
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:6, 2011

558

Abstract—This paper proposes a new approach to offer a private

cloud service in HPC clusters. In particular, our approach relies on
automatically scheduling users’ customized environment request as a
normal job in batch system. After finishing virtualization request jobs,
those guest operating systems will dismiss so that compute nodes will
be released again for computing. We present initial work on the
innovative integration of HPC batch system and virtualization tools
that aims at coexistence such that they suffice for meeting the
minimizing interference required by a traditional HPC cluster. Given
the design of initial infrastructure, the proposed effort has the potential
to positively impact on synergy model. The results from the
experiment concluded that goal for provisioning customized cluster
environment indeed can be fulfilled by using virtual machines, and
efficiency can be improved with proper setup and arrangements.

Keywords—Cloud Computing, HPC Cluster, Private Cloud,
Virtualization

I. INTRODUCTION
N recent years there has been renewal of interest in the
relation between virtualization and cloud computing. A

growing number of companies try to propose new solutions for
users to exploit the computing power in the cloud. Although
cloud computing is a buzz word, the computing power of HPC
cluster should not be ignored as well.

As Taiwan’s only full service HPC service provider, we
continue to insist on innovation. By planning and executing the
construction of advanced researching environment, the NCHC
has dutifully provided HPC services to academia. We also have
noticed that the overall computing capacity still falls far behind
expectations. Shortage of allocation of advanced machines
becomes our major challenge of the year. Experience is that lots
of complaints concerning long waiting time before execution.
One common feedback is that users need their projects done in
a specific platform, but they always got stuck with the currently
OS version of supercomputer systems.

Supercomputer systems are not affordable for most
academic institutes and colleges in Taiwan. The other problem
was that most researchers are not familiar with software stack
on HPC systems, not to mention installing them alone. Our

C. H. Li is with the National Center for High-Performance Computing,

Tainan 74147 Taiwan (phone: 886-6-505-0940; fax: 886-6-505-5909; e-mail:
OscarLi@nchc.narl.org.tw).

T. M. Chen is with the National Center for High-Performance Computing,
Tainan 74147 Taiwan (phone: 886-6-505-0940; fax: 886-6-505-5909; e-mail:
gavin@nchc.narl.org.tw).

Y. C. Chen is with the National Center for High-Performance Computing,
Tainan 74147 Taiwan (phone: 886-6-505-0940; fax: 886-6-505-5909; e-mail:
ycc0301@nchc.narl.org.tw).

S. T. Wang is with the National Center for High-Performance Computing,
Tainan 74147 Taiwan (phone: 886-6-505-0940; fax: 886-6-505-5909; e-mail:
stwang@nchc.narl.org.tw).

academic users always look forward to better facility we could
offer. They hope for more OS versions and distributions for
them to choose from. Fortunately, virtualization technology
brings new meaning to the HPC cluster. In the past, if we
installed dedicated Linux distribution on a cluster, there was no
reason for system administrator to change the cluster OS except
software or kernel upgrade. Now, with the virtualization of
worker nodes, system administrators can provide any OS on
virtual machines that user needed. In order to meet this kind of
requirement, we try to propose a mechanism which could offer
a rental-like service for outreach programs.

The main stream as supercomputing facilities is using
distributive cluster systems. According to cluster architecture,
one typical cluster usually includes login, management, storage
and compute nodes. Users are allowed to login and submit jobs
from login nodes, and storage servers provide central and
accessible working space mounted for all nodes. And, of
course, many identical compute nodes act as workhorses
solving problems in parallel.

In this paper we propose a flexible approach to utilize
traditional HPC clusters. For smartly scheduling compute
nodes, new features should be added to cluster batch system.
Integrating extra virtual machine management software is also
inevitable. This paper explains how we customized the
commodity cluster infrastructure and deployed middleware on
it to offer dual-purpose function for cloud and HPC.

II. BACKGROUND

A. Cloud Computing
When it comes to cloud computing, Amazon EC2 [1] might

be the most famous service you’ve heard of. EC2 is a platform
offering huge amount of computing power. The computing
power of EC2 is resizable. Via AWS web interface, EC2 users
can change, increase or decrease the demand of the computing
resource at any time. Besides, they can control and manage
their own virtual instances so that users can greatly save their
time to buy and build physical IT infrastructure. All their
projects can be fulfilled in Amazon's mature virtual platform.
The on-demand virtual machines concept brought by Amazon
EC2 will benefit those who are not affordable for expensive
machines [2]. EC2 pioneered a sea change and foster
Infrastructure as a Service innovation. Based on this successful
model, we try to learn and figure out what else we can do in the
high performance computing cluster [3].

B. NCHC Formosa3 HPC Cluster
Formosa3 HPC Cluster is a 64-bit Beowulf cluster located in the

Southern Business Unit of NCHC. It consists of 76 IBM
System x3550 M3 servers as its compute nodes. This self-made

Chin-Hung Li, Te-Ming Chen, Ying-Chuan Chen, and Shuen-Tai Wang

Formosa3: A Cloud-Enabled HPC Cluster in NCHC

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:6, 2011

559

cluster was designed and constructed by the 'HPC Cluster
Team' at NCHC for computational science applications and
came online in 2011. Each node has two six-core Intel model
processors and 48GB of DDR 3 registered ECC SDRAM. All
nodes are connected by the 4x QDR InfiniBand high speed
network and a private subnet with Gigabit Ethernet. An
additional 4 nodes are arranged as login nodes, thus, enabling
users’ easy access. Its 4 DAS storage servers are responsible for
the parallel file-system. The major difference from the previous
series clusters is the virtualization support. In Formosa3’s
hardware specifications, we have added new requirements in
processors, motherboards and network cards for cluster
compute nodes. Theoretically, native virtualization capability
provided by this cluster is shown in Table I.

TABLE I
VIRTUALIZATION SUPPORT OF FORMOSA3 CLUSTER

Component Model Virtualization Technology

CPU Intel Xeon
X5660

Intel VT-x

IOH Intel 5520 Intel VT-d
1. DMA remapping
2. Address translation
3. Interrupt remapping

InfiniBand
HCA

Voltaire
700Ex2-Q-1

1. SR-IOV
2. Address translation and protection
3. Dedicate adapter resources
4. Multiple queue per virtual machine
5. Enhanced Qos for vNICs

The first one, the CPU part, it must support

hardware-assisted virtualization instruction set extensions. This
means that your processor must be Intel VT type or AMD-V
type. V stands for virtualization support. The second
component, north bridge chipset on motherboard, it must
support PCI passthrough—PCI devices performance
improvement for virtualized environment. The third one,
InfiniBand HCA, it must support the new industry standard,
SR-IOV (Single-Root I/O Virtualization) [4]. A virtualization
solution is never just one piece. These three parts of
virtualization are what we focused on first.

There three ways, full-virtualization, para-virtualization and
container-based, for virtual machine in current Linux world.
According to the most I/O benchmark results, performance of
fully-virtualization is far behind the para-virtualization. The
main reason is modified guest operating systems comprise a
hypervisor-aware driver in para-virtualization mode.
Para-virtualization reduced the degradation of system
performance. But only using full-virtualization can fulfill the
goal for offering various operating systems on single machine.
The most crucial factor of development for this cloud platform
is comprehensive support of virtualization in hardware level.

Because virtualization will not work on all regular
processors, CPU and related chipsets vendors began supporting
virtualization technology in 2006. In Intel side, we saw the VT
technologies while AMD offered AMD-V. Their detailed
technology may be far different, but their goal was the same to
accelerate performance of binary translation for hardware.

If the motherboard supports Intel VT-d or AMD IOMMU
and you’ve enabled it in BIOS, it will allow the host PCI device
to be directly accessed by VM as if it was physically attached to
the Guest OS. On top of that, more and more HPC clusters on
TOP500 List have used InfinBand as inter-connect. Formosa3
has also adopted the 4x QDR HCA so that it could offer very
high bandwidth private networking. In this cluster, InfiniBand
network is responsible for both MPI and parallel file-system
communication. As for cloud service, its Mellanox ConnectX-2
chipset of InfiniBand HCA supports the SR-IOV technology.
With SR-IOV, the HCA on a host node can be efficiently
multiplexed by many Guest OSes of VMs at the same time.

C. KVM Hypervisor
KVM stands for Kernel-based Virtual Machine [5] which

means a full virtualization solution. KVM is for Linux which is
working on processors that have capabilities related to
virtualization. KVM virtual machine implementation has two
loadable kernel modules. One is “kvm.ko” that handles the
main virtualization infrastructure and another is the processor
specific module, “kvm_intel.ko” or “kvm_amd.ko”. In addition,
it also needs a modified QEMU to emulate the peripherals for
virtual machines.

Linux KVM is open-source software. But to manage your
own virtual machine well you will need to add up some special
software to it. The main requirement on host is the libvirt
library. Libvirt provides a hypervisor-agnostic and
comprehensive APIs to manage Guest OSes running on a real
host. Fig. 1 presents the components of a typical KVM
installation. As you can see that each KVM VM can be treated
as a user space process in Linux. This will be helpful for
streamlining VM builds within batch system job script if we
choose KVM as our hypervisor.

Fig. 1 Linux KVM architecture

D. Torque Resource Manager
Torque [6] is an open source resource manager providing

control over batch jobs and distributed compute nodes. To
guarantee the fairness of using compute nodes, priority
escalading, or resource partitioning, installing a scheduling
system is necessary for a large cluster open to many users and
organizations. Due to ease of installation, Torque has
predominated in batch systems for typical HPC clusters,
especially in research institutions. Not only Torque can detect
the compute nodes’ availability but leverage processes on
single node from being over-occupied. There are six Queues on
Formosa3, and the detail setting of each Queue was illustrated

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:6, 2011

560

in Table II. For better utilization of resources, the backfill
algorithm of these Queues is arranged as Best-Fit.

TABLE II
TORQUE QUEUE CONFIGURATIONS ON FORMOSA3

Queue Name Maximum Nodes Maximum Wall-Time

Serial 1 168 hours
N4 4 120 hours
N8 8 120 hours
N16 16 96 hours
N32 32 48 hours
N64 64 48 hours

E. Virtualization and HPC
Table III and Table IV list the middleware installed on

Formosa3 cluster. Generally speaking, HPC applications have
historically tended to exhaust the limits of CPU performance,
memory capacity and network bandwidth. On average, MPI job
processes optimize over 80 percent workloads on single
compute node. Server Virtualization is not fancy technology,
but in HPC world is the only one place where virtualization
hasn’t taken off. HPC consumers are always looking for best
performance. Therefore, cluster designers opt to avoid server
virtualization due to the overhead that virtualization imposes.
However, for HPC sites, cloud computing concept is still
attractive with dynamic resource provisioning and live
migration capabilities.

TABLE III
HPC MIDDLEWARE OF FORMOSA3

Operating System CentOS 5.5 x86_64

Message Passing Library MPICH2, MVAPICH2
Batch System Torque, maui
Remote Operation PDSH
Monitoring Ganglia

TABLE IV

CLOUD MIDDLEWARE OF FORMOSA3

Operating System CentOS 5.5 x86_64

Virtualization Library Libvirt
Hypervisor KVM
Resource Management OpenNebula
Remote Operation Virtual Shell
Web Portal eyeOS, Web Console

III. IMPLEMENTATION
Most researches treat VMs as new resource for clusters or

grid environment [7]. They voluntarily neglected the VM
overhead while processing jobs on the same compute node at
the same time. Coexistence of virtualization and HPC service
could be a disaster for less powerful processors because there is
no room for virtualization. Fig. 2 shows the distinct concept
about how we use virtual machines in HPC batch system. We
design a new mechanism for VM allocation inside Torque
system. And how we integrate OpenNebula [8]–[9] for

managing VMs and VM images will be described in detail as
follows.

Fig. 2 VM life cycle in batch system

A. Torque Customization
In Torque system, host CPU and host memory are main

resources for HPC clusters. But, in virtualization’s point of
view, the computing resources were extended to software level.
These different VM operating systems will be new resource for
the batch system. But if we want a virtual machine to attain
evenly matched computing power as a physical one, we have to
fairly schedule HPC jobs and VM allocation requests at the
same time. Unlike other projects [10]–[12] trying to increase
job capacity by scheduling VM in the cloud, the rule of thumb
in our work is that those nodes processing HPC jobs should not
be available for VM allocations, and vice versa. Once a node
was dispatched for job execution, no VM will be created on it
any more.

The batch system is the most import part for this project. We
retained the default interface for user job submission, but just
focused on the prolog and the epilog job processing steps of
Torque client daemon on compute nodes. We add the extra
environment variables to job scripts when cloud users send out
the VM requests. These variables used to indicate the path of
VM image file, template file and script files for customization,
etc.

When parsing the job scripts, the Torque client daemon,
pbs_mon, will automatically decide whether or not it has to
start the virtual machine. Fig. 2 indicates the VM life cycle and
its relation with Torque operation. These VM Guest OSes will
be staged during the prolog step and filed away during the
epilog step. These Guest OSes will keep up and running until
jobs use up their Queue’s maximum wall-time.

B. OpenNebula Integration
Installing Xen or KVM in a machine is not that difficult, but

working out how to fit different requirements into virtual
environment in a cluster could be a challenge [13]. With
OpenNebula, it makes the manipulation of multiple VMs on
cluster environment easier. OpenNebula contains a set of
commands you can apply to VMs, physical hosts, and even
virtual network, for example, which are not for the faint of heart
in virsh tools. The following are a few examples of host and
VM management in OpenNebula.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:6, 2011

561

Fig. 3 ONE command examples

One of OpenNebula’s strongest points is its ability to

monitor hosts, VMs and network in cluster by issuing “one
commands” from console. Use the above example feeding the
VM profile data into host pool, and you can easily deploy,
migrate any VM among cluster nodes.

For practical reasons, imaged should be classified. There are
some commands will be helpful when administrators need to do
VM image management (to add/delete image, clone image,
etc.). The following are examples of image file management in
latest OpenNebula.

Fig. 4 ONE image manipulation examples

C. Security Control
While using the Linux server for internet services, in order to

avoid the extra legal problems during operation, sometimes
periodically checking the system security is necessary. There
are already a lot of security tools from open-source for Linux
platform. Before beginning Formosa3’s cloud service, we
should also take security issues into consideration. There is a
lot of possibility that the OS of VM will be tainted after being
hacked from outside or changed by some mischievous users
[14].

As shown in Fig. 5, in order to detect the OS integrity on
VM, we tried to apply effective security tools on them. We
have developed the two kinds of mechanisms for intrusion
detecting. Firstly, before preparing the VM images for users,
we have adopted the host intrusion systems on them in advance.
AIDE is what we used for gathering the whole original system
files’ key fingerprint. Next, when VM woken up for user
request, AIDE intrusion systems will alert system administrator
to possible intrusion attempts by periodically checking system
files during VM’s running cycle. Once it detected target file
changed, each VM will pipe out AIDE comparison log data to
cluster file system and mail to the administrator. This is
real-time alerting approach for system administration. The
second way we used is passive detection. Each VM image will
be mounted (via lomount command) again as a chroot-like
partition after VM shutdown and then the Formosa3 system
will apply rootkit detection tools (e.g., chkrootkit or rkhunter)
hunting for any malware. Both methods will greatly enhance
the system security.

Fig. 5 Security audit for virtual machine instances

D. Deployment and Operation
As of this writing, both IBM GPFS and Lustre parallel

file-system [15] now support InfiniBand native mode
networking. In Formosa3, we have deployed both Lustre and
GPFS as global shared file-systems at the same time. Especially
for large files, GPFS brings the best data I/O rate for jobs.
Therefore, we considered that GPFS will play well too while
accessing the VM images.

The upper part of Fig. 6 is the scenario of HPC service. It
sketches the workflows of HPC services in Formosa3. Users
login, submit their jobs and get the output after job scheduled
and completed.

The cloud service is illustrated in the bottom part of Fig. 6.
Cloud users start the web browser and access the Formosa3
web site. This web portal contains several contextualization
options that users could select for their virtual environment. In
Table V, currently available customization options will be
platform type, Linux distribution and target service. Then,
cloud users simply choose the dedicated OS version, and fill in
how many nodes needed for running their projects. In addition,
the target service will help install all necessary packages for the
mpich, mvapich or hadoop environment without users’
intervention. If the cloud user did not specify it, there will be a
raw operating system installed only.

TABLE V
CUSTOMIZATION OPTIONS FOR CLOUD SERVICE

 Options

Platform Category Cluster (Head Node and Slave Nodes),
Single Node

Operating System CentOS, Fedora, Ubuntu
Target Service Hadoop, Mvapich (ib), Mpich (tcp)

All requests from Formosa3 web portal will be transformed

into formatted Torque job scripts and automatically submitted,
and scheduled as usual. When there are free nodes for jobs,
Torque client daemon will execute the OpenNebula command
to wake up the dedicated OS-type VM image. The default
application packages, VM images and related VM template
files are stored on GPFS file-system. Each virtual cluster has
two kinds of nodes. The first one is head node, and it is the only
one node for each request. The rest nodes are all compute
nodes.

Cloud head node served as the login node for users. All the
necessary customization procedures will be done during VM
operating system booting stage. Basically, its tasks includes

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:6, 2011

562

adding the user account, exporting the /home and /opt for
virtual cluster clients, starting the NIS server daemons,
executing the contextualization scripts that user chose from
web portal.

The number of cloud compute node is determined by Torque
queue. When one requested 4 virtual compute node from web
portal, his corresponding Torque job script will try to allocate 4
free real nodes. If enough nodes were scheduled by Torque
system, Guest OS will be created by “one command”. Just like
the cloud head node, all cloud compute nodes will
automatically start NIS client service and mount the cloud head
node’s /opt and /home via NFS protocol. These cloud compute
nodes simply served as workhorses, therefore, no
contextualization will apply on them.

Fig. 6 Scenario of job and VM allocation

These cloud user’s dedicated nodes will be in the same

subnetwork and all compute nodes will mount the /home and
/opt of the head node during OS booting, too. Thus, these VMs
finally together form a private cloud. While the virtual
environment being ready, user on portal will be prompted a
web-based SSH client console page. At last, he or she could
freely access this isolated virtual cluster until time lapsed.

These private cloud VMs all are using private network but
users are from internet. On the web portal server, we have setup
a database counting each user’s login time and metering the
amount of resource they used. Besides, this database deals with
SSH port forwarding and mapping to cloud head nodes.

IV. EXPERIMENT RESULTS AND ANALYSIS

A. Performance Evaluation of Cloud Service
Although virtualization brings flexibility to OS arrangement,

its drawback in performance cannot be ignored [16]–[17]. To
understand the impact, we deployed the mechanism on
Formosa3 cluster, and ran real world MPI projects on KVM
virtual machines.

HPL (High Performance LINPACK) is to solve a dense
linear system problem and is the widely used benchmark for
evaluating performance of HPC systems. However, the

performance of PC cluster is largely application-dependent. We
use the NCHC benchmark suit which contains five problems,
namely hubksp, nonh3d, bem3d, ns3d and jcg3d, picked from
four application domains. The hubksp program comes from
physics, and nonh3d is an atmospheric science case. Both
bem3d and ns3d are applications of parallel computing in the
field of computational fluid dynamics (CFD). The last one,
jcg3d is from computational solid mechanics. These particular
jobs helped us to distinguish the performance in different
problem domains.

B. Performance Analysis
TABLE VI

SEQUENTIAL JOB PERFORMANCE

Single Core Physical Node KVM Node

Bem3d real 36m36.244s
user 36m34.750s
sys 0m0.087s

real 72m0.243s
user 69m46.451s
sys 0m2.829s

Hubksp real 40m6.238s
user 40m2.452s
sys 0m3.213s

real 49m20.904s
user 48m24.529s
sys 0m4.448s

Ns3d real 39m19.016s
user 38m10.482s
sys 0m0.320s

real 45m28.550s
user 44m25.962s
sys 0m3.390s

Nonh3d real 58m35.250s
user 56m28.103s
sys 0m0.904s

real 78m35.344s
user 74m4.236s
sys 0m5.023s

Jcg3d real 82m43.054s
user 81m39.085s
sys 0m0.502s

real 108m14.257s
user 107m4.393s
sys 0m6.140s

TABLE VII

PARALLEL JOB PERFORMANCE

32 Cores over
Gigabit Ethernet Physical Cluster KVM Cluster

Hubksp real 16m11.841s
user 8m34.624s
sys 0m32.682s

real 53m2.332s
user 11m34.943s
sys 8m42.274s

Nonh3d real 42m59.208s
user 12m28.441s
sys 1m3.038s

real 66m23.284s
user 14m16.380s
sys 5m45.228s

From sequential jobs’ elapsed-time data listed in Table VI,

apparently performance results of physical node excels the
virtual one while running single core. In terms of parallel
processing, we evaluate hubksp and nonh3d jobs over 32 cores.
Table VII shows the performance comparison between
physical and KVM virtual cluster over Gigabit Ethernet.

It is a comfort to see that the performance drop become not
explicit between physical and virtual environment over single
core evaluation. According to Table VI, virtual node shows
slight performance drop on CPU-intensive cases. On the
contrary, performance drops are obvious on parallel hubksp
and nonh3d. It is because that both hubskp and nonh3d jobs
will output files inside Guest OS during job processing. The
other possible cause is poor network I/O rate over emulated
Ethernet by KVM.

TABLE VIII
PERFORMANCE COMPARISON

24 Cores
Network
Interface

Rmax
(Gflops)

Efficiency
(%)

NetPIPE
(Gbps)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:6, 2011

563

GbE 152.2 56.62 0.74
IPoIB 199.5 74.21 4

Physical
Cluster

Native IB 232.4 86.45 24
GbE 84.3 31.36 0.17
IPoIB 157.8 58.70 4

KVM
Cluster

Native IB 164.4 61.16 23
Rpeak: 268.8 Gflops

Table VIII are HPL and NetPIPE benchmark results of
physical and virtual environment. The testbed here is 24 cores
on two Formosa3 compute nodes. According the NetPIPE
result, it reveals there is a huge performance drop in
communication between KVM VMs hosted by distinct physical
nodes over Gigabit Ethernet. The disk and network I/O devices
emulated by KQEMU are not capable of high performance
computing.

As for the InfiniBand network channel, that is another story.
The NetPIPE performance drop of virtual cluster over
InfiniBand is much smaller than that over Gigabit Ethernet.
These results do prove that PCI passthrough technology really
benefits classical HPC applications on virtual machine
environment. Unfortunately, the overall LINPACK
performance of virtual cluster over InfiniBand native mode
contributes 61% efficiency, which means there is still much
room for improvement of KVM cluster.

C. VM Allocation Time Analysis
As most research revealed [18]–[19], virtualization does not

play well with high performance I/O. In this section, we try to
evaluate the suitability of file-system for deploying virtual
clusters inside the Formosa3. To check out the possible factor
interfering VM allocation speed [20], we put file-backed VMs
on different directories for tests. The Formosa3 plans to offer
three sorts of cluster-wide file-system for our users. The /home
and /opt directories are shared via NFS and compute nodes
mount them over Ethernet interface. The two public working
space, /work was built by Lustre package, and /gpfswan is from
IBM GPFS. The default KVM image repository is
/var/lib/libvirt/images where is the local disk partition
formatted to ext3 on compute nodes. The Linux-based VM
image file size we prepared here is about 4GB. We submitted
different cluster scale cases to Torque, and counted the elapsed
time spent from submission to private cloud being available.
Below, the Fig. 7 shows the average allocation-time of each
cluster scale on different file-system.

Fig. 7 Average VM allocation time on different file systems

From Fig. 7, it seeks to capture the fact that users have to

wait for a longer time till virtual cluster being ready. The
allocation-time for a virtual cluster keeps increasing when more
VM images demanded. Cloud users need to be more patient
when they requested more virtual machines.

From the allocation-time test results, it proves that putting
VM images on parallel file-system could bring noticeable
effect on allocation rate. According to Fig. 7, housing VM
image files on parallel file-system and local disk both are more
efficient than on a NFS share. We also found that putting
images on local disk can retain very stable deploying rate for
online service. This would be expected, since the local disk’s
maximum read/write transfer rate is the same on every compute
node. Putting images on NFS directory was unable to guarantee
the service level requirement. NFS performance drops
seriously while staging too many VMs. Although, putting VM
images on local node really offers stable allocation speed, it
potentially consumes unknown file size. Generally speaking,
compute node disk size was fixed and limited. If more VM
image files should be prepared, putting these images on Lustre
or GPFS partitions would be adequate for both users and cluster
administrators since it could not only export large disk size but
also lower the allocation time. Using parallel file system as the
image storage will lead to roughly a two times speedup for 64
VMs’ allocation, compared with NFS.

V. CONCLUSION AND FUTURE WORK
Amazon EC2 services raise the level of new service model

for business. EC2 allows its users to specify their own OS
environments followed by several selection steps. Rather than
buying more machines from vendors, this paper gives some
approaches for how to greenly using current computing cluster.
The approaches in this paper were to describe a harmless
solution for providing pre-created cluster environments on a
physical cluster. We explored the effect and affect of present
initial results. By means of KVM, we made a dual-use cluster
for cloud and HPC possible. From our performance evaluation
experiment, partitioning HPC jobs and VM allocation makes
private cloud service achieve near-native performance result.
Furthermore, no matter how HPC-job load changes over time,
any virtual cluster running on compute nodes will not be
affected. All techniques or ideas mentioned in this paper could
be applied to other HPC clusters to present cloud service in data
center.

While current approach helps users manage VMs as jobs to
create a customized cluster, it needs to be refined to provide
more elastic features. Due to the license issue, our
implementation currently just offers Linux-based images for
our clients. No window-based virtual cluster provided in
Formosa3. And a more accurate reservation mechanism for
users should be offered. Once virtual cluster finished, those
VM image files should be saved for a specific period of time,
and then database marked them as reserved state. And these
images could be re-invoked for the same user again. The ability

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:6, 2011

564

to make these improvements will require advanced integration
of OpenNebula and database systems. Preparing window-based
image files, a VPN GUI client, and ample contextualization
scripts will be also our future work.

REFERENCES
[1] Amazon Elastic Compute Cloud (EC2),

http://aws.amazon.com/documentation/ec2/.
[2] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman, P.

Maechling, “Scientfic Workflow Applications on Amazon EC2,” in Procs.
5th IEEE International Conference on e-Science. 2009. pp. 59-66.

[3] HPC as a Service,
http://www.penguincomputing.com/POD_old/Benefits/.

[4] Neil Smyth, Red Hat Enterprise Linux 6 Essentials, 2010, ch. 13.
[5] Kernel-based Virtual Machine,

http://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine/.
[6] Torque Resource Manager,

http://www.clusterresources.com/pages/products/torque-resource-manag
er.php/.

[7] H. Kim, Y. el-Khamra, S. Jha, M. Parashar, “An Autonomic Approach to
Integrated HPC Grid and Cloud Usage,” the 5th IEEE International
Conference on e-Science, Oxford, UK, pp. 366–373, Dec. 2009.

[8] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Capacity
Leasing in Cloud System using the OpenNebula Engine,” Cloud
Computing and Applications, 2008. Chicago, Illinois, USA.

[9] P. Sempolinski and D. Thain, “A Comparison and Critique of Eucalyptus,
OpenNebula and Nimbus,” in Proc. CloudCom’2010, pp.417–426.

[10] V. Buge, H. Hessling, Y. Kemp, M. Kunze,O. Oberst, G. Quast, A.
Scheurer, and O. Synge, “Integration of Virtualized Worker Nodes in
Standard Batch Systems,” in Journal of Physics: Conference Series,
Volume 219, Issue 5, pp. 052010, 2010.

[11] D. H. van Dok, “Pushing Torque jobs in a chroot environment” Available
at:
http://www.nikhef.nl/pub/projects/grid/gridwiki/images/3/37/Momchroo
t.pdf.

[12] W. Emeneker, D. Jackson, J. Butikofer, and D. Stanzione, “Dynamic
Virtual Clustering with Xen and Moab,” in Proc. ISPA Workshops’2006,
pp.440–451.

[13] R. Rose, “Survey of System Virtualization Techniques,” Available at:
http://www. robertwrose.com/vita/rose-virtualization.pdf, 2004.

[14] T. Garfinkel and M. Rosenblum, “When Virtual is Harder than Real:
Security Challenges in Virtual Machine Based Computing
Environments,” in Proc. 10th Workshop on Hot Topics in Operating
Systems (HOTOS-X).

[15] J. Cope, M. Oberg, H. M. Tufo, and M. Woitaszek, “Shared Parallel
Filesystems in Heterogeneous Linux Multi-Cluster Environments,” in
Proc. 6th LCI International Conference on Linux Clusters: The HPC
Revolution.

[16] T. Deshane, Z. Shepherd, J. N. Matthews, M. Ben-Yehuda, A. Shan, and
B. Rao, “Quantitative Comparison of Xen and KVM,” Xen Summit,
Boston, MA, USA, pp. 1–2, 2008.

[17] L. Nussbaum, O. Mornard, F. Anhalt, J. P. Gelas, “Linux-based
virtualization for HPC clusters,” Available at:
http://www.loria.fr/~lnussbau/files/linux-virtualization-mls09.pdf

[18] O. Khalid, I. Maljevic and R. Anthony, “Dynamic Scheduling of Virtual
Machines Running HPC Workloads in Scientific Grids,” in Proc. 3rd
IEEE International Conference of New Technologies, Mobility and
Security, 2009.

[19] Jeffrey Shafer, “I/O Virtualization Bottlenecks in Cloud Computing
Today,” Workshop on I/O Virtualization (WIOV 2010), Pittsburgh, PA,
March 2010.

[20] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman, P.
Maechling, “Data Sharing Options for Scientific Workflows on Amazon
EC2,” SC’10 Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis., submitted for publication.

