International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

Four Phase Methodology for Developing Secure
Software

Carlos Gonzalez-Flores, Ernesto Lifian-Garcia

Abstract—A simple and robust approach for developing secure
software. A Four Phase methodology consists in developing the non-
secure software in phase one, and for the next three phases, one phase
for each of the secure developing types (i.e. self-protected software,
secure code transformation, and the secure shield). Our methodology
requires first the determination and understanding of the type of
security level needed for the software. The methodology proposes the
use of several teams to accomplish this task. One Software
Engineering Developing Team, a Compiler Team, a Specification and
Requirements Testing Team, and for each of the secure software
developing types: three teams of Secure Software Developing, three
teams of Code Breakers, and three teams of Intrusion Analysis. These
teams will interact among each other and make decisions to provide a
secure software code protected against a required level of intruder.

Keywords—Secure Software, Four Phase Methodology, Software
Engineering, Code Breakers, Intrusion Analysis.

1. INTRODUCTION

HIS research is the natural continuation of our previous

work [1]. Our previous work dealt only with the technique
of obfuscation for the development of secure software. On that
work we demonstrate analytically that our basic methodology
(for the specific case of using only obfuscation as a means to
secure the software) is better that not using a methodology at
all. This current work encompasses all current techniques used
for secure software development including self-protected
software.

Secure software is defined as the software that is designed
and developed with the idea of making it impossible/hard/very
hard for an intruder to reverse engineer the algorithms,
procedures and methodology of the underlying system [2]-[4].

The amount of effort that one has to put into securing the
developing software should be related to the type of intruder
one wants be protected from.

We are assuming that all intruders have only access to the
machine code (binary or assembly code). The security of the
high level code and software documentation is not considered
here; since they should be part of external security mechanisms
(i.e. the high-level code is leveled as confidential or secret by
the developing organization, and protected as such).

Another assumption made in this methodology is that the
requirements/specifications can each be identified as being
security-related or not.

Carlos Gonzélez and Ernesto Lifan are with the Facultad de Sistemas,
Universidad ~ Auténoma de Coahuila, Arteaga México (e-mail:
c.gonzalez.flores@uadec.edu.mx, ernesto_linan_garcia@uadec.edu.mx).

II. METHODOLOGY

A. Secure Software Development

We will analyze three ways of doing the development of
secure software:
e Have the secure software embedded with the application.
Examples of this technique are:

0 User Detection [4]

0 Internal Anti-Tampering [2],[3]

0 Anti-debugging [7]

0 Internet usage [4]

e With transformations done to the applications software.
Examples of this technique are:

0 Obfuscation at the high level code [8]-[12]

0 Obfuscation at the machine level code [13]

With a shell controlling the ins and outs of the application.
Examples of this technique are:

0 Runtime Application Self-Protection (RASP) [14

B. Phases

The methodology proposed in this paper consists of four

phases:

= Phase-1. This phase is the software development and
testing of all the non-security related software.

= Phase-2. In this phase, the self-protected secure software is
developed, tested and incorporated into the non-security
related software produced in Phase-1.

= Phase-3. This phase will use transformation to the software
generated in Phase-2. The transformations are done at high-
level code and at machine-level code. All the transformed
code will be tested to comply with the requirements of the
software.

= Phase-4. This phase will generate and test all the shield
code used in the software.

C. Intruders

We define four types of intruders:

= Level-1: A casual attacker. The attacker has the software
and he/she is not technically knowledgeable to retrieve data
or algorithms from the machine code software. A minimum
level of security is needed.

= Level-2: A hacker attack. This attacker has the knowledge
to retrieve data or algorithms from the machine code
sources of the software. Attacks of this kind need to have
security procedures used for the development of code. This
intruder may or may not have initial economic gains plans

682

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

for the intrusion. In most cases it is the intellectual
challenge that motivates this intruder (i.e. hacker), but
economic gains may not be very far behind.

= Level-3: An institution attack. This attack is done by an
institution with all the resources of such an institution. The
most common cases are industrial espionage. The
economic gains are the main reason for the intrusion. In
most cases with enough time and money, any secure
software may be cracked. Therefore, the developing team
should always work with the goal of making the intruder’s
effort needed to break the secure code high enough for
them not to be cost effective.

= Level-4: A government attack. This attack is done by a
government agency with all the resources (technical and
legal) available for such agency. Since in most cases with
enough time and money any secure software may be
cracked, it is recommended that techniques for intruder
detection with the respective actions to take (covert and
non-covert) be included in the secure code [5], [6]. This
level of protection requires the use of the most
sophisticated security algorithms.

Most current approaches/methodologies suggest that security
is not a feature that can be added to extend the functionality of
software, but is an essential building block and key architectural
design characteristic of reliable software [15]-[17]. We partially
agree with these approaches methodologies, the problem starts
on the operational part of the development. As it has been
pointed out [1], for example, that it is difficult to develop
straight obfuscated software and follow Software Engineering
practices. Also, because of the nature of self-protected software
it is easier to have the non-secure software done first and then
add the self-protected features to this software, rather than
doing the development at the same time. What we propose is to
have a global approach in the design of secure software, but use
several phases to develop such software.

D. Teams

What we are proposing here is the division of work between
several teams of software engineers.

1. The Developing Teams

* We will have the Software Engineering Developing team
(SED), developing the software following all the
guidelines and best practices described in Software
Engineering [18]-[22].

* A Self-Protected Software Developing Team (SSP) of
secure self-protected high level code experts, which will
use secure self-protected software techniques on the high
level code (techniques like User detection, Runtime
Application Self-Protection-RASP, etc.) [8]-[12], and [23]-
[28] in the code produced by the SED.

* A Self-Protected Machine Code Developing Team (SPM)
of secure machine code experts, which will apply secure
techniques to the compiled product generated by the SSP
[13].

* A Transformation High Level Developing Team of
transformation secure high level code experts (THL),

which will use secure software techniques on the high level
code (techniques like obfuscation, anti-reverse
engineering, etc.) [8]-[12], and [23]-[28] in the code
produced by the SED.

* A Transformation Machine Code Developing Team
(TMC) of transformation machine code experts, which will
apply transformation techniques to the compiled product
generated by the SSP [13].

* A Secure Shield Code Developing Team of secure shield
code experts (SSC), which will use secure shield software
techniques on the machine code generated by the THL
team [14].

2. The Compiler Team (Could Be One or Many)

* A Compiler Team (CT). This team is usually included as
part of the software developing team. But in our case, we
have two sets of people involved in developing software,
the software engineers developing the system software, and
the High Level Secure Software Team developing the
secure software to be part of the developed system
software. Therefore, we name the CT in both instances to
make sure the process flow in our methodology is clearly
understood.

3. The Specification and Requirements Testing Team

* A Specification and Requirements Testing Team (SRT).
This team will have the responsibility of designing and
applying the tests for the developed software. The testing
will have to satisfy all the specifications and requirements
of the system. In the first two stages of the methodology
this team will test only the non-related security
requirements/specifications, but at the final stage the
testing will have to satisfy all the specifications and
requirements of the system.

4. The Code Breakers Teams

Note that for all the code breakers team: The team should be
made of one-two person teams for level-2 threats and the whole
Code Breakers Team for level-3 and level-4 threats,

* A Self Protected Code Breakers Team (SPCB), which will
try to break the self-protected secure code generated by the
SSP and the SMT teams. This team should be made of self-
protected software security experts that know software
development, rather than experts in software development
with knowledge of self-protected software security.

* A Transformation High Level Code Breakers Team
(THCB), which will try to break the transformed secure
code generated by the SSP and the SMT teams. This team
should be made of transformation software security experts
that know software development, rather than experts in
software development with knowledge of transformation
software security.

* A Transformation Machine Code Breakers Team (TMCB),
which will try to break the transformed secure code
generated by the SSP and the SMT teams. This team should
be made of transformation software security experts that
know software development, rather than experts in

683

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

software development with knowledge of transformation
software security.

e A Shield Code Breakers Team (SCB), which will try to
break the secure shield code generated by the
transformation developing teams, and the SMT teams. This
team should be made of secure shield software experts that
know software development, rather than experts in
software development with knowledge secure shield
software.

5. The Intrusion Analysis Teams

* A Self Protect Intrusion Analysis Team (SPIA), which will
analyze the results of the SSP and pass the results and new
secure proposals for the SED and SSP teams. The members
of this team should be the elite of the self-protect software
security personnel. They not only need to be experts in the
field of self-protect software security, but also need to be
innovators of new algorithms or paradigms to solve self-
protect software security problems.

* A Transformation Intrusion Analysis Team (TIA), which
will analyze the results of the THL or the TMC and pass
the results and new secure proposals back for the THL and
TMC teams. The members of this team should be the elite
of the transformation software security personnel. They not
only need to be experts in the field of transformation
software security, but also need to be innovators of new
algorithms or paradigms to solve transformation software
security problems.

e A Shield Intrusion Analysis Team (SIA), which will
analyze the results of the SSC and pass the results and new
secure proposals for the SSC team. The members of this
team should be the elite of the shield software security
personnel. They not only need to be experts in the field of
shield software security, but also need to be innovators of
new algorithms or paradigms to solve shield software
security problems.

III. PROCESS FLOW

Figs. 1-3 describe the proposed methodology process.

Once a piece of software is liberated by the SED team (and
compiled), it goes to the SRT to test all the non-security related
requirements and specifications of the project. If it fails, the
results go back to the SED to correct the problems with the
failed requirements/specifications. If the SRT passes all the
tests, then the high level code is passed to the SSP team to start
work on securing it.

It should be clear that once the code is passed to the SSP, any
changes/modifications to the SED generated source code
implies that the cycle of re-compiling and re-testing has to be
repeated before this new software is passed to the SSP. If this
cycle is repeated very frequently by any piece of software, the
cost of development could be highly increased.

Once the securing is done by the SSP, the software is
compiled. This software has to be tested again to check that
modifications done by the SSP process did not break any of the

non-related requirements/specifications test. Thus, the secure
code generated by the SSP and complied is passed to the SRT
to again re-test all the requirements/specifications. It is
expected that the SRT non-related tests are the same used in all
cases.

If the SRT tests fail, the results go back to the SSP team to
modify the necessary code to pass the failed requirements/
specifications. If on the other hand all the SRT tests are passed,
then the code is ready to be tested by the Self-Protect Code
Breaker Team. It is important to point out that even though there
were no tests done for security related
requirements/specifications at this point, the SSP team was
expected to address all the pertinent security related
requirements/specifications in their development. The final
testing of all security related requirements/specifications will be
performed in phase-4 after the Secure Shield Code Developing
Team (SSC) is done.

The Code Breaker Team will try to act as the maximum
intruder level that this software is trying to protect. Since we
still have several levels of protection to use in the methodology,
then, we recommend that the all the CBTs consider the code
passed the test if the security of protection is adequate to protect
against one level lower than the expected level of intruder,
except for the last CBT which is the Shield Code Breakers
Team and all the security requirements should be met by then.
If the code passes the CBT tests, then the code is ready for the
next level of security. If the CBT determines that the level of
protection is not adequate, then this information is passed to the
appropriate Intruder Analysis Team to analyze the results and
report what the problems are, and if possible recommend
solutions including new security procedures. This information
is passed to the appropriate security development team (SSP,
SPM, THL TMS, OR SSC), and a new cycle begins.

The code will not go into the next step until the appropriate
SRT tests are all passed.

On phase-4 the last phase, once the SRT tests are passed, the
Secure Shield CBT will get the code, and try to break it. Since
this is the last security test done by the team, it has to make sure
the code is appropriately secured for the required level of
intruder, or at least the best it can be. If the Secure Shield CBT
determines that the protection is adequate, then the software is
ready to be deployed. On the other hand, if the Secure Shield
CBT determines that the software is not adequately protected,
it will send its results to the Secure Shield Intruder Analysis
Team which will analyze these results and send the code back
to the appropriate security development team (SSP, SPM, THL
TMS, OR SSC), depending on the findings, to be done again.
And the cycle in the methodology begins again at that point (i.e.
Phase-1 to 4)

684

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:10, No:4, 2016

Phase - 1 Phase - 2
Secured Self- Secured Self-
Soft Descl Protected High Protected High
oftware Lesign A Level Code | Level Code
Software Specifications - Sol::zza‘:cct +
Engineers .ancl Test Pass Breakers To Phase-3
> Development Reqt.urements - Team Pass—
Team Testing Team
+ i Fail
High Level Machine ~ 'etfel
Code Code
4 Self-Protect
Intrusion
Compiler Compiler Analysis
Team Team Team
New High
Level Sell-
Pratect Code
Proposals
Secured Self-
Machine Code Protected
High Level Code
Tesl fail
Specifications | High Level Code secure
and
N Self-Protect
Requirements Test Pass _ Teamme _
Testing Team 7 [
Fig. 1 Phase 1, Phase 2
o To Phase-4
Phase -3
L
Mew Transformed P
High Level Code ass
- P | T
| :fanimm:iu;: oposTE Transformation Tm:':‘stfrz:i'::m"
jeh TE“ o Machine Code | —Fail—» Analysis
Al Breakers Team Te:m
Secured N
[Tansiormed
" 7 H
HI%:;W Machine Code L=l Mg-;l;ge
Transformation Specifications IR
Compiler Intrusion and Test Fail
Team Analysis Requirements
Team Testing Team
.
Machi
éod:e Fail Secured
Secured Transformed
' Transformed - Secured | Machine Code
High Level and i
Spoci:::tlons Machine Code | Transformation | Machine Code Transformation |
Requi t High Level Code Machine Code
Test T::;r':e"..;.::; Breakers Team | Pass Team
Fail 9 Test Pass

Fig. 2 Phase 3

685

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

/
From
Phase-3

Phase -4

Y

New Shield Code
Secure Shield Proposals

Code Team

Secured Shield

Code
Y)
Specifications Semied S
Code
and

Requirements
Test Testing Team Test Pass =
Fail

Shield Intrusion

Analysis
Team

Fail
i Secure
BShlﬁld C_?de Software
reakers leam Pass Code

Fig. 3 Phase 4

IV. FINAL RECOMMENDATIONS

e If this methodology is wused for secure software
development, we recommend the following general
guidelines:

e I[solate the various teams (mainly the SED, SRT, SHL and
SMT teams). They should be in different buildings or
different cities, which is better.

e Make sure that the team leader for each team is an expert
in the field, and knows the whole methodology approach.

e Make sure that the customer, as well as all the members of
the SED team, understand the cost of late changes. The
later in the methodology that a change occurs, the more
expensive it becomes to do it.

e For the Code Breakers Teams, it is recommended to
include at least one of each of the SED and one member of
each of the secure developing teams. The idea behind this
is: we should test that even if an intruder has some
knowledge of the contents of the software, the intruder
should not be able to break the code.

e For the Intrusion Analysis Team, make sure you select the
best personnel you have in secure software. Make sure also,
that they are innovators and have a long range vision of the
secure software field. This secure software may run for 20,
30 or more years, and we want it protected.

e Protect locally the source code and its documentation.

e Protect locally the algorithms and procedures used in both
obfuscations. If an intruder gets to know what algorithms
you used for obfuscation, then reverse engineering for the
intruder could become much simpler.

V. CONCLUSIONS

The main contribution of this paper is the description of a
new approach to develop secure software following software
engineering concepts.

Our methodology recommends attention to the security of
the software at the earliest stage of the project as possible. What
we propose that is different from other methodologies is doing
the security development at a later phase of the development.
By doing these phases we are able to accomplish three major
goals in a project: Use sound Software Engineering techniques
for phase one of the development; second, minimize the cost of
changes and or modifications of the software; and finally, we
recommend the use of experts in security to do the development
of phase-2 to 4, instead of having developers with some notion
of security do it.

The Four Phase methodology provides a more robust and
easy to maintain software. The introduction of Code Breakers
Team (made out of software security experts) to test the security
of the software independently of the software development
team in conjunction with the Intrusion Analysis Team is an
innovation in methodologies for the development of secure
software.

REFERENCES

[1] Carlos Gonzalez, Ernesto Lifian, “A Software Engineering Methodology
for Developing Secure Obfuscated Software”, IET Software, Submitted,
Sep-2015.

[2] David Chaboya, (20 Jun 2007) State of the Practice of Software Anti-
Tamper. Air Force Research Labs Anti-Tamper and Software Protection
Initiative (AT-SPI) Technology Office.

[3] Keller, John. “Anti-tamper technologies seek to keep critical military
systems data in the right hands — Military & Aerospace Electronics”.
Militaryaerospace.com. April-26-2010.

[4] Carlos Gonzalez, “User Detection in Secure Self-Protected Software”,
Unpublished Research, Sep 2015.

[5] Denning, Dorothy E., “An Intrusion Detection Model,” Proceedings of
the Seventh IEEE Symposium on Security and Privacy, May 1986, pages
119-131.

[6] Scarfone, Karen; Mell, Peter (February 2007). “Guide to Intrusion
Detection and Prevention Systems (IDPS)”. Computer Security Resource
Center (National Institute of Standards and Technology) (800-94).

[7]1 Shields, Tyler (2008-12-02). "Anti-Debugging Series - Part I". Veracode.
Retrieved 2009-03-17.

686

[10]

(1]

[12]

[13]

[14]
[15]

[1e]

[17]

(18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:4, 2016

Barak B., O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
K. Yang, “On the (Im)possibility of Obfuscating Programs”, pp. 1-18,
Advances in Cryptology— Crypto 2001, Springer LNCS 2139 (2001).
Collberg C., C. Thomborson, D. Low, “A Taxonomy of Obfuscating
Transformations”, Technical Report 148, Dept. Computer Science,
University of Auckland (July 1997).

Collberg C., C. Thomborson, D. Low, “Manufacturing Cheap, Resilient,
and Stealthy Opaque Constructs”, Proc. Symp. Principles of
Programming Languages (POPL’98), Jan. 1998

Collberg Christian, “Surreptitious Software Exercise, Attacks, Breaking
on System Functions”, Department of Computer Science, University of
Arizona, February 26, 2014.

dreamincode.net, “A Simple Introduction to Obfuscated Code”,
http://www.dreamincode.net/forums/topic/38102-obfuscated-code-a-
simple-introduction/, November 25, 2007.

Cullen Linn, Saumya Debray, “Obfuscation of Executable Code to
Improve Resistance to Static Disassembly” http://www.cs.arizona.edu/
~debray/Publications/disasm-resist.pdf, Retrieved 2015-06-17.

Feiman Joseph, “Runtime Self Protection: A Must Have, Emerging
Security Technology”, Gartner Group, 24 April 2012.

Gary McGraw, “Software Security: Building Security In”, Addison-
Wesley Professional, 2006.

Kenneth R. Van Wyk, Diana L. Burley, Mark G. Graff, Dan S. Peters,
“Enterprise Software Security: Design Activities”, Addison-Wesley
Professional, Dec 31, 2014.

William Stallings, Lawrie Brown, “Computer Security: Principles and
Practice”, 3" Edition, Pearson, Jul 8, 2014.

Patterson David, Armando Fox, “Engineering Software as a Service: An
Agile Approach Using Cloud Computing”, Strawberry Canyon LLC,
2013.

Pressman Roger S., Bruce R Maxim, “Software Engineering: A
Practitioner’s Approach”, 8" edition, McGraw Hill, 2014.

Somerville Tan, “Software Engineering”, 9" edition, Addison-Wesley,
2011.

McConnell Steve, “Code Complete: A Practical Handbook of Software
Construction”, 2" Edition, Microsoft, 2004.

Fowler Martin, Kent Beck, John Brant, William Opdyke, Don Roberts,
“Refactoring: Improving the Design of Existing Code”, Boch Jacobson
Rumbaugh, 1999.

Aucsmith D., “Tamper Resistant Software: An Implementation”, Proc. 1%
International Information Hiding Workshop (IHW), Cambridge, U.K.
1996, Springer LNCS 1174, pp. 317-333 (1997).

Kenter Arjan, “Obfuscation” http://www kenter.demon.nl/
obfuscate.html, Retrieved February 22, 2014

Mateas Michael; Nick Montfort. “A Box, Darkly: Obfuscation, Weird
Languages, and Code Aesthetics”. Proceedings of the 6 Digital Arts and
Culture Conference, IT University of Copenhagen, 1-3 December 2005.
Pp. 144-153.

Toshio Ogiso, Sakabe Yusuke, Soshi Masakazu, Miyaji Atsuko,
“Software Obfuscation on a Theoretical Basis and its Implementation”,
IEEE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, January 2003, 176-186.

Amit Sahai, et al., “Candidate Indistinguishability Obfuscation and
Functional Encryption for all circuits”,
http://eprint.iacr.org/2013/451.pdf, 2013

Amit Sahai and Brent Waters “How to Use Indistinguishability
Obfuscation: Deniable Encryption, and More”,
http://eprint.iacr.org/2013/454.pdf, 2013

687

