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 
Abstract—The different seismic behavior of liquid storage tanks 

rather than conventional structures makes their responses more 
complicated. Uplifting and excessive settlement due to liquid 
sloshing are the most frequent damages in cylindrical liquid tanks 
after shell bucking failure modes. As a matter of fact, uses of liquid 
storage tanks because of the simple construction on compact layer of 
soil as a foundation are very conventional, but in some cases need to 
retrofit are essential. The tank seismic behavior can be improved by 
modifying dynamic characteristic of tank with verifying seismic 
loads as well as retrofitting and improving base ground. This paper 
focuses on a typical steel tank on loose, medium and stiff sandy soil 
and describes an evaluation of displacement of the tank before and 
after retrofitting. The Abaqus program was selected for its ability to 
include shell and structural steel elements, soil-structure interaction, 
and geometrical nonlinearities and contact type elements. The result 
shows considerable decreasing in settlement and uplifting in the case 
of retrofitted tank. Also, by increasing shear strength parameter of 
soil, the performance of the liquid storage tank under the case of 
seismic load increased. 

 
Keywords—Steel tank, soil-structure, sandy soil, seismic load. 

I. INTRODUCTION 

HE dynamic responses of a liquid storage tank to a 
seismic motion differ from those of general structures 

such as buildings or bridges. It is well known that these 
differences mainly come from the effect of hydrodynamic 
pressure on structures. This effect has been examined by 
numerous studies that focus on the interaction between a 
flexible wall and liquid [1]-[4]. Veletsos [5] gave a detailed 
account of these efforts and Rammerstrofer et al. [6] 
summarized various treatments of earthquake-loaded liquid 
storage tanks. Those studies usually concentrated only on the 
structural system, even though the effect of soil– structure 
interaction is important. Some exploratory studies on coupling 
effects between a liquid tank and a flexibly supported 
foundation have already been performed [7]-[9]. Recently, 
many liquid storage tanks are constructed with concrete ring 
foundation system to reduce damages due to seismic motion 
[10]. In such cases, it is essentially needed to consider a whole 
system that contains a three-dimensional fluid–structure–soil 
interacting with the concrete ring foundation system for 
precise analysis. Many of these factors have been studied by 
several researchers since early 1930’s. Hopkins and Jacobsen 
[11] have worked on water pressure in tanks. Jacobsen [12] 
also studied the hydrodynamic pressure in tanks. Several 
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studies have been performed on tanks, including 
hydrodynamic pressure by Housner [13] as well as vibration 
tests and analysis by Housner and Haroun [14], [15]. Epstein 
[16] has worked on the seismic design of liquid storage tanks. 
Haroun and Ellaithy [17], and Veletsos and Tang [18] have 
studied the rocking motion of flexible tanks during 
earthquake. Barton and Parker [19] have studied the effect of 
anchorage conditions on the seismic response of tanks. In 
recent years the soil-structure interaction effect has been one 
of the most attractive subjects for many researchers. Velestos 
and Tang [20] have studied comprehensively the effect of soil-
structure interaction on the tank seismic response. James and 
Raba [21] have studied the behavior of steel tanks from 
various aspects, including soil-structure interaction. Liquid-
structure interactions as well as sloshing phenomenon have 
been also matters of interest for several researchers in recent 
years. Lay [22] has studied the modeling of axisymmetric 
tanks by taking into account the liquid-structure interaction. 
The sloshing phenomenon has been studied by Veletsos and 
Shivakumar [23] in the case of rigid tanks. Large amplitude 
sloshing has been also studied by Chen and his colleagues [24] 
for tanks subjected to sever earthquakes. Soil-structure 
interaction has been taken into consideration again in a recent 
work by Malhotra [25] for unanchored tanks. Most of the 
aforementioned studies have been performed for the anchored 
tanks. Nevertheless, some research has been also conducted 
for unanchored tanks, especially in recent years. In addition to 
studies of Malhotra [25], some other researchers such as 
Haroun [26] have been also worked on the behavior of 
unanchored tanks subjected to lateral or seismic loads. The use 
of unanchored tanks has not been recommended for seismic 
areas as the separation of tank walls and bottom from the 
foundation usually leads to heavy damages to the system in 
addition to the loss of content and environment pollution. 
More recently the soil-structure interaction has been a matter 
of interest for some researchers. Zou and Kong [27] have 
suggested a simplified method for seismic analysis of 
cylindrical tanks, in which the geometric parameters of tanks 
have been taken into consideration. 

In this paper, a study has been performed on the effect of 
the tank concrete ring foundation on the modal properties of 
the tank-liquid-soil system for the case of anchored and 
unanchored cylindrical steel tanks in the case of different peak 
ground acceleration The simplified modeled that described by 
Malhotra [10] was used. Both liquid structure and soil-
structure interactions have been taken into account. For this 
purpose a cylindrical steel tank with height over radius 
(H/R=0.66) that was settled on the loose, medium and stiff 
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