation of 

the form  

 

( )( ) ( ) ( )∫=
R

ba dxxxfbafw ,, ,ψψ                          (1) 

                                                                          

In which a  is scale and b  is the translation parameter that 

depict the location. ( )xba,ψ  defines as 
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Applying the CWT to a function f for different pair of 

parameters a and b make different information on
f
. 

Therefore, after the wavelet decomposition the signal 

frequency can be obtained at different scales.  

The CWT is useful for theoretical purposes but for 

practically analyzing signals it is not the suitable choice. It 

needs a great amount of computation time and resources. The 

DWT which corresponds to the transform “(1)” for discrete 

values of a and b, reduce the computation time significantly 

and is simpler to implement. 
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In which the coefficients are determined as 
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This could be achieved if we represent the wavelet as 
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where 
10 >a
 is a fixed dilation step and the translation 

parameter 0b  depends on the dilation step. The signals are 
conducted through high pass and low pass filters of different 

frequencies. The signal is then decomposed to one containing 

the high frequencies which indicate the signal’s noise and the 

rest is the actual trend. This filtering procedure continues and 

in the next level the approximation signal is decomposed into 

noise and trend signals through the same procedure. 

Depending on the level of decomposing, the procedure repeats 

till a defined frequency is removed from a specific part of the 

signal. 

B. Fractal Analysis 

Fractal processes have similar conducts when studied at 

different scales. Fractal analysis is a mathematical set of 

methods to reveal the fractal properties of such processes. By 

using the context of self-affinity, a fractal property, 

Mandelbrot & Van Ness [5] extended the concept of fractal 

analysis to time series. Since then, fractal analysis has become 

a valuable tool in studying the time series behavior of natural 

processes. To evaluate the fractal scaling of a process, two 

indices are commonly employed. Fractal dimension denoted 

by fD
 and Hurst exponent H  are the mentioned criteria. A 

variety of methods have been proposed according to the time 

series class and length to measure fD
 and H  [6], [7]. Two 

main classes of signals are the fractional Gaussian noise (fGn) 

signals which are the stationary signals and the fractional 

Brownian motion (fBm) signals which are the non-stationary 

signals. In the present study, the Detrended fluctuation 

analysis (DFA) method is used to analyze the fractal 

properties of both the fGn and fBm time series. Time series 

correlation, predictability index and persistency along with the 

minimum length of the time series needed for prediction and 

the maximum valid predicted length of the time series are then 

calculated according to the fractal dimension based relations. 

C. Detrended Fluctuation Analysis (DFA) 

Peng et al. [8] suggested the DFA method for the first time. 

Based on root mean square analysis, non-stationary trends 

from long range correlated time series are removed. The signal 

is integrated and the mean is subtracted:  

 

( ) ( )[ ].
1

∑
=

−=
k

i

xixkX

                            (6) 
              

This integrated series is divided into non overlapping 

intervals of lengthn . In each interval, a least square line is fit 
on the data (representing the trend in the interval). The series 

)(tX
 is then locally detrended by subtracting given interval 
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lengthn , fluctuation is determined as a variance upon the 

local trend and the 
)(tX n theoretical values. For a 

characteristic size of fluctuation for this integrated and 

detrended series is calculated by: 

 

( ) ( )[ ]∑
=

−=
N

k

n kXkX
N

F
1

21

                       (7)  
            

This computation is repeated over all possible interval 

lengths. Typically, F  increases with interval length n. A 

power law relationship is expected as αnF ∝ , in which α  is 
expressed as the slope of a double logarithmic plot of F  as a 

function of n . Detrended fluctuation analysis is also a 
classifying tool for the time series and can be used to 

distinguish between fBm and fGn series. fGn corresponds to 

α exponent ranging from 0 to 1, and fBm to α exponents 
from 1 to 2. α can be converted in to H according to the 
following equations: 

 
α=H      for      fGn                                 (8) 

 

1−= αH       for     fBm                               (9) 
 

The fractal dimension )( fD  and the Hurst coefficient )(H  

can be transformed to each other using the relation bellow: 

 

HD f −= 2
                                      (10) 

D. Fractal Analysis of Correlation 

To identify a random process
( )tBH  as fractional Brownian 

motion (fBm) [5], [9], [10], the increment ( ) ( )0tBtB HH −  

should have a Gaussian distribution. The graph ( )tBH  is a 

geometrical object with a fractal dimension fD  [11] which 

range as 21 << fD . 

The past ( ) ( )[ ]tBB HH −−0  and the future 

( ) ( )[ ]0HH BtB −  increments are correlated as [12]            

 

To simplify the calculations and by applying the identity 
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and assuming tt −≡0  in calculating the variance we get 
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The correlation of past and future increments in ( )tBH  lasts 

independently of temporal severance between records in time 

[13]. Clearly greater values of ( )tC   indicate more significant 

correlation in the time series. According to H  values one can 

determine the persistency or anti-persistency of a process. 

15.0 << H  indicates the persistent processes and 

5.00 << H  characterizes anti-persistent time series. 

E. Fractal Based Predictability Indices 

Autocorrelation is a quality of time series to predict their 

future values based on their past values. Any time series that 

posses this feature is known as long-memory processes. Most 

hydrologic time series including river flow time series have a 

long-range dependency in their time sequences. Fractal 

analysis provides an approach for calculating the dependency 

of the future values in a time series based on its past history. 

The grater values of dependency rate yields more predictable 

time series. The fractal based predictability indices of time 

series can be derived from the relation presented by Rangrajan 

and Sant [14]. 

 

5.12 −= xx DPI                          (13) 

 

In which xD indicate the fractal dimension of time series 

and xPI depict the predictability indices of the series. Some 

researchers have developed this concept to some of 

hydrological processes like pressure, temperature and 

precipitation time series [15]. We have applied the concept of 

predictability index to stream flow time series as bellow: 

 

 5.12 −= ff DPI                       (14) 

 

where the predictability index of the river flow time series is 

fPI and fD indicates the series fractal dimension.  

The Minimum Sufficient Data Length for Prediction and the 

Maximum Valid Length of Predictions 

Through a fractal analysis the minimum length of time 

series which is sufficient to be used as input to the predicting 

model and the maximum valid length of time series predicted 

were derived. Concerning the fact that 5.0=H  indicate a 

normal independent time series one can conclude that 

5.0>H  depict increases in the long memory of the time 

series. The closer the H value to 1 the more predictable the 

series are. To determine the minimum length needed for 

prediction the variations of Hurst number in time series have 

been studied. Hurst number is calculated for decreasing 

lengths of time series. According to the cross validation 

approach the dedicated length for training was 240 months. 

Based on the chosen technique a decreasing step of 12 months 

is utilized from the 240th month towards the 1st month. The 

H values are calculated for each series length and the 

variations are recorded. Calculations are stopped in the first 

series with a significant difference in the H  values trend or 

the first interval with 5.0≤H  and the series length is 

assumed to be the minimum length of time series which is 
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sufficient for the training phase. Moreover, a windowing 

technique is employed to determine the maximum valid length 

of predictions. A window with the initial length of τ   is 

chosen. The second window length 2τ
 would be one month 

wider. The fractal dimension is calculated for each length of 

the window. The selected window is gotten wider in each trial 

and a different fractal dimension is estimated. The window 

widening and the fractal dimension calculation would be 

continued until the two sequential window lengths, nτ
 and 

1+nτ
, show a significant difference in their fractal dimensions. 

Constant fractal dimension in a length of a time series indicate 

a defined trend in that length which leads a more reliable 

prediction. As the data set within the length of τ  and nτ
 has 

constant fractal dimension and consequently constant trend 

and geometry, the window length nτ
 is assumed to be the 

maximum valid length of the predictions.     

F. Artificial Neural Network (ANN) Model 

In the present research, a feed forward MLP type ANN 

model [16] is improved. Efficient performance of ANN is 

truly dependent on the selected training algorithm. As stated 

by many researchers, the Levenberg-Marquardt (L-M) 

algorithm has superiority to other training algorithms because 

of its efficiency and high convergence speed [17]-[19]. The 

ANN architecture in this study contains three layers: an input 

layer which consist the explanatory variables, one hidden layer 

and an output layer consisting of a single neuron representing 

the flow to be modeled at time 1+t . A cross validation 

approach is employed to divide the time series into training, 

cross validation and testing portions. All the forecasts have 

been done for the stream flow of one month ahead.  

III. RESULTS AND DISCUSSION 

A. Results of the ANN Model Performance in the Three 

Scenarios 

Three scenarios were developed to investigate the influence 

of wavelet based preprocessing on the ANN model’s 

performance. Using two sets of approximation signals derived 

from CWT and DWT and the original river flow time series 

which were utilized as three types of inputs to the ANN model 

made the three possible scenarios. The model was trained with 

each of these data sets individually and the predictions were 

achieved (Fig. 2). Results indicated that the model’s 

performance for CWT and DWT preprocessed inputs 

(Scenario 1 & 2) is more efficient than the noisy non-

processed original data as in scenario 3. Three different 

evaluation criteria are used to compare the performance of the 

three models developed in this study. Correlation coefficient 

)(R , Root Mean Square Error )(RMSE and the Mean Absolute 

Error )(MAE  are the mentioned evaluation criteria. Clearly the 

lower RMSE  and MAE  indicate better performance of the 

ANN model and correlation coefficient values close to 1 

depict the models efficiency. 
 

-10

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120

Time (month)

D
is
c
h
a
rg
e
 (
c
u
b
e
d
 m

e
te
r/
s
)

original signal

CWT

DWT

Band-e-Bahman

 

Fig. 2 The actual and predicted stream flow time series for the three 
scenarios. The approximation signal based on CWT coefficients, 

DWT coefficients and the original signal is used as input. 

 

Results indicated the superiority of preprocessed data to the 

original data for the ANN model. The RMSE and MAE 

values, which indicate the model’s performance, were the least 

for the DWT coefficients of the second order Daubechies [20] 

wavelet (db2) and the most for the original data series (Table 

I). The correlation coefficient ( R ) also depicted the nearest 
values to 1 for the DWT coefficients. The results indicating 

the models’ efficiency in each case have been depicted in 

Table I. 
 

TABLE I 
RESULTS INDICATING THE PERFORMANCE EVALUATION CRITERIA OF THE 
ANN MODEL FOR THE THREE SCENARIOS IN THE THREE STATIONS 

Station Scenario RMSE MAE R 

Band-e- 

Bahman 

DWT approximation 

signal. (db2) 
6.47 3.59 0.75 

CWT approximation 
signal. (db2) 

8.94 4.93 0.68 

Original signal 12.0189 7.0035 0.38 

 

Aliabad 

DWT approximation 
signal. (db2) 

7.5765 4.1876 0.71 

CWT approximation 

signal. (db2) 
9.3211 5.24 0.64 

Original signal 15.2623 8.546 0.34 

 

Tang-e-

Karzin 

DWT approximation 
signal. (db2) 

11.863 6.7413 0.42 

CWT approximation 

signal. (db2) 
14.512 8.332 0.34 

Original signal 24.6981 14.1736 0.28 

B. Fractal Analysis Results 

The fractal analysis results indicating the time series 

correlation in two states of original and wavelet preprocessed 

time series depicted a remarkable increase in the Hurst number 

and the fractal dimension of the preprocessed signals. 

According to [13] the time series correlation has exponential 

relation with Hurst number. As shown in Table II, the 

correlation values of the stream flow series in the three gauge 

stations increase while the signals are decomposed. 
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TABLE II  

CORRELATION VARIATIONS OF THE RIVER FLOW TIME SERIES FOR THE THREE 
STATIONS 

 H  )(tC  

Station 
Original 

signal 

DWT 

app. signal 

CWT 
app. 

Signal 

Original 

signal 

DWT 
app. 

signal 

CWT 
app. 

signal 

Band-e- 
Bahman 

0.4417 0.81287 0.7841 -0.0776 0.543 0.4827 

Aliabad 0.4341 0.78696 0.7521 -0.0871 0.488 0.4184 

Tang-e-
Karzin 

0.4875 0.88979 0.834 -0.0171 0.7166 0.5888 

 

Time series persistency is also increased after excluding the 

noise contents from the series. As stated before, the Hurst 

values in the range of 15.0 << H  indicate the persistency of 

the time series. As seen in Table III the preprocessed time 

series possess higher H values and consequently more 

persistency. Results of the fractal based predictability indices 

of time series clearly indicated the time series predictability 

enhancement after the de-noising process. 

 
TABLE III   

PREDICTABILITY INDICES OF THE RIVER FLOW TIME SERIES FOR THE THREE 

STATIONS 

Station 

Df PIf 

Original 

signal 

DWT 

app. 
signal 

CWT 

app. 
Signal 

Original 

signal 

DWT 

app. 
signal 

CWT 

app. 
Signal 

Band-e- 

Bahman 
1.5582 1.1817 1.2158 0.1165 0.6365 0.5682 

Aliabad 1.5658 1.2130 1.247 0.13162 0.5043 0.5043 

Tang-e-

Karzin 
1.51426 1.1102 1.157 0.02852 0.77958 0.686 

 

As the fractal dimension of a persistent hydrologic time 

series vary in the range of 5.11 << fD  the predictability 

indices vary as 10 << fPI  . The more persistent the series 

are, the higher the predictability indices of the series would be. 

Accordingly, the wavelet preprocessing of the river flow time 

series has increased the predictability of series as well as their 

correlation and persistency. Results of the predictability 

analysis have been presented in Table III. 

 

 

Fig. 3 The minimum sufficient length for prediction in the three 
scenarios 

 

As can be seen in Figs. 3 and 4 the minimum sufficient 

length of the time series which is needed for the training phase 

of the prediction model is influenced by the wavelet 

preprocessing as well as the maximum valid length of the 

predictions. Results depicted that while the minimum needed 

length of data series got shorter the maximum valid length of 

the predictions increased.  
 

                                            

(a) 

 

 

(b) 

Fig. 4 The maximum valid length in Band-e-Bahman station (a) the 
maximum valid length for the original signal (b) the maximum valid 

length for the DWT app. Signal 

  
According to Fig. 3 while the minimum length of the series 

needed to train the neural network model is 168 months for the 

original signal, this length would reduce to 132 months for 

CWT approximation signals and 96 months for the DWT 

approximation signals. Studying Fig. 4 also depict that while 

the maximum valid length of the prediction is only 2 months 

for the original signals, the maximum valid length exceed 8 

months for the preprocessed signals. The accessible data were 

456 months and the predictions were done for 24 months. The 

trend of the fractal dimension variations was considered from 

the 450th month to the last predicted month. 

IV. CONCLUSION 

A feed forward MLP with L-M training algorithm was used 

to predict the stream flow time series. Wavelet de-noising 

approach using CWT and DWT techniques was employed in 

order to preprocess the data series. As derived from the 

evaluation criteria the ANN model performance, in terms of 

predictions, was remarkably better for preprocessed time 

series. DWT based approximation signals (db2) led to the best 

results. CWT based approximation signals also seemed more 

appropriate than the raw noisy original data series. Results of 

the fractal assessment emphasized on the major influence of 

signal de-noising on increasing the correlation rate and the 

long-term memory of the preprocessed time series. The fractal 

analysis of the data series showed an increase in time series 
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persistency after the preprocessing. The fractal based 

predictability indices also depicted a notable improvement for 

preprocessed time series. Results of the utilized fractal 

windowing technique depicted decreases in the estimates of 

the minimum sufficient lengths of data for training the 

prediction model and increases in the maximum valid lengths 

of the predicted data series which indicated on the disclosure 

of the inherent trend of the time series and the reliability of the 

predictions when using wavelet based preprocessing 

techniques.  
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