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     Abstract---The “PYRAMIDS” Block Cipher is a symmetric 
encryption algorithm of a 64, 128, 256-bit length, that accepts a 
variable key length of 128, 192, 256 bits. The algorithm is an 
iterated cipher consisting of repeated applications of a simple 
round transformation with different operations and different 
sequence in each round. The algorithm was previously software 
implemented in C++ code. In this paper, a hardware 
implementation of the algorithm, using Field Programmable 
Gate Arrays (FPGA), is presented. In this work, we discuss the 
algorithm, the implemented micro-architecture, and the 
simulation and implementation results. Moreover, we present a 
detailed comparison with other implemented standard 
algorithms.  In addition, we include the floor plan as well as the 
circuit diagrams of the various micro-architecture modules.  
 
    Keywords---FPGA, VHDL, micro-architecture, encryption, 
cryptography, algorithm, data communication security. 
 

I. INTRODUCTION 
 

EAL-TIME cryptography has recently attracted 
attention of a number of researchers. However, 

classical encryption algorithms have to be adapted to 
hardware implementation where area and time constraints 
are of vital importance. In this work, we present a 
modified version of the “PYRAMIDS” block cipher to 
suit hardware implementation using FPGA. The original 
algorithm was modified for packet-level data security 
applications [1]. The implemented micro-architecture 
consists of two main functional blocks. These are the 
address control module and the encryption module. In the 
next few sections we discuss the algorithm, the building 
blocks of the micro-architecture along with details of its 
operation. We also provide the details of the simulation 
and implementation results. The particulars of the 
performed simulations, timing, and routing reports and the 
floor plan are provided in the given appendix. Moreover, 
we provide a comparison with other FPGA 
implementations of standard encryption algorithms [2], 
[3], [4], [5], [6]. 
 

II. THE ALGORITHM 
 
In the following few lines, we provide a summary of the 
PYRAMIDS block cipher algorithm [1]. The aim of the 
algorithm is to take a plain text message of 256 bits and 
divide it to four parts x0, x1, x2 and x3, then apply some 
operations for 8 rounds using 4 sub-keys for each round. 
The key generation unit in the Encryption module accepts 
a 128-bit user key, and schedules the sub-keys for all 

rounds of encryption. These sub-keys are derived from the user’s 
input key using the key scheduling algorithm which is the 
PYRAMIDS algorithm itself. The round transformation is 
composed of different transformations. These transformations are 
addition +, xor ⊕  , right rotation >>>, and ordered operation⊗ . 
The ordered operation ⊗ differs depending on the round and it 
consists of AND, OR and NOT operations. Because of this, the 
round function is changed dynamically by considering the 
plaintext word W as consisting of four parts w0,w1,w2, and w3.  
There are k sub-keys.  The algorithm can be formally described as 
follows: 
 

Algorithm PYRAMIDS BLOCK CIPHER   
[Given a plain text message block W and  user key K]  
Input: W[plain text], user key K 
Round ( W, k ) 
        Begin round 
         ;1

11 ikww +=  

         ;2
22 ikww +=  

         );)(( 101
200 iii Rotkwww >>>⊗⊕= // 1

if  

         );)(( 232
133 iii Rotkwww >>>⊗⊕= // 2

if  

         ;011 www ⊕=  

         ;322 www ⊕=  

         ;2
00 iRotww >>>=  

         ;1
33 iRotww >>>=  

        );,,,(),,,( 13023210 wwwwwwww =  
      End round; 
Encryption (Plaintext, Ciphertext, k,⊗ , Rot) 
      begin 
 for i = 0 to R-1 
                     Round(Plaintext, Ciphertext, k,⊗ , Rot); 
 for j=0 to 4 
     Ciphertext[ j]=Ciphertext[ j] j

Rk 14 +⊕  
      End. 
Output: encrypted file 

 
We have proved through experimentation that the implementation 
of the algorithm, in its original form, will not be feasible 
regarding the implementation area and the number of input/output 
pins available on the target FPGA device. We have modified the 
PYRAMIDS to suit the hardware implementation on this target 
device by reducing the number of input and output bits. This is 
accomplished by taking a 16-bit text message and dividing it into 

R 
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four parts. The round’s graph, shown below in Figure 1, 
displays the modifications to the algorithm. 
 

 
Fig.  1 Round’s graph. 

 
III. THE MICRO-ARCHITECTURE 

 
In this section, we provide a detailed description of our 
proposed micro-architecture for the PYRAMIDS block 
cipher. The micro-architecture contains two modules as 
shown in Figure 2. The first module is the address_control 
module which is used to generate and synchronize the 
memory address for reading the plaintext and writing the 
ciphertext operations. It contains two counters; one for 
“read-address” generation and the other for “write-
address” generation. It also contains a multiplexer for 
synchronization between these two counters. The second 
module is the encryption module that performs this 
operation. In this design, as mentioned before, we have 
used a plaintext of 16 bits and a user key of 128 bits. The 
output ciphertext is 16-bit long. The circuit diagram of all 
modules is shown in Figure B.2 in Appendix B.   

 
 Fig.  2 The micro-architecture  

 
 A.  Address Control module 
 
The function of the address control module is to generate 
and control addresses of the plaintext and ciphertext 
words to be read and stored in the memory unit 
respectively. This module sends the plaintext word 
address (read address) generated by read counter during 
read clock cycle. Afterwards, it sends the ciphertext 

address (write address) generated by write counter during the 
write clock cycle. The output of this module is 18-bit long 
because we have used in this design memory of 256 KB. The read 
counter generates addresses starting from Hx”00000”. The write 
counter generates addresses starting from Hx”3FFF9”. The 
difference between the read address and the write address is 8 
positions so that the ciphertext word will be stored in the same 
position of its plaintext. The conceptual block diagram is shown 
in Figure 3. The circuit diagram is shown in Figure B.3. 
 

                    
Fig.  3 The Address Control module 

 
 B. The Encryption module 
 
This module performs the encryption operation and it also 
generates the sub-keys from the original user key. The Encryption 
module consists of nine components; eight round units (round0 - 
round7), and the key generation unit. This module accepts 
plaintext word and user key of 128 bits and generates the cipher 
word after eight rounds. Each round is completed in one clock 
cycle. During this round some operations on the input with four 
sub-keys are carried out. These operations are addition +, xor ⊕  
, right rotation >>>, and ordered operation⊗ . Each round from 0 
to 6 uses four sub-keys. The last round uses eight sub-keys. The 
conceptual block diagram is shown in Figure 4. The circuit 
diagram is shown in Figure B.4. 

 
Fig.  4 The Encryption Module                

                
 B.1  The Round unit 
 
The round unit contains eight rounds (roun0 – round7). The 
round0 accepts the plaintext word and divide it to four parts (x0, 
x1, x2 and x3). Subsequently, it applies some operations with 
four sub-keys as described above. The block diagram of this unit 
is shown in Figure 5.  
 

 
Fig.  5 The Round0 unit 

 
The four output buses of the enc-round0 are connected to the 
inputs of the enc-round1. The same connections apply to other 
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units from round1 to round 6. This is achieved by taking 
four inputs from the next round and connecting them to 
the four outputs of the previous round as shown in Figure 
6. 

 
Fig.  6 The Round1-round6 units 

 
The round7 is the last round. It takes the four outputs of 
round6 as inputs and applies some operations with eight 
sub-keys. Finally, the four parts of the ciphertext are 
collected together to produce one cipher word as shown in 
Figure 7. All rounds have the same architecture; however 
their functionalities are different depending on the order 
of the round.  
 

 
 

Fig.  7 The Round7 unit 
 

    B.2  The key generation unit 
 
The input to this unit, as shown in Figure 8, is a user key 
of 128-bit long. When the reset signal takes place, the unit 
accepts the input user key and generates the sub-keys. 
These sub-keys are used as inputs to the eight-round units 
as mentioned above. The circuit diagram is shown in 
Figure B.5. 
 

 
 

Fig.  8 The key generation unit 
 

IV. SIMULATION 
 
At the start when the reset signal is active, the key 
generation unit in the encryption module accepts the user 
key and generates the sub-keys. Then at each clock, the 
address control module generates an address to the 
memory unit. The read operation is performed in one 
clock cycle and the next clock is used for the write 
operation. During the read operation, one plaintext word 

arrives to the encryption module from the memory unit through 
the signal plaintext. The address control unit also produces an 
address position to store a cipher word at the rising edge of the 
write clock. Therefore, at every two clock cycles there will be one 
read operation and one write operation. Figure 9 shows the results 
of the simulation of the address control module.  
  

 
 
Read address  Write address    Address_ram (one clock for read and one    

clock for write) 
Fig.  9 Simulation of the address control module 

 
When the plaintext word arrives at the encryption module, it is 
divided into four parts in the round0 unit. The round0 applies 
some operations on the four parts using four sub-keys. The four 
outputs of round0 are accepted as inputs by the round1 unit. This 
unit applies also some operations using another four sub-keys. 
The round2 to round6 units accomplish the same function similar 
to round1. Finally, round7 performs the same operations on the 
four inputs using eight sub-keys. Then it produces the cipher 
word. The simulation results are shown in Figure 10. The output 
of the encryption unit is then transmitted to the memory unit. 
 

  
 

            Cipher text word            Plain text word       User Key ( 128 bits) 
           Addresses for read and write operations        
                  Cipher words stored in memory 
 

Fig.  10 Simulation of the encryption module 
 

V. IMPLEMENTATION RESULTS 
 

We have used the XC4000XLA Xilinx family to implement our 
design. We have used this device because the number of 
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Input/Outputs in our design is 180 ports and this family is 
suitable for this design. Although we understand that there 
are now Xilinx families with more advanced features, 
however most of the standard literature on FPGA 
implementation of encryption algorithms was performed 
using this family. A comparison with these 
implementations, using the XC4000 FPGA family, is 
shown in Appendix A. With the exception of the YAEA  
implementation, the comparison demonstrates the pre-
eminence of the discussed algorithm and our proposed 
micro-architecture. This is based on the data throughput, 
the consumed area, and the proposed functional density 
figure-of-merit. In appendix B we provide a summary of 
the details of the timing reports. These reports were taken 
for a 16-bit block plain text, 128 bits key and a cipher text 
of 16 bits. The details of these reports are as shown in the 
above-mentioned appendix. Moreover, the design floor 
plan and the circuit diagrams of all modules are also 
provided. 

 
VI.     SUMMARY AND CONCLUSION 

 
The PYRAMIDS is an iterated cipher consisting of a 
repeated application of a simple round transformation 
with different operations and different sequences in each 
round. The special features of the proposed micro-
architecture are summarized as follows: 
 

• A hardware-adapted version of the encryption 
algorithm “PYRAMIDS” is presented in this 
work. This adapted version is suitable for FPGA 
or ASIC-type implementations due to appreciable 
saving in implementation area, as counted by the 
number of gates. 

• When the round function is changed 
dynamically, then one can establish that the 
algorithm output varies for every input user’s 
key.  

• The encryptor part of the micro-architecture can 
easily be integrated before the router at the 
sender side. The decryptor, essentially of the 
same design as the encryptor, is integrated after 
the router at the receiver side. Thus, one can 
realize a virtual private network VPN for 
security-demanding applications. On the other 
hand, this micro-architecture can be part of a 
more comprehensive security processor structure.  

• As shown in Table A.1 and Figure A.1, the 
algorithm provides a performance that surpasses 
the implementations of the RC-6, TWOFISH and 
SERPENT. The performance metric is based on 
the functional density figure-of- merit. This 
performance edge is quite encouraging since the 
algorithm belongs to the same family of RC 
algorithms. 

Based on the discussed comparison, one can conclude that 
the micro-architecture performance is satisfactory for 
packet-level high-security applications of today’s 
networks.  

APPENDIX A 
 
Comparison with other implementations of well-known    
algorithms 
The following table [2], [3], [4], [5], [6] and the accompanying 
chart provide a comparison of various algorithm FPGA 
implementations. We have used a figure-of-merit that is equal to 
the obtained throughput divided by the area consumed in 
realizing this architecture. A chart is given below that 
demonstrates this functional density figure-of-merit for some of 
the standard algorithms. 
 

TABLE A.I 
A comparison between FPGA implementations of various algorithms 

 
 

Algorithm 
 

Throughpu
t Speed 

 in Mbps 
 

 
Area 

in 
(CLBs) 

 

 
Functional Density 
Figure-of-merit = 

(Throughput  ÷ Area) in   
Mbps/ CLB 

 
RC-6 

 
61 

 
1325 

 
0.04603 

 
SERPENT 

 
139.3 

 
3136 

 
0.0444 

 
TWOFISH 

 
88 

 
958 

 
0.0919 

 
YAEA  

(XC4005XL) 

 
129.1 

 

 
149 

 

 
0.8661 

 
PYRAMIDS 

(XC4085XLA) 

 
54.461 

 
240 

 
0.22692 
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Fig.  A.1 The Functional Density for our design and some algorithms’ 

FPGA implementations 
 

APPENDIX B 
 

Implementation reports 
In this appendix, we provide the details of the implementation 
reports as they were made available by FPGA advantage and 
Xilinx software for HDL design. 

Design Information 
Target Device  XC4000XLA 
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Target Package : 4085xlaHQ240 
Target Speed   : -9 
 

The Whole Design   
 
Device utilization summary: 
Number of External IOBs           180 out of 448    93% 
Flops:                           0 
Latches:                         0 
Number of IOBs driving Global Buffers    1 out of 8      

12% 
Number of CLBs                    240 out of 3136    7% 
Total Latches:                 144 out of 6272    2% 
Total CLB Flops:               168 out of 6272    2% 
4 input LUTs:                  414 out of 6272    6% 
3 input LUTs:                  150 out of 3136    4% 
Number of BUFGLSs                   1 out of 8      12% 
Number of STARTUPs                  1 out of 1     100% 
 
The Average Connection Delay for this design is:        

4.948 ns 
The Maximum Pin Delay is:                              29.379 ns 
The Average Connection Delay on the 10 Worst Nets is:  

22.689 ns 
 
Timing summary: 
Timing errors: 0  Score: 0 
Constraints cover 159986 paths, 731 nets, and 1690 

connections (100.0% coverage) 
Design statistics: 
Minimum period:  65.354ns (Maximum frequency:  

15.301MHz) 
Maximum net delay:  29.379ns 
 
Address Control  module: 
 
Device utilization summary: 
Number of External IOBs            20 out of 448    10% 
Flops:                           0 
Latches:                         0 
Number of IOBs driving Global Buffers    1 out of 8      
12% 
Number of CLBs                     27 out of 3136    1% 
Total Latches:                   0 out of 6272    0% 
Total CLB Flops:                36 out of 6272    1% 
4 input LUTs:                   54 out of 6272    1% 
3 input LUTs:                    0 out of 3136    0% 
 
Number of BUFGLSs                   1 out of 8      12% 
Number of STARTUPs                  1 out of 1     100% 
 
The Average Connection Delay for this design is:        
2.389 ns 
The Maximum Pin Delay is:                               4.975 ns 
The Average Connection Delay on the 10 Worst Nets is:   
3.783 ns 
 
Timing summary: 
Timing errors: 0  Score: 0 

Constraints cover 432 paths, 73 nets, and 146 connections 
(100.0% coverage) 
Design statistics: 
Minimum period:   7.829ns (Maximum frequency: 127.730MHz) 
Maximum combinational path delay:  14.409ns 
Maximum net delay:   4.975ns 
 
The Encryption module: 
 
Device utilization summary: 
Number of External IOBs           162 out of 448    83% 
Flops:                           0 
Latches:                         0 
Number of IOBs driving Global Buffers    2 out of 8      25% 
Number of CLBs                    214 out of 3136    6% 
Total Latches:                 144 out of 6272    2% 
Total CLB Flops:               128 out of 6272    2% 
4 input LUTs:                  349 out of 6272    5% 
3 input LUTs:                  143 out of 3136    4% 
Number of BUFGLSs                   2 out of 8      25% 
Number of STARTUPs                  1 out of 1     100% 
 
The Average Connection Delay for this design is:        4.243 ns 
The Maximum Pin Delay is:                              24.472 ns 
The Average Connection Delay on the 10 Worst Nets is:  18.583 

ns 
 
Timing summary: 
Timing errors: 0  Score: 0 
Constraints cover 159546 paths, 671 nets, and 1486 connections 

(100.0% coverage) 
Design statistics: 
Minimum period:  71.637ns (Maximum frequency:  13.959MHz) 
Maximum net delay:  24.472ns 
 
The floor plan: 
 

 
Fig.  B.1 The Floor Plan 
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The circuit diagrams of the various modules: 
THE WHOLE DESIGN: 
 

 
 
 
     Flip-flop           counter         Encryption module        
  Modgen_Add                   Multiplexer 
 
Fig.  B.2 The schematic diagram of the whole design 
 
 
ADDRESS CONTROL  MODULE: 
 

C 

 
FIG.  B.3 The schematic diagram of the address control module 
 

ENCRYPTION MODULE: 
 
 

 
 
      Modgen_Add                                        Flip-flop 
 
Fig.  B.4 The schematic diagram of the encryption module 
 
 
KEY GENERATION MODULE: 
 
 

 
 
                  Modgen_Add                 Modgen_Mux            Latch                   
 
 

Fig.  B.5 The schematic diagram of the key generation module 
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