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Abstract—In this paper, we propose a new method to describe 

fractal shapes using parametric l-systems. First we introduce scaling 
factors in the production rules of the parametric l-systems grammars. 
Then we decorticate these grammars with scaling factors using turtle 
algebra to show the mathematical relation between l-systems and 
iterated function systems (IFS). We demonstrate that with specific 
values of the scaling factors, we find the exact relationship 
established by Prusinkiewicz and Hammel between l-systems and 
IFS. 
 

Keywords—Fractal shapes, IFS, parametric l-systems, turtle 
algebra. 

I. INTRODUCTION 

 lot of work has been developed and is still being 
developed in fractal modeling. Some of it is related to 

image compression and some other to natural phenomena 
simulation [1], etc. in this work, we are interested in fractal 
modeling and its use in shapes’ creation. The objective is to 
have the possibility to create and manipulate original, varied 
and plastically interesting shapes. With this objective in mind, 
an extension of geometric modeling to fractal forms has been 
developed. Now in IFS formalism itself, classic forms (curves 
and smooth surfaces) can be represented [13]. Using IFS 
generalizations, some classical approaches have been 
extended to fractal shapes: Constructive geometry, free form 
shapes and geometric operations on shapes (deformation, 
combination and product) [12]. Other work concerns the 
topological representation of fractals, where the attractors’ 
topological equivalences are deduced from the IFS’ 
equivalences [3]. 

L-systems (or grammar based systems) are used to 
represent complex forms, mainly trees and vegetation 
elements. Other extensions were introduced such as the 
extension of l-systems to bracketed l-systems, context 
sensitive l-systems, parametric l-systems, etc [5]-[6]. 
Parametric context-sensitive-l-systems themselves have been 
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extended and introduced with affine geometry interpretation 
to describe subdivision curves [9]. 

Prusinkiewicz and Hammel have presented equivalence 
between l-systems and IFS [7]. If we consider the resulting 
figures, the two formalisms are nearly equivalent. In some 
examples, they presented an l-system model, its equivalent 
IFS and the resulting geometric form. The two formalisms 
describe structures with self-similarity between the partial and 
the global forms. 

We are interested in fractal shapes’ modeling using IFS. In 
this work, we present a new tool to represent fractal shapes 
using parametric l-systems and turtle algebra. For this 
purpose, we have relied on previous work from Prusinkiewicz 
who shows the relationship between l-systems and IFS [7]-[8]. 

II. REMINDERS 

A. Iterated Function Systems 
IFS represent a strong tool for fractal image analysis and 

synthesis. Seen its mathematical aspect, it offers simple 
methods for the generation of fractal shapes. IFS were first 
studied by Hutchinson in a pure mathematical context. Then, 
Barnsley [4] further developed this tool in fractal geometry 
and computer graphics. His idea was the coding of a fractal 
image with a set of contractive operators. This set of 
contractive operators is called IFS, and the figure coded by 
these ifs can be generated by iterating these operators. 

 
IFS are mathematically defined by the following definitions 

and theorems: 
 
Definition 1: Let E be a complete metric space and G an 

application of X in X. G is said contractive in E if: ∃  s < 1, 
∀ p1, p2 in E \ d(G(p1), G(p2)) ≤  s d(p1, p2). 

Theorem 1 (Fixed Point Theorem): Let be E a complete 
metric space. So be T: X →  X a contractive application. 
Then, there exists a unique point c ∈  X /T(c) = c. The point c 
is called the fixed point of T. 

Definition 2: Let be E a complete metric space. We call IFS 
every finite set T = (T 1 ,…., T N ) of contractive operators on 
X. 

Theorem 2: For every IFS τ, there exists a unique and not 
empty compact A / A = τ A = T 1  A ∪…. ∪ T N  A. A is called 
attractor of τ, and is noted A(τ). It is possible to associate a 
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figure for every attractor. The attractor A possesses the self 
similarity property. 

Barnsley defines the algorithm for the visualization of IFS 
as follows: Let be E a complete metric space, H(E) compact  
of E and τ an IFS. 
For all K 0 in H(E), every sequence (K n ) defined by K 1+n =   

τ K n  converges to the attractor A(τ). 
He called it the determinist algorithm for IFS visualization. 

B. L-systems 
Formally, a parametric l-system is a set formed by an 

alphabet, some formal parameters, an axiom and a set of 
production rules: G = {v, s, ω, p}. 

• v: Vocabulary, it describes the different classes of the 
modules. 

• s: The set of parameters representing the modules’ 
proprieties. 

• ω: The axiom that represents the initial state of the 
organism. 

• p: The set of production rules that describe the 
development of the organism. 

 
We use ‘:’ and ‘→’ to separate the three components of a 
production, the predecessor, the condition and the successor. 

 
The main concept of l-systems is the rewriting, which is a 

technique that permits the definition of complicated objects by 
the substitution of the parts of an initial object using a certain 
number of production rules. 

 
The initial interpretation is in fact two dimensional. The 

state of the turtle is defined by (x, y, α) where x, y is the 
position of the Turtle and α is its orientation. 

 
Given a step d and an increasing angle δ, the turtle responds 

to the next symbols: 
 
F: The turtle affects a displacement of a distance d, and the 

new position is: x’= x + d * cos (α), y’ = y + d*sin (α) and a 
segment is traced between (x, y) and (x’, y’). 

 
f: A displacement d without tracing a segment between the 

points (x, y) and (x’, y’). 
 
-: A rotation to the left by the angle δ. The new state of the 

turtle is (x, y, α -δ).  
 
+: A rotation to the right by the angle δ. The new state of 

the turtle is (x, y, α + δ). 
 
Here is an example:    
-LS0: n =1 

δ = 30 
ω : F 
p : F-> F+F--F+F 

LS0 model generates the structure in Fig. 1. 
 

 
Fig.1 2D displacement of the turtle 

 
 
With these basic concepts of the “Turtle interpretation of 
strings” we can define complex and very rich geometric forms 
from an artistic point of view. We can cite the Koch curves or 
like tree shapes as examples. 

III. TURTLE ALGEBRA 
Some works have been developed to help to introduce the 

basic concepts of computer graphics and computer aided 
design to students using the turtle geometry. LOGO is the 
software that uses this tool [10]-[11]. 

A. Turtle Monoïd 
In this paragraph we introduce an algebraic method used for 

the construction of scenes and the definition of modeling 
languages [2].  

First we give definitions of the components of this algebra: 
So be E one space, M is a monoïd acting on E. 
So be the couple (f, T), with f is a figure i.e. f in H(E) ∪  

{0}, T is a transformation in M. 
 
We demonstrate that with the following operations: 
(f, T) (f’, T’) = (f ∪ Tf’, TT’) and [(f, T)] = (f, I) = f, with I 

neutral element of M; 
 
The set K (E) x M is a monoïd: 
 
- The operation is associative: 
(f, T) [(f’, T’) (f’’, T’’)] = (f, T) [(f’ ∪ T’f’’, T’T’’)] 
= (f, T) ((f’ ∪ T’f’’, T’T’’), I) 
= (f, T) (f’ ∪ T’f’’, T’T’’) 
= (f ∪ T (f’ ∪ T’f’’), T’T’’) 
= (f ∪  Tf’ ∪  TT’f’’, TT’T’’)  
= (f ∪ Tf’, TT’) (f’’, T’’)  
= [(f, T) (f’, T’)] (f’’, T’’), so the operation is associative. 
 
- The operation possesses a neutral element: (φ , I), with I 

neutral element of M: 
(f, T) (φ , I) = (f ∪ T φ , T I) 

       = (f ∪  φ , T I) 
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       = (f, T) 
A scene is defined by a set of figures and operators that are 

get busted in the couples’ set: 
- f → (f, I), I is the neutral element of M. 
- T → (φ , T); φ  is the empty set. 

B. Turtle Moving 

The space is R 2 . 
The monoid M is the group of displacements in R 2 . 
This group is generated by translations T(x, y) and rotations 

R(α ). 
 
The turtle monoïd elementary couples are: 
- ([0, 1]x{0}, T(1, 0)), translation pen down along x 

axis. 
- (φ , T(1, 0)) translation pen up along x axis. 
 
The brackets correspond to the operation: [(f, T)] = (f, I). 

C. L-systems without Scaling Factors 
Here is an example of a grammar based plant model LS1 

given by Prusinkiewicz [7]: 
 
- LS1:  δ = 30  

ω : F 
p: F → F[+F]F[-F] 
 

This model generates the like tree structures of Fig. 2. 
  
 

 
 

 
 
 

 
From this experimental result, we remark that tree 

structures correspondent to model LS1 increase when the 
iterations number n increases.  

We can say that l-systems without scaling factors possess 
one characteristic of fractal geometry which is self similarity 
but not the second which the contraction propriety. 

So we can conclude that l-systems in their initial definition 
don’t generate fractal shapes, so they are not equivalent to 

IFS. 

IV. FRACTAL DESCRIPTION 

A. Fractal Trees 

Now we introduce scaling factors r 1 , r 2 , s 1 , s 2  < 1 to 
grammar based model LS1. We obtain LS2 model: 

- LS2:  δ = 30 
ω : F(1) 
p : F(w) → F(r 1 *w)[+F(s 1 *w)]F(r 2 *w)[-F(s 2 *w)] 

 
w is a parameter introduced into the grammar. 
Now we’ll decorticate LS2 model, using the turtle monoïd 

algebra cited below. 
We demonstrate that in the nth iteration, the symbol F is 

equivalent to:  
F n (w) = (S(w) g n ,T(0,w)), with S(w) is the scaling 

operator by w factor and (g n ) sequence of figures defined by: 

 )S(s R(-30) T(0,1) = T ),S(r )r T(0, =  T
 ), S(s R(30) ) r T(0, =  T ), S(r =  T

 and
 g T g  T g  T g  T = g

24213

11211

n4n3n2n11n+

 (1) 

 
T is the translation operator and R is the rotation operator. 
 
Here is the demonstration: 

 
On step n, the symbol F (in LS2 grammar) makes a 

displacement D n  and traces a figure f n  simultaneously.  

On step n, F is equivalent to F n  = (f n , D n ), with f n  is the 

associated figure and D n  is the associated displacement. 
 
We note: F n (w) = (f n (w), D n (w)). 

For n = 0, we have F 0 (w) = (f 0 (w), D 0 (w)), with: 

f 0 (w) = S(w) g 0 , g 0 = {0}x[0,1] and D 0 (w) = T(0,w), so 
the hypothesis is true for n = 0. 

We suppose that the hypothesis is true for n: 
f n (w) = S(w)g n ,  D n (w) = T(0,w); 
We demonstrate that it is true for n+1. 
 
We pose: R +  = R(δ) and R −  = R(-δ). 
 
The expression of F 1+n (w) respect to F n (w) is: 

F 1+n (w) = F n (r 1 *w) [(φ , R + ) F n (s 1 *w)] F n (r 2 *w)  

  [ (φ , R − ) F n (s 2 *w)]; 
If we develop the expressions: 

Fig. 2 Like tree structures correspondent to LS1 model 
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F n (r i *w) = (S(r i *w) g n , T(0, r i *w)) (the operation is 
true for n), using the turtle algebra, we’ll have: 

(f 1+n (w), D 1+n (w)) = (S(r 1 *w) g n , T(0, r 1 *w)) 

[(φ , R + )(S(s 1 *w) g n , T(0, s 1 *w))] 

  (S(r 2 *w) g n , T(0, r 2 *w)) 

[(φ , R − ) (S(s 2 *w) g n , T(0, s 2 *w))]; 

= (S(r 1 *w) g n , T(0, r 1 *w))  

[(R +  S(s 1 *w) g n , R +  T(0, s 1 *w))]  

   (S(r 2 *w) g n , T(0, r 1 *w))  

[(R −  S(s 2 *w) g n , R −  T(0, s 2 *w))]; 

= (S(r 1 *w) g n , T(0, r 1 *w)) (R +  S(s 1 *w) g n , I)  

(S(r 2 *w) g n , T(0, r 2 *w)) (R −  S(s 2 *w) g n , I); 

= (S(r 1 *w) g n ∪  T(0, r 1 *w)R +  S(s 1 *w) g n , T(0, r 1 *w))  

(S(r 2 *w) g n ∪ T(0, r 2 *w) R −  S(s 2 *w) g n ,  

 T(0, r 2 *w)); 

 = (S(r 1 *w) g n ∪   

T(0, r 1 *w) R +  S(s 1 *w) g n ∪  

    T(0, r 1 *w) S(r 2 *w) g n ∪   

T(0, r 1 *w)T(0, r 2 *w) R −  S(s 2 *w) g n ,  

    T(r 1 *w) T(r 2 *w)); 
 
= (S(r 1 *w) g n ∪  T(0, r 1 *w)R +  S(s 1 *w) g n ∪  

T(0, r 1 *w) S(r 2 *w) g n T(0, (r 1 +r 2 )*w) R −  S(s 2 *w) g n ,  

T(0, (r 1 +r 2 )*w);  
 
The symmetry condition of fractal geometry is verified: The 

total sum of rotation angles is equal to zero ([+F(s 1 *w)] and 

[-F(s 2 *w)] in model LS2). 
To have the fractal contraction condition, we must conserve 

the translation vector, so we have: r 1 +r 2 = 1.  

We’ll have T(0, (r 1 +r 2 )*w) = T(0,w)  
and 
D 1+n (w) = T(0,w) = D n (w); 
 
f 1+n (w) = S(r 1 *w) g n ∪  T(0, r 1 *w) R +  S(s 1 *w) g n ∪  

T(0, r 1 *w) S(r 2 *w) g n  ∪ T(0,w)R −  S(s 2 *w) g n ; 
 

  = S(w) S(r 1 ) g n  ∪ S(w)T(0, r 1 ) R +  S(s 1 ) g n ∪  

S(w) T(0, r 1 ) S(r 2 ) g n ∪ S(w) T(0,1) R −  S(s 2 ) g n ; 

             = S(w) (S(r 1 ) g n ∪ T(0, r 1 ) R +  S(s 1 ) g n ∪  

T(0, r 1 ) S(r 2 ) g n ∪ T(0,1) R −  S(s 2 ) g n );     

             = S(w) g 1+n ; 
     
So the sequence of figures generated by the parametric L-

system LS2 is equivalent to:  

 )S(s R(-30) T(0,1) = T
)S(r )r T(0, =  T

) S(s R(30) ) r T(0, =  T
) S(r =  T

with 
 g T g  T g  T g  T = g

24

213

112

11

n4n3n2n11n+

        (2) 

 
The IFS equivalent to LS2 grammar model is given by 

equation (3). 

1rr
1s,s

 )S(s R(-30) T(0,1) = T
)S(r )r T(0, =  T

) S(s R(30) ) r T(0, =  T
) S(r =  T

21

21

24

213

112

11

=+
<

                    (3) 

 
If we give the values r 1 =r 2 =s 1 =s 2 =1/2 in (2), we’ll 

obtain exactly the expression given in [7]. With these values 
we obtain the like tree fractal shape of Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Like tree fractal shape correspondent to LS2 model for 

n = 7 and r 1 = r 2  = s 1 = s 2 = 1/2 
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B. Fractal Curves 
Let be a general production rule p of a grammar based 

model (l-system) given by: 
p: F(w) → R 0 F(r 1 *w) R 1 …F(r m *w) R m . 
 
- Symmetry condition of fractal geometry:  
Rotation angle equal to zero: R 0 …R m  = I; 
- Contraction condition of fractal geometry:  
Invariance of translation vector:  
R 0  r 1  u +…+R 1−m  r m  u = u, u is the unitary vector. 
 
As an example, we can cite the Von Koch curve given by 

the general l-system grammar LS3: 
-LS3: δ = 60 

ω : (-90)F(1) 
p : F(w) → F(w*r 1 )+F(w*r 2 ) --F(w*r 2 )+F(w*r 3 ) 

 
If we give the values r 1 = r 2  = s 1 = s 2 = 1/3, we obtain the 

classic Von Koch shapes of Fig. 4. 
 

 
Fig. 4 Von Koch Curves correspondent to LS3 model for r 1 = r 2  = 

s 1 = s 2 = 1/3 

 

C. Curved Trees 
Starting from:  
Theorem: the union of two IFS is an IFS [12]; we obtain: 
Corollary: The union of two l-systems, with scaling factors 
verifying the conditions cited below, is an IFS. 
With this corollary we can construct varied and rich 

interesting combined fractal forms [14]. 

LS4 is an example of an l-system grammar that combines 
two IFS described each one by a production rule to which we 
insert scaling factors inferior to 1. 

-LS4:  
δ = 60 

    ω : F(1) 
p1 : F(w) -> G1(0.4*w)G2(0.6*w) 
p2: G1(w) -> F(0.5*w)[+F(0.5*w)]F(0.5*w)[-F(0.5*w)] 
p3: G2(w) –> F(w*1/3)+F(w*1/3)--F(w*1/3)+F(w*1/3) 

 
In this model, p1 is a production rule indicating that F(w) is 

the union of two symbols G1(0.4*w) and G2(0.6*w) (The 
contraction condition is verified: 0.4+0.6 = 1). G1 is an IFS 
described by parametric l-system grammar with scaling 
factors described in production p2. G1 attractor corresponds to 
a fractal tree shape. G2 is an IFS described by parametric l-
system grammar with scaling factors described in production 
p3. G2 attractor corresponds to Von Koch fractal curve. LS4 
grammar based model attractor corresponds to the curved 
fractal tree of Fig. 5. 

 

 
Fig. 5 Curved tree shape correspondent to LS4 model for  

n = 8 

V. CONCLUSION 
In this paper we presented a new method for fractal shapes’ 

description with parametric l-systems and turtle algebra. This 
method permits us to generate filarial fractal shapes which 
structure can be smooth or rough. This can be of a great 
importance to represent some natural organisms (e.g. plants’ 
organs). IFS as an iterative formalism capable to generate 
varied and rich forms, mainly quadric and parametric surfaces 
[13], can be integrated within l-systems grammars. One 
immediate consequence is that plants’ organs (branches, 
leaves and flowers) can be represented iteratively within l-
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systems grammars, and can be easily deformed due to the 
flexibility of parametric surfaces. 
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