
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3687

FPGA Implementation of the “PYRAMIDS” Block
Cipher

A. AlKalbany, H. Al hassan, M. Saeb

 Abstract---The “PYRAMIDS” Block Cipher is a symmetric
encryption algorithm of a 64, 128, 256-bit length, that accepts a
variable key length of 128, 192, 256 bits. The algorithm is an
iterated cipher consisting of repeated applications of a simple
round transformation with different operations and different
sequence in each round. The algorithm was previously software
implemented in C++ code. In this paper, a hardware
implementation of the algorithm, using Field Programmable
Gate Arrays (FPGA), is presented. In this work, we discuss the
algorithm, the implemented micro-architecture, and the
simulation and implementation results. Moreover, we present a
detailed comparison with other implemented standard
algorithms. In addition, we include the floor plan as well as the
circuit diagrams of the various micro-architecture modules.

 Keywords---FPGA, VHDL, micro-architecture, encryption,
cryptography, algorithm, data communication security.

I. INTRODUCTION

EAL-TIME cryptography has recently attracted
attention of a number of researchers. However,

classical encryption algorithms have to be adapted to
hardware implementation where area and time constraints
are of vital importance. In this work, we present a
modified version of the “PYRAMIDS” block cipher to
suit hardware implementation using FPGA. The original
algorithm was modified for packet-level data security
applications [1]. The implemented micro-architecture
consists of two main functional blocks. These are the
address control module and the encryption module. In the
next few sections we discuss the algorithm, the building
blocks of the micro-architecture along with details of its
operation. We also provide the details of the simulation
and implementation results. The particulars of the
performed simulations, timing, and routing reports and the
floor plan are provided in the given appendix. Moreover,
we provide a comparison with other FPGA
implementations of standard encryption algorithms [2],
[3], [4], [5], [6].

II. THE ALGORITHM

In the following few lines, we provide a summary of the
PYRAMIDS block cipher algorithm [1]. The aim of the
algorithm is to take a plain text message of 256 bits and
divide it to four parts x0, x1, x2 and x3, then apply some
operations for 8 rounds using 4 sub-keys for each round.
The key generation unit in the Encryption module accepts
a 128-bit user key, and schedules the sub-keys for all

rounds of encryption. These sub-keys are derived from the user’s
input key using the key scheduling algorithm which is the
PYRAMIDS algorithm itself. The round transformation is
composed of different transformations. These transformations are
addition +, xor ⊕ , right rotation >>>, and ordered operation⊗ .
The ordered operation ⊗ differs depending on the round and it
consists of AND, OR and NOT operations. Because of this, the
round function is changed dynamically by considering the
plaintext word W as consisting of four parts w0,w1,w2, and w3.
There are k sub-keys. The algorithm can be formally described as
follows:

Algorithm PYRAMIDS BLOCK CIPHER
[Given a plain text message block W and user key K]
Input: W[plain text], user key K
Round (W, k)
 Begin round
 ;1

11 ikww +=

 ;2
22 ikww +=

);)((101
200 iii Rotkwww >>>⊗⊕= // 1

if

);)((232
133 iii Rotkwww >>>⊗⊕= // 2

if

 ;011 www ⊕=

 ;322 www ⊕=

 ;2
00 iRotww >>>=

 ;1
33 iRotww >>>=

);,,,(),,,(13023210 wwwwwwww =
 End round;
Encryption (Plaintext, Ciphertext, k,⊗ , Rot)
 begin
 for i = 0 to R-1
 Round(Plaintext, Ciphertext, k,⊗ , Rot);
 for j=0 to 4
 Ciphertext[j]=Ciphertext[j] j

Rk 14 +⊕
 End.
Output: encrypted file

We have proved through experimentation that the implementation
of the algorithm, in its original form, will not be feasible
regarding the implementation area and the number of input/output
pins available on the target FPGA device. We have modified the
PYRAMIDS to suit the hardware implementation on this target
device by reducing the number of input and output bits. This is
accomplished by taking a 16-bit text message and dividing it into

R

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3688

four parts. The round’s graph, shown below in Figure 1,
displays the modifications to the algorithm.

Fig. 1 Round’s graph.

III. THE MICRO-ARCHITECTURE

In this section, we provide a detailed description of our
proposed micro-architecture for the PYRAMIDS block
cipher. The micro-architecture contains two modules as
shown in Figure 2. The first module is the address_control
module which is used to generate and synchronize the
memory address for reading the plaintext and writing the
ciphertext operations. It contains two counters; one for
“read-address” generation and the other for “write-
address” generation. It also contains a multiplexer for
synchronization between these two counters. The second
module is the encryption module that performs this
operation. In this design, as mentioned before, we have
used a plaintext of 16 bits and a user key of 128 bits. The
output ciphertext is 16-bit long. The circuit diagram of all
modules is shown in Figure B.2 in Appendix B.

 Fig. 2 The micro-architecture

 A. Address Control module

The function of the address control module is to generate
and control addresses of the plaintext and ciphertext
words to be read and stored in the memory unit
respectively. This module sends the plaintext word
address (read address) generated by read counter during
read clock cycle. Afterwards, it sends the ciphertext

address (write address) generated by write counter during the
write clock cycle. The output of this module is 18-bit long
because we have used in this design memory of 256 KB. The read
counter generates addresses starting from Hx”00000”. The write
counter generates addresses starting from Hx”3FFF9”. The
difference between the read address and the write address is 8
positions so that the ciphertext word will be stored in the same
position of its plaintext. The conceptual block diagram is shown
in Figure 3. The circuit diagram is shown in Figure B.3.

Fig. 3 The Address Control module

 B. The Encryption module

This module performs the encryption operation and it also
generates the sub-keys from the original user key. The Encryption
module consists of nine components; eight round units (round0 -
round7), and the key generation unit. This module accepts
plaintext word and user key of 128 bits and generates the cipher
word after eight rounds. Each round is completed in one clock
cycle. During this round some operations on the input with four
sub-keys are carried out. These operations are addition +, xor ⊕
, right rotation >>>, and ordered operation⊗ . Each round from 0
to 6 uses four sub-keys. The last round uses eight sub-keys. The
conceptual block diagram is shown in Figure 4. The circuit
diagram is shown in Figure B.4.

Fig. 4 The Encryption Module

 B.1 The Round unit

The round unit contains eight rounds (roun0 – round7). The
round0 accepts the plaintext word and divide it to four parts (x0,
x1, x2 and x3). Subsequently, it applies some operations with
four sub-keys as described above. The block diagram of this unit
is shown in Figure 5.

Fig. 5 The Round0 unit

The four output buses of the enc-round0 are connected to the
inputs of the enc-round1. The same connections apply to other

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3689

units from round1 to round 6. This is achieved by taking
four inputs from the next round and connecting them to
the four outputs of the previous round as shown in Figure
6.

Fig. 6 The Round1-round6 units

The round7 is the last round. It takes the four outputs of
round6 as inputs and applies some operations with eight
sub-keys. Finally, the four parts of the ciphertext are
collected together to produce one cipher word as shown in
Figure 7. All rounds have the same architecture; however
their functionalities are different depending on the order
of the round.

Fig. 7 The Round7 unit

 B.2 The key generation unit

The input to this unit, as shown in Figure 8, is a user key
of 128-bit long. When the reset signal takes place, the unit
accepts the input user key and generates the sub-keys.
These sub-keys are used as inputs to the eight-round units
as mentioned above. The circuit diagram is shown in
Figure B.5.

Fig. 8 The key generation unit

IV. SIMULATION

At the start when the reset signal is active, the key
generation unit in the encryption module accepts the user
key and generates the sub-keys. Then at each clock, the
address control module generates an address to the
memory unit. The read operation is performed in one
clock cycle and the next clock is used for the write
operation. During the read operation, one plaintext word

arrives to the encryption module from the memory unit through
the signal plaintext. The address control unit also produces an
address position to store a cipher word at the rising edge of the
write clock. Therefore, at every two clock cycles there will be one
read operation and one write operation. Figure 9 shows the results
of the simulation of the address control module.

Read address Write address Address_ram (one clock for read and one

clock for write)
Fig. 9 Simulation of the address control module

When the plaintext word arrives at the encryption module, it is
divided into four parts in the round0 unit. The round0 applies
some operations on the four parts using four sub-keys. The four
outputs of round0 are accepted as inputs by the round1 unit. This
unit applies also some operations using another four sub-keys.
The round2 to round6 units accomplish the same function similar
to round1. Finally, round7 performs the same operations on the
four inputs using eight sub-keys. Then it produces the cipher
word. The simulation results are shown in Figure 10. The output
of the encryption unit is then transmitted to the memory unit.

 Cipher text word Plain text word User Key (128 bits)
 Addresses for read and write operations
 Cipher words stored in memory

Fig. 10 Simulation of the encryption module

V. IMPLEMENTATION RESULTS

We have used the XC4000XLA Xilinx family to implement our
design. We have used this device because the number of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3690

Input/Outputs in our design is 180 ports and this family is
suitable for this design. Although we understand that there
are now Xilinx families with more advanced features,
however most of the standard literature on FPGA
implementation of encryption algorithms was performed
using this family. A comparison with these
implementations, using the XC4000 FPGA family, is
shown in Appendix A. With the exception of the YAEA
implementation, the comparison demonstrates the pre-
eminence of the discussed algorithm and our proposed
micro-architecture. This is based on the data throughput,
the consumed area, and the proposed functional density
figure-of-merit. In appendix B we provide a summary of
the details of the timing reports. These reports were taken
for a 16-bit block plain text, 128 bits key and a cipher text
of 16 bits. The details of these reports are as shown in the
above-mentioned appendix. Moreover, the design floor
plan and the circuit diagrams of all modules are also
provided.

VI. SUMMARY AND CONCLUSION

The PYRAMIDS is an iterated cipher consisting of a
repeated application of a simple round transformation
with different operations and different sequences in each
round. The special features of the proposed micro-
architecture are summarized as follows:

• A hardware-adapted version of the encryption
algorithm “PYRAMIDS” is presented in this
work. This adapted version is suitable for FPGA
or ASIC-type implementations due to appreciable
saving in implementation area, as counted by the
number of gates.

• When the round function is changed
dynamically, then one can establish that the
algorithm output varies for every input user’s
key.

• The encryptor part of the micro-architecture can
easily be integrated before the router at the
sender side. The decryptor, essentially of the
same design as the encryptor, is integrated after
the router at the receiver side. Thus, one can
realize a virtual private network VPN for
security-demanding applications. On the other
hand, this micro-architecture can be part of a
more comprehensive security processor structure.

• As shown in Table A.1 and Figure A.1, the
algorithm provides a performance that surpasses
the implementations of the RC-6, TWOFISH and
SERPENT. The performance metric is based on
the functional density figure-of- merit. This
performance edge is quite encouraging since the
algorithm belongs to the same family of RC
algorithms.

Based on the discussed comparison, one can conclude that
the micro-architecture performance is satisfactory for
packet-level high-security applications of today’s
networks.

APPENDIX A

Comparison with other implementations of well-known
algorithms
The following table [2], [3], [4], [5], [6] and the accompanying
chart provide a comparison of various algorithm FPGA
implementations. We have used a figure-of-merit that is equal to
the obtained throughput divided by the area consumed in
realizing this architecture. A chart is given below that
demonstrates this functional density figure-of-merit for some of
the standard algorithms.

TABLE A.I
A comparison between FPGA implementations of various algorithms

Algorithm

Throughpu
t Speed

 in Mbps

Area

in
(CLBs)

Functional Density
Figure-of-merit =

(Throughput ÷ Area) in
Mbps/ CLB

RC-6

61

1325

0.04603

SERPENT

139.3

3136

0.0444

TWOFISH

88

958

0.0919

YAEA

(XC4005XL)

129.1

149

0.8661

PYRAMIDS

(XC4085XLA)

54.461

240

0.22692

Comparison of Functiona Density
Figure of merit for selected algorithms

0
0.05
0.1

0.15
0.2

0.25

RC-6

Serp
en

t

TwoFish

PYRAMID
S

Algorithm

Fu
nc

tio
na

l D
en

si
ty

 =

Th
ro

ug
hp

ut
 in

M

bp
s/

Ar
ea

 in
 C

LB
s

Fig. A.1 The Functional Density for our design and some algorithms’

FPGA implementations

APPENDIX B

Implementation reports
In this appendix, we provide the details of the implementation
reports as they were made available by FPGA advantage and
Xilinx software for HDL design.

Design Information
Target Device XC4000XLA

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3691

Target Package : 4085xlaHQ240
Target Speed : -9

The Whole Design

Device utilization summary:
Number of External IOBs 180 out of 448 93%
Flops: 0
Latches: 0
Number of IOBs driving Global Buffers 1 out of 8

12%
Number of CLBs 240 out of 3136 7%
Total Latches: 144 out of 6272 2%
Total CLB Flops: 168 out of 6272 2%
4 input LUTs: 414 out of 6272 6%
3 input LUTs: 150 out of 3136 4%
Number of BUFGLSs 1 out of 8 12%
Number of STARTUPs 1 out of 1 100%

The Average Connection Delay for this design is:

4.948 ns
The Maximum Pin Delay is: 29.379 ns
The Average Connection Delay on the 10 Worst Nets is:

22.689 ns

Timing summary:
Timing errors: 0 Score: 0
Constraints cover 159986 paths, 731 nets, and 1690

connections (100.0% coverage)
Design statistics:
Minimum period: 65.354ns (Maximum frequency:

15.301MHz)
Maximum net delay: 29.379ns

Address Control module:

Device utilization summary:
Number of External IOBs 20 out of 448 10%
Flops: 0
Latches: 0
Number of IOBs driving Global Buffers 1 out of 8
12%
Number of CLBs 27 out of 3136 1%
Total Latches: 0 out of 6272 0%
Total CLB Flops: 36 out of 6272 1%
4 input LUTs: 54 out of 6272 1%
3 input LUTs: 0 out of 3136 0%

Number of BUFGLSs 1 out of 8 12%
Number of STARTUPs 1 out of 1 100%

The Average Connection Delay for this design is:
2.389 ns
The Maximum Pin Delay is: 4.975 ns
The Average Connection Delay on the 10 Worst Nets is:
3.783 ns

Timing summary:
Timing errors: 0 Score: 0

Constraints cover 432 paths, 73 nets, and 146 connections
(100.0% coverage)
Design statistics:
Minimum period: 7.829ns (Maximum frequency: 127.730MHz)
Maximum combinational path delay: 14.409ns
Maximum net delay: 4.975ns

The Encryption module:

Device utilization summary:
Number of External IOBs 162 out of 448 83%
Flops: 0
Latches: 0
Number of IOBs driving Global Buffers 2 out of 8 25%
Number of CLBs 214 out of 3136 6%
Total Latches: 144 out of 6272 2%
Total CLB Flops: 128 out of 6272 2%
4 input LUTs: 349 out of 6272 5%
3 input LUTs: 143 out of 3136 4%
Number of BUFGLSs 2 out of 8 25%
Number of STARTUPs 1 out of 1 100%

The Average Connection Delay for this design is: 4.243 ns
The Maximum Pin Delay is: 24.472 ns
The Average Connection Delay on the 10 Worst Nets is: 18.583

ns

Timing summary:
Timing errors: 0 Score: 0
Constraints cover 159546 paths, 671 nets, and 1486 connections

(100.0% coverage)
Design statistics:
Minimum period: 71.637ns (Maximum frequency: 13.959MHz)
Maximum net delay: 24.472ns

The floor plan:

Fig. B.1 The Floor Plan

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3692

The circuit diagrams of the various modules:
THE WHOLE DESIGN:

 Flip-flop counter Encryption module
 Modgen_Add Multiplexer

Fig. B.2 The schematic diagram of the whole design

ADDRESS CONTROL MODULE:

C

FIG. B.3 The schematic diagram of the address control module

ENCRYPTION MODULE:

 Modgen_Add Flip-flop

Fig. B.4 The schematic diagram of the encryption module

KEY GENERATION MODULE:

 Modgen_Add Modgen_Mux Latch

Fig. B.5 The schematic diagram of the key generation module

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3693

REFERENCES

[1] H. Al Hassan, Ph. Thesis, Cairo University, in progress, expected
2005.
[2] M. Saeb, A. Zewail, A. Seif, “A Micro-architecture Implementation
of YAEA Encryption Algorithm Utilizing VHDL and FPGA
Technology,” Third International Conference on Electrical Engineering,
ICEENG, Military Technical College, Egypt, 2002.
[3] S. Trimberger, R. Pang, A. Singh, “A 12 Gbps DES
Encryptor/Decryptor Core in FPGA,” Lecture Notes on Computer
Science, pp. 156-163, Springer-Verlag, 2000.
[4] J. Goodman, A. Chandrakasan, “Energy-Efficient Reconfigurable
Public- Key Cryptography Processor Architecture,” Lecture Notes on
Computer Science, pp. 175-190, Springer-Verlag, 2000.
[5] Dandalis, V. K. Prasanna, J.D. P. Rolin, “A Comparative Study of
Performance of AES Final Candidates Using FPGAs,” Lecture Notes on
Computer Science, pp. 125-140, Springer-Verlag, 2000.
[6]] C. Patterson, “A Dynamic FPGA Implementation of the Serpent
Block Cipher,” Lecture Notes on Computer Science, pp. 141-155,
Springer-Verlag, 2000.

