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Abstract—In this article the homotopy continuation method 

(HCM) to solve the forward kinematic problem of the 3-PRS parallel 
manipulator is used. Since there are many difficulties in solving the 
system of nonlinear equations in kinematics of manipulators, the 
numerical solutions like Newton-Raphson are inevitably used. When 
dealing with any numerical solution, there are two troublesome 
problems. One is that good initial guesses are not easy to detect and 
another is related to whether the used method will converge to useful 
solutions. Results of this paper reveal that the homotopy continuation 
method can alleviate the drawbacks of traditional numerical 
techniques. 
 

Keywords—Forward kinematics; Homotopy continuation 
method; Parallel manipulators; Rotation matrix 

I. INTRODUCTION 
UITE recently, parallel manipulators have received a 
great deal of attention from many researchers [1]. This 

popularity is a result of the fact that the parallel manipulators 
have more advantages in comparison to their serial 
counterparts in many aspects, such as stiffness in mechanical 
structure, high position accuracy, high speed and high load 
carrying capacity.  

Parallel manipulators generally perform the task of 
controlling the moving platform with respect to the base 
frame. To achieve this goal, the position analysis of parallel 
manipulators, the forward and inverse kinematics problems, is 
a mandatory step. The forward problem, which is the problem 
of finding the poses (positions and orientations) of the top 
platform when every actuator displacement is given, is 
challenging. In contrast to this, the inverse kinematics 
problem, which consists in finding the set of joint variables to 
achieve a desired configuration of the top platform, is easy in 
contrast to serial chain manipulators where the opposite is 
true. Many researchers have studied the forward displacement 
analysis of parallel manipulators [2], [9]-[11], [22], [23]. 

Six degrees of freedom (DOF) parallel manipulators have 
many advantages mentioned above and many literatures have 
introduced them; however, 6-DOF is not always required for 
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many applications. Recently, parallel manipulators with less 
than 6-DOF have attracted various researchers. For example, 
many 3-DOF parallel manipulators have been designed and 
investigated for relevant applications [3]-[10]. The 3-RPS 
parallel manipulators are a group of these 3-DOF 
manipulators. The 3-PRS architecture parallel manipulators 
were already well known in the mechanism community, and 
several 3-PRS parallel manipulators were designed and 
analyzed separately [7]-[10]. Here the notation of R, P, U, C, 
and S denotes the revolute, prismatic, universal, cylindrical, 
and spherical joint, respectively. 

In most cases of direct kinematic analysis of parallel 
manipulators, the solution of a system of nonlinear coupled 
algebraic equations leads to the variables describing the 
platform posture and there may be many solutions [11]. 
Except in a limited number of these problems, there are 
difficulties in finding exact analytical solutions. So these 
nonlinear simultaneous equations should be solved using other 
methods. Recently, numerical calculation methods were used 
to achieve this; but as the numerical calculation methods 
improved, semi-exact analytical methods did, too. Most 
scientists believe that the combination of numerical and semi-
exact analytical methods can also end with useful results [12], 
[13]. 

To date, there exist many different methods that can deal 
with simultaneous non-linear equations, such as the Newton–
Raphson method which is very efficient in the convergence 
speed [14]-[16]. However, there always needs to guess the 
initial value in the iteration process. Good initial guess value 
can solve the equations quickly; while bad initial guess value 
usually will yield divergence. Homotopy continuation method 
(HCM) is a type of perturbation and homotopy method [14]-
[17]. It can guarantee the answer by a certain path, if the 
auxiliary homotopy function is chosen well. It does not share 
the drawbacks of traditional numerical techniques, specifically 
the acquirement of good initial guess values, the problem of 
convergence and computing time [14]-[16]. This method, 
known as early as in the 1930s [20]-[22], was used by 
kinematicians in the 1960s for solving mechanism synthesis 
problems. The latest development was done by Morgan [18], 
[19], Garcia [20] and Allgower [21]. Wu [14]-[16] presented 
some techniques by combining Newton’s and homotopy 
methods to avoid divergence in solving nonlinear equations. 
Also Wu [14] and Varedi [22] et al. used this technique in 
kinematics analysis of robots. In this paper homotopy 
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continuation method is used to solve the forward kinematic 
problem of a 3-PRS parallel manipulator. 

II. THE HOMOTOPY CONTINUATION METHOD 
In connection with any numerical problem, e.g. the 

Newton–Raphson method, there are two troublesome 
questions. One is that good initial guesses are not easy to 
detect and another is whether the used method will converge 
to useful solutions. The homotopy continuation method can 
eliminate these shortcomings [14].  
Let us consider the following system of nonlinear equations:  
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The numerical iteration formula of Newton’s method for 
solving these equations is given as: 
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 (2) 
 
Given a system of equations in n variables x1, x2,…, xn, the 
equations are modified by omitting some of the terms and 
adding new ones until a new system of equations, the 
solutions of which may be easily guessed/given/known, is 
obtained. Then coefficients of the new system are deformed 
into the coefficients of the original system by a series of small 
increments to obtain the solutions. This is called homotopy 
continuation technique. To find the solution for (1), a new 
simple start system or called auxiliary homotopy function 

[18]-[20] is chosen as: 
 

0)( =xG  (3) 
 
G(X) must be known or controllable and easy to solve. Then 
the homotopy continuation function can be written as follows: 
 

0)()1()(),( =−+≡ XGtXtFtXH  (4) 
 
Where t is an arbitrary parameter and varies from 0 to 1, 
i.e. ]1,0[∈t . Therefore, the following two boundary 
conditions [14]-[16] exist. 
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The goal is to solve the H (X, t) = 0 instead of F (X) = 0 by 
varying parameter t from 0 to 1 and avoid divergence. Hence 
Eq. (2) is rewritten [16] as: 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−
−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−
−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

+

+

.

.

.
,...),(
,...),(

.

.

.

...
...

...

...
,...),(,...),(

...
,...),(,...),(

2

1

1

1

22

11

nn

nn

nn

nn

nnnn

nnnn

yxH
yxH

yy
xx

y
yxH

x
yxH

y
yxH

x
yxH

 

 (6) 
 
To avoid divergence, Wu [15] provided some useful choices 
for the auxiliary homotopy function. They are polynomial, 
harmonic, exponential or any combinations of them. By 
appropriate choosing/adjusting the auxiliary homotopy 
function, the solutions of (1) can be obtained [16]. 

III. DESCRIPTION AND MOBILITY ANALYSIS OF 
THE 3-PRS PARALLEL MANIPULATOR 

A 3-PRS parallel manipulator, as shown in Fig. 1, is studied 
by Li and Xu [23]. This manipulator is composed of a moving 
platform, a fixed base, and three supporting limbs with 
identical kinematic structure. Each limb connects the fixed 
base to the moving platform by a P joint, an R joint, and an S 
joint in sequence, where the P joint is actuated by a linear 
actuator. Thus, the moving platform is attached to the base by 
three identical PRS linkages.  

The vectors and reference frames are described in Figs. 2 
and 3. For the sake of analysis, as shown in Fig. 2, a fixed 
Cartesian reference coordinate frame O{x, y, z} is attached at 
the centered point O of the fixed triangle base platform 
ΔA1A2A3. Moreover, a moving coordinate frame P{u, v, w} is 
attached on the moving platform at point P which is the 
centered point of triangle ΔB1B2B3. For simplicity and without 
losing the generality, let the x-axis points in the direction of 
vector OA1 and the u-axis points along vector PB1. The three 
rails DiEi for i = 1, 2, and 3 intersect each other at the vertex N 
of the cone and intersect the x–y plane at points A1, A2, and A3 
that lie on a circle of radius a. The three links CiBi for i = 1, 2, 
and 3 with the length of l intersect the u–v plane at points B1, 
B2, and B3 which lie on a circle of radius b. The sliders of the 
P joints are restricted to move along the rails between Di and 
Ei. Angle α is measured from the fixed base to rails DiEi and is 
defined as the actuator layout angle. Angle β is defined from 
the x-axis to OA2 in the fixed frame, and also from the u-axis 
to PB2 in the moving frame. Similarly, the angle γ is measured 
from the x-axis to OA3 in the fixed frame and from the u-axis 
to PB3 in the moving frame. In the following discussions, β = 
120° and γ = 240° are assigned for simplicity. Moreover, this 
assignment also results in a symmetric workspace [23].  
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Fig. 1 The 3-PRS parallel manipulator 

 
Fig. 2 Schematic representation of the 3-PRS parallel manipulator 

 
Fig. 3 Geometry of one typical kinematic chain 

 
Let d = [d1 d2 d3]T be the vector of the three actuated joint 
variables where di denotes the distance between Ai and Ci and 
is taken positive if Ci is located above the xy plane of the 
reference coordinate frame O{x, y, z}. Moreover, x = [px  py  pz 
ψ θ φ]T is considered as the vector of Cartesian variables 

(constrained and unconstrained) which describes the position 
and orientation of the moving platform. Three Euler angles φ, 
ψ, and θ rotating about the z-, x-, and y-axes of the fixed 
reference frame respectively are defined. The transformation 
from the moving frame to the fixed frame can be described by 
a position vector p = [px  py  pz]T and a 3 × 3 rotation matrix 

p
OR , which can be expressed as follows: 
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 (7) 
 
Where c and s stand for cosine and sine, respectively. 
The general Grübler–Kutzbach criterion is of importance in 
mobility analysis of many parallel mechanisms. The number 
of DOF of a 3-PRS parallel manipulator given by the general 
Grübler–Kutzbach criterion is: 
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Where λ represents the order of task space, n is the number of 
links, g is the number of joints, and fi denotes the DOF of joint 
i. 

IV. CONSTRAINT CONDITIONS 
The position vectors of points Ai and Bi with respect to 

frames O and P can be written as Oai and Pbi, respectively, 
where a leading superscript indicates the coordinate frame 
with respect to which a vector is expressed. For brevity, the 
leading superscript will be omitted whenever the coordinate 
frame is the fixed frame, e.g., Oai = ai. The vectors of ai and 
Pbi can be expressed as follows, respectively. 
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Let u, v, and w be three unit vectors defined along the u-, v-, 
and w-axes of the moving frame P. Then the rotation matrix 
can be expressed in terms of the direction cosines of u, v, and 
w as 
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The position vector qi pointing from O to the ith S joint, Bi, 
can be expressed by: 
 

ii bpq +=  (12) 
 
Where 

i
pO

p bRb =i  (13) 

 
The vector bi can be reached by substituting (10) and (11) into 
(13), and according to (12) the vector qi can be obtained as 
below: 
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Considering the mechanical constraints imposed by the R 
joint, the S joint Bi can only move in the plane defined by the 

ith linear actuator and ith link CiBi. Therefore, the following 
three equations hold: 
 

01 =yq  (15) 
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Substituting the components of qi from (14) into (15)–(17) 
yields: 
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Taking 2×(18) – (19) – (20) yields 
 

yx uv =  (21) 
 
Subtracting (19) from (20) leads to 
 

)(
2 yxx vubp −=  (22) 

 
Hence (18), (21), and (22) impose three constraints on the 
motion of the moving platform. 

V. FORWARD POSITION KINEMATICS 
MODELING 

The aim of forward position kinematics is obtaining the 
position and orientation of the moving platform by a given set 
of actuated inputs. So the input in forward position kinematics 
is the vector of the three actuated joint (d = [d1 d2 d3]T) and 
output is the vector of Cartesian variables (x = [px py pz ψ θ 
φ]T) (constrained and unconstrained) which describes the 
position and orientation of the moving platform. 
Referring to Fig. 3, the following vectorial relation can be 
written 
 

iiii ld ldL +=  (23) 
 
Where Li is the vector pointing from point Ai to Bi, li is the 
unit vector along CiBi, di represents the linear displacement of 
the ith actuator, and di is the corresponding unit vector 
directed along DiEi for i = 1, 2, and 3, which can be expressed 
as follows: 
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Additionally 
 

iii aqL −=  (25) 
 
Where qi is expressed by (12). Equation (23) yields: 
 

iiii ld ldL =−  (26) 
 
Squaring both sides of (26) and rearranging the items yields 
 

02 22 =−⋅+⋅− ldd iiiiii LLdL  (27) 
 
Which leads to three equations with assuming i = 1, 2 and 3. 
Components of the unit vectors u and v can be obtained 
through the rotation matrix, expressed in (7); substituting 
these components into the three constraint (18), (21), and (22) 
yields: 
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2
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Due to the physical constraints introduced by cone angle 
limits of the S joints, the moving platform cannot rotate about 
the x- and y-axes unlimitedly, i.e., ψ > –π/2, θ < π/2, then cψ+ 
cθ ≠ 0. Solving Eq. (29) with respect to φ leads to: 
 

),(2tan 1 θψθψϕ ccss += −  (31) 
 
Substituting φ from this equation into (28) and (30) allows the 
generation of py and px, respectively. So there is only need to 
calculate ψ, θ and pz, then the other variables φ, py and px can 
be obtained respectively. 
For solving this problem, equation (27) is used. This equation 
makes a system of nonlinear equations which is described 
below: 
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Where di and Li (i = 1, 2 & 3) can be calculated. 
For solving this system of nonlinear equations, the homotopy 
continuation method is used as follows: 
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Equations (33a)–(33c) can be solved by the Newton–Raphson 
method while the homotopy parameter t changes from 0 to 1. 
 

VI. CASE STUDY 
 

To show the efficiency of the proposed method, the direct 
kinematics of problem of the manipulator under study is 
solved with assumption of geometric parameters d1= 
101.4888, d2= 91.8057, d3= -80.5667, a = 400, b=200, l=550, 
α = π/6 (all the lengths are in mm and angles are in radians). 
The initial guesses of unknown parameters are chosen as: (pz, 
ψ, θ) = (20, 2, 1). 
Equations (33a)–(33c) are solved by the Newton–Raphson 
method and various auxiliary homotopy functions (G1, G2, G3) 
are used to obtain the result. The auxiliary homotopy 
functions and the results of these nonlinear equations are 
given in Table 1 and depicted in Fig. 4.  
Although all possible configurations of the moving platform 
can be derived by using the Silvester elimination method, it is 
a very time-consuming work and many solutions are 
meaningless [23]. In this case, solving the problem by 
Silvester elimination method results in eight real 
configurations that two of them are meaningless. In 
comparison with the Silvester elimination method, the 
homotopy continuation method converges to all six accurate 
results. 
It is noteworthy that, changing the initial guesses of unknown 
parameters doesn’t have sensible effect on the result. Table 2 
shows this property in which G1, G2 and G3 are chosen as 

)cos(ψ+zp , )cos()sin( ψψ +  and )sin(ψzp , 
respectively and different initial guesses are used for the 
unknown parameters. 
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VII. CONCLUSIONS 
In this paper the homotopy continuation method is applied 

on the forward kinematic problem of the 3-PRS parallel 
manipulator. Some advantages of homotopy continuation 
method over the conventional methods are its fast 
convergence and leading to its final values even with bad 
initial guesses, while the Newton–Raphson method would 
easily become divergent. Also, the algorithm is very 
straightforward. 
 

 

 
 

 
 

 
 

 

 

 

TABLE II 
SOME INITIAL GUESSES WHICH RESULT IN THE SAME ANSWER 

(pz0, ψ0, θ0) Result (pz, ψ, θ) 

(20, 2, 1) (-470.0000, 0.4000, -0.3000) 

(-20, -2, -1) (-470.0000, 0.4000, -0.3000) 

(30, 5, 1) (-470.0000, 0.4000, -0.3000) 

(-25, -2, 1) (-470.0000, 0.4000, -0.3000) 

(30, -2, 1) (-470.0000, 0.4000, -0.3000) 

(-25, -2, -1) (-470.0000, 0.4000, -0.3000) 
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a 

TABLE I 
THE AUXILIARY HOMOTOPY FUNCTIONS AND THEIR RESULTS 

Result 
No. G1 G2 G3 Result (pz, ψ, θ) 

1 2pz+8sin(θ) 5cos(ψ)-6pz 
7sin(θ)+ 
10sin(ψ) 

(510.924, 0.074,-
0.042) 

2 3p2
z+ 

8sin(θ2) 
5cos(ψ2)-
6pzsin(θ3) 

7sin(θ)+10 
sin(ψ2)cos(θ) 

(-411.604, 0.274, 
5.0363) 

3 p4
zsin(θ)+sin(
ψ2)cos(θ) sin(ψ) sin(θ) (405.858, -0.979, 

-1.243) 

4 2p2
z+ 

8sin(θ) 
5cos(ψ2)+ 

6pz 
7sin(θ)+ 
10sin(ψ) 

(-405.169, 1.235, 
-5.538) 

5 pz+sin(ψ) cos(ψ) sin(θ) (406.586, 0.0436, 
1.365) 

6 pz+cos(ψ) sin(ψ)+ 
cos(ψ) pzsin(ψ) (-470.00, 0.400, -

0.300) 
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Fig. 4 Six solutions of the forward kinematics problem corresponding 
to assembly modes of the manipulator 
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