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Abstract—This paper proposes a new approach to offer a private 

cloud service in HPC clusters. In particular, our approach relies on 
automatically scheduling users’ customized environment request as a 
normal job in batch system. After finishing virtualization request jobs, 
those guest operating systems will dismiss so that compute nodes will 
be released again for computing. We present initial work on the 
innovative integration of HPC batch system and virtualization tools 
that aims at coexistence such that they suffice for meeting the 
minimizing interference required by a traditional HPC cluster. Given 
the design of initial infrastructure, the proposed effort has the potential 
to positively impact on synergy model. The results from the 
experiment concluded that goal for provisioning customized cluster 
environment indeed can be fulfilled by using virtual machines, and 
efficiency can be improved with proper setup and arrangements. 
 

Keywords—Cloud Computing, HPC Cluster, Private Cloud, 
Virtualization 

I. INTRODUCTION 
N recent years there has been renewal of interest in the 
relation between virtualization and cloud computing. A 

growing number of companies try to propose new solutions for 
users to exploit the computing power in the cloud. Although 
cloud computing is a buzz word, the computing power of HPC 
cluster should not be ignored as well.  

As Taiwan’s only full service HPC service provider, we 
continue to insist on innovation. By planning and executing the 
construction of advanced researching environment, the NCHC 
has dutifully provided HPC services to academia. We also have 
noticed that the overall computing capacity still falls far behind 
expectations. Shortage of allocation of advanced machines 
becomes our major challenge of the year. Experience is that lots 
of complaints concerning long waiting time before execution. 
One common feedback is that users need their projects done in 
a specific platform, but they always got stuck with the currently 
OS version of supercomputer systems.   

Supercomputer systems are not affordable for most 
academic institutes and colleges in Taiwan. The other problem 
was that most researchers are not familiar with software stack 
on HPC systems, not to mention installing them alone. Our 
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academic users always look forward to better facility we could 
offer. They hope for more OS versions and distributions for 
them to choose from. Fortunately, virtualization technology 
brings new meaning to the HPC cluster. In the past, if we 
installed dedicated Linux distribution on a cluster, there was no 
reason for system administrator to change the cluster OS except 
software or kernel upgrade. Now, with the virtualization of 
worker nodes, system administrators can provide any OS on 
virtual machines that user needed. In order to meet this kind of 
requirement, we try to propose a mechanism which could offer 
a rental-like service for outreach programs. 

The main stream as supercomputing facilities is using 
distributive cluster systems. According to cluster architecture, 
one typical cluster usually includes login, management, storage 
and compute nodes. Users are allowed to login and submit jobs 
from login nodes, and storage servers provide central and 
accessible working space mounted for all nodes. And, of 
course, many identical compute nodes act as workhorses 
solving problems in parallel. 

In this paper we propose a flexible approach to utilize 
traditional HPC clusters. For smartly scheduling compute 
nodes, new features should be added to cluster batch system. 
Integrating extra virtual machine management software is also 
inevitable. This paper explains how we customized the 
commodity cluster infrastructure and deployed middleware on 
it to offer dual-purpose function for cloud and HPC.  

II. BACKGROUND 

A. Cloud Computing 
When it comes to cloud computing, Amazon EC2 [1] might 

be the most famous service you’ve heard of. EC2 is a platform 
offering huge amount of computing power. The computing 
power of EC2 is resizable. Via AWS web interface, EC2 users 
can change, increase or decrease the demand of the computing 
resource at any time. Besides, they can control and manage 
their own virtual instances so that users can greatly save their 
time to buy and build physical IT infrastructure. All their 
projects can be fulfilled in Amazon's mature virtual platform. 
The on-demand virtual machines concept brought by Amazon 
EC2 will benefit those who are not affordable for expensive 
machines [2]. EC2 pioneered a sea change and foster 
Infrastructure as a Service innovation. Based on this successful 
model, we try to learn and figure out what else we can do in the 
high performance computing cluster [3].  

B. NCHC Formosa3 HPC Cluster 
Formosa3 HPC Cluster is a 64-bit Beowulf cluster located in the 

Southern Business Unit of NCHC. It consists of 76 IBM 
System x3550 M3 servers as its compute nodes. This self-made 
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cluster was designed and constructed by the 'HPC Cluster 
Team' at NCHC for computational science applications and 
came online in 2011. Each node has two six-core Intel model 
processors and 48GB of DDR 3 registered ECC SDRAM. All 
nodes are connected by the 4x QDR InfiniBand high speed 
network and a private subnet with Gigabit Ethernet. An 
additional 4 nodes are arranged as login nodes, thus, enabling 
users’ easy access. Its 4 DAS storage servers are responsible for 
the parallel file-system. The major difference from the previous 
series clusters is the virtualization support. In Formosa3’s 
hardware specifications, we have added new requirements in 
processors, motherboards and network cards for cluster 
compute nodes. Theoretically, native virtualization capability 
provided by this cluster is shown in Table I.  

TABLE I 
VIRTUALIZATION SUPPORT OF FORMOSA3 CLUSTER 

Component Model Virtualization Technology 

CPU Intel Xeon 
X5660 

Intel VT-x 

IOH Intel 5520 Intel VT-d 
1. DMA remapping 
2. Address translation 
3. Interrupt remapping 

InfiniBand 
HCA 

Voltaire 
700Ex2-Q-1 

1. SR-IOV 
2. Address translation and protection 
3. Dedicate adapter resources 
4. Multiple queue per virtual machine 
5. Enhanced Qos for vNICs 

 
The first one, the CPU part, it must support 

hardware-assisted virtualization instruction set extensions. This 
means that your processor must be Intel VT type or AMD-V 
type. V stands for virtualization support.  The second 
component, north bridge chipset on motherboard, it must 
support PCI passthrough—PCI devices performance 
improvement for virtualized environment. The third one, 
InfiniBand HCA, it must support the new industry standard, 
SR-IOV (Single-Root I/O Virtualization) [4]. A virtualization 
solution is never just one piece. These three parts of 
virtualization are what we focused on first. 

There three ways, full-virtualization, para-virtualization and 
container-based, for virtual machine in current Linux world. 
According to the most I/O benchmark results, performance of 
fully-virtualization is far behind the para-virtualization. The 
main reason is modified guest operating systems comprise a 
hypervisor-aware driver in para-virtualization mode. 
Para-virtualization reduced the degradation of system 
performance. But only using full-virtualization can fulfill the 
goal for offering various operating systems on single machine. 
The most crucial factor of development for this cloud platform 
is comprehensive support of virtualization in hardware level. 

Because virtualization will not work on all regular 
processors, CPU and related chipsets vendors began supporting 
virtualization technology in 2006. In Intel side, we saw the VT 
technologies while AMD offered AMD-V. Their detailed 
technology may be far different, but their goal was the same to 
accelerate performance of binary translation for hardware.  

If the motherboard supports Intel VT-d or AMD IOMMU 
and you’ve enabled it in BIOS, it will allow the host PCI device 
to be directly accessed by VM as if it was physically attached to 
the Guest OS. On top of that, more and more HPC clusters on 
TOP500 List have used InfinBand as inter-connect. Formosa3 
has also adopted the 4x QDR HCA so that it could offer very 
high bandwidth private networking. In this cluster, InfiniBand 
network is responsible for both MPI and parallel file-system 
communication. As for cloud service, its Mellanox ConnectX-2 
chipset of InfiniBand HCA supports the SR-IOV technology. 
With SR-IOV, the HCA on a host node can be efficiently 
multiplexed by many Guest OSes of VMs at the same time. 

C. KVM Hypervisor 
KVM stands for Kernel-based Virtual Machine [5] which 

means a full virtualization solution. KVM is for Linux which is 
working on processors that have capabilities related to 
virtualization. KVM virtual machine implementation has two 
loadable kernel modules. One is “kvm.ko” that handles the 
main virtualization infrastructure and another is the processor 
specific module, “kvm_intel.ko” or “kvm_amd.ko”. In addition, 
it also needs a modified QEMU to emulate the peripherals for 
virtual machines.  

Linux KVM is open-source software. But to manage your 
own virtual machine well you will need to add up some special 
software to it. The main requirement on host is the libvirt 
library. Libvirt provides a hypervisor-agnostic and 
comprehensive APIs to manage Guest OSes running on a real 
host. Fig. 1 presents the components of a typical KVM 
installation. As you can see that each KVM VM can be treated 
as a user space process in Linux.  This will be helpful for 
streamlining VM builds within batch system job script if we 
choose KVM as our hypervisor. 

 

 
Fig. 1 Linux KVM architecture 

 

D. Torque Resource Manager 
Torque [6] is an open source resource manager providing 

control over batch jobs and distributed compute nodes. To 
guarantee the fairness of using compute nodes, priority 
escalading, or resource partitioning, installing a scheduling 
system is necessary for a large cluster open to many users and 
organizations. Due to ease of installation, Torque has 
predominated in batch systems for typical HPC clusters, 
especially in research institutions. Not only Torque can detect 
the compute nodes’ availability but leverage processes on 
single node from being over-occupied. There are six Queues on 
Formosa3, and the detail setting of each Queue was illustrated 
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in Table II. For better utilization of resources, the backfill 
algorithm of these Queues is arranged as Best-Fit. 

TABLE II 
TORQUE QUEUE CONFIGURATIONS ON FORMOSA3 

Queue Name Maximum Nodes Maximum Wall-Time 

Serial 1 168 hours 
N4 4 120 hours 
N8 8 120 hours 
N16 16 96 hours 
N32 32 48 hours 
N64 64 48 hours 

 

E. Virtualization and HPC 
Table III and Table IV list the middleware installed on 

Formosa3 cluster. Generally speaking, HPC applications have 
historically tended to exhaust the limits of CPU performance, 
memory capacity and network bandwidth. On average, MPI job 
processes optimize over 80 percent workloads on single 
compute node. Server Virtualization is not fancy technology, 
but in HPC world is the only one place where virtualization 
hasn’t taken off. HPC consumers are always looking for best 
performance. Therefore, cluster designers opt to avoid server 
virtualization due to the overhead that virtualization imposes. 
However, for HPC sites, cloud computing concept is still 
attractive with dynamic resource provisioning and live 
migration capabilities. 

TABLE III 
HPC MIDDLEWARE OF FORMOSA3 

Operating System CentOS 5.5 x86_64 

Message Passing Library MPICH2, MVAPICH2 
Batch System Torque, maui 
Remote Operation PDSH 
Monitoring Ganglia 

 
TABLE IV 

CLOUD MIDDLEWARE OF FORMOSA3 

Operating System CentOS 5.5 x86_64 

Virtualization Library Libvirt 
Hypervisor KVM 
Resource Management OpenNebula 
Remote Operation Virtual Shell 
Web Portal eyeOS, Web Console 

 
 

III. IMPLEMENTATION 
Most researches treat VMs as new resource for clusters or 

grid environment [7]. They voluntarily neglected the VM 
overhead while processing jobs on the same compute node at 
the same time. Coexistence of virtualization and HPC service 
could be a disaster for less powerful processors because there is 
no room for virtualization. Fig. 2 shows the distinct concept 
about how we use virtual machines in HPC batch system. We 
design a new mechanism for VM allocation inside Torque 
system. And how we integrate OpenNebula [8]–[9] for 

managing VMs and VM images will be described in detail as 
follows. 

 

 
Fig. 2 VM life cycle in batch system 

 

A. Torque Customization 
In Torque system, host CPU and host memory are main 

resources for HPC clusters. But, in virtualization’s point of 
view, the computing resources were extended to software level. 
These different VM operating systems will be new resource for 
the batch system. But if we want a virtual machine to attain 
evenly matched computing power as a physical one, we have to 
fairly schedule HPC jobs and VM allocation requests at the 
same time. Unlike other projects [10]–[12] trying to increase 
job capacity by scheduling VM in the cloud, the rule of thumb 
in our work is that those nodes processing HPC jobs should not 
be available for VM allocations, and vice versa. Once a node 
was dispatched for job execution, no VM will be created on it 
any more. 

The batch system is the most import part for this project. We 
retained the default interface for user job submission, but just 
focused on the prolog and the epilog job processing steps of 
Torque client daemon on compute nodes. We add the extra 
environment variables to job scripts when cloud users send out 
the VM requests. These variables used to indicate the path of 
VM image file, template file and script files for customization, 
etc.  

When parsing the job scripts, the Torque client daemon, 
pbs_mon, will automatically decide whether or not it has to 
start the virtual machine. Fig. 2 indicates the VM life cycle and 
its relation with Torque operation. These VM Guest OSes will 
be staged during the prolog step and filed away during the 
epilog step. These Guest OSes will keep up and running until 
jobs use up their Queue’s maximum wall-time. 

B. OpenNebula Integration 
Installing Xen or KVM in a machine is not that difficult, but 

working out how to fit different requirements into virtual 
environment in a cluster could be a challenge [13]. With 
OpenNebula, it makes the manipulation of multiple VMs on 
cluster environment easier. OpenNebula contains a set of 
commands you can apply to VMs, physical hosts, and even 
virtual network, for example, which are not for the faint of heart 
in virsh tools. The following are a few examples of host and 
VM management in OpenNebula. 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:6, 2011

561

 

 

 
Fig. 3 ONE command examples 

 
One of OpenNebula’s strongest points is its ability to 

monitor hosts, VMs and network in cluster by issuing “one 
commands” from console. Use the above example feeding the 
VM profile data into host pool, and you can easily deploy, 
migrate any VM among cluster nodes. 

For practical reasons, imaged should be classified. There are 
some commands will be helpful when administrators need to do 
VM image management (to add/delete image, clone image, 
etc.). The following are examples of image file management in 
latest OpenNebula. 

 

 
Fig. 4 ONE image manipulation examples 

 

C. Security Control 
While using the Linux server for internet services, in order to 

avoid the extra legal problems during operation, sometimes 
periodically checking the system security is necessary. There 
are already a lot of security tools from open-source for Linux 
platform. Before beginning Formosa3’s cloud service, we 
should also take security issues into consideration. There is a 
lot of possibility that the OS of VM will be tainted after being 
hacked from outside or changed by some mischievous users 
[14].  

As shown in Fig. 5, in order to detect the OS integrity on 
VM, we tried to apply effective security tools on them. We 
have developed the two kinds of mechanisms for intrusion 
detecting. Firstly, before preparing the VM images for users, 
we have adopted the host intrusion systems on them in advance. 
AIDE is what we used for gathering the whole original system 
files’ key fingerprint. Next, when VM woken up for user 
request, AIDE intrusion systems will alert system administrator 
to possible intrusion attempts by periodically checking system 
files during VM’s running cycle. Once it detected target file 
changed, each VM will pipe out AIDE comparison log data to 
cluster file system and mail to the administrator. This is 
real-time alerting approach for system administration. The 
second way we used is passive detection. Each VM image will 
be mounted (via lomount command) again as a chroot-like 
partition after VM shutdown and then the Formosa3 system 
will apply rootkit detection tools (e.g., chkrootkit or rkhunter) 
hunting for any malware. Both methods will greatly enhance 
the system security. 

 

 
Fig. 5 Security audit for virtual machine instances 

 

D. Deployment and Operation 
As of this writing, both IBM GPFS and Lustre parallel 

file-system [15] now support InfiniBand native mode 
networking. In Formosa3, we have deployed both Lustre and 
GPFS as global shared file-systems at the same time. Especially 
for large files, GPFS brings the best data I/O rate for jobs. 
Therefore, we considered that GPFS will play well too while 
accessing the VM images. 

The upper part of Fig. 6 is the scenario of HPC service. It 
sketches the workflows of HPC services in Formosa3. Users 
login, submit their jobs and get the output after job scheduled 
and completed.  

The cloud service is illustrated in the bottom part of Fig. 6. 
Cloud users start the web browser and access the Formosa3 
web site. This web portal contains several contextualization 
options that users could select for their virtual environment. In 
Table V, currently available customization options will be 
platform type, Linux distribution and target service. Then, 
cloud users simply choose the dedicated OS version, and fill in 
how many nodes needed for running their projects. In addition, 
the target service will help install all necessary packages for the 
mpich, mvapich or hadoop environment without users’ 
intervention. If the cloud user did not specify it, there will be a 
raw operating system installed only. 

TABLE V 
CUSTOMIZATION OPTIONS FOR CLOUD SERVICE 

 Options 

Platform Category Cluster (Head Node and Slave Nodes), 
Single Node 

Operating System CentOS, Fedora, Ubuntu 
Target Service Hadoop, Mvapich (ib), Mpich (tcp) 

 
All requests from Formosa3 web portal will be transformed 

into formatted Torque job scripts and automatically submitted, 
and scheduled as usual. When there are free nodes for jobs, 
Torque client daemon will execute the OpenNebula command 
to wake up the dedicated OS-type VM image. The default 
application packages, VM images and related VM template 
files are stored on GPFS file-system. Each virtual cluster has 
two kinds of nodes. The first one is head node, and it is the only 
one node for each request. The rest nodes are all compute 
nodes.  

Cloud head node served as the login node for users. All the 
necessary customization procedures will be done during VM 
operating system booting stage. Basically, its tasks includes 
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adding the user account, exporting the /home and /opt for 
virtual cluster clients, starting the NIS server daemons, 
executing the contextualization scripts that user chose from 
web portal.  

The number of cloud compute node is determined by Torque 
queue. When one requested 4 virtual compute node from web 
portal, his corresponding Torque job script will try to allocate 4 
free real nodes. If enough nodes were scheduled by Torque 
system, Guest OS will be created by “one command”. Just like 
the cloud head node, all cloud compute nodes will 
automatically start NIS client service and mount the cloud head 
node’s /opt and /home via NFS protocol.  These cloud compute 
nodes simply served as workhorses, therefore, no 
contextualization will apply on them. 

 

 
Fig. 6 Scenario of job and VM allocation 

 
These cloud user’s dedicated nodes will be in the same 

subnetwork and all compute nodes will mount the /home and 
/opt of the head node during OS booting, too.  Thus, these VMs 
finally together form a private cloud. While the virtual 
environment being ready, user on portal will be prompted a 
web-based SSH client console page. At last, he or she could 
freely access this isolated virtual cluster until time lapsed. 

These private cloud VMs all are using private network but 
users are from internet. On the web portal server, we have setup 
a database counting each user’s login time and metering the 
amount of resource they used. Besides, this database deals with 
SSH port forwarding and mapping to cloud head nodes. 

IV. EXPERIMENT RESULTS AND ANALYSIS 

A. Performance Evaluation of Cloud Service 
Although virtualization brings flexibility to OS arrangement, 

its drawback in performance cannot be ignored [16]–[17]. To 
understand the impact, we deployed the mechanism on 
Formosa3 cluster, and ran real world MPI projects on KVM 
virtual machines.  

HPL (High Performance LINPACK) is to solve a dense 
linear system problem and is the widely used benchmark for 
evaluating performance of HPC systems. However, the 

performance of PC cluster is largely application-dependent. We 
use the NCHC benchmark suit which contains five problems, 
namely hubksp, nonh3d, bem3d, ns3d and jcg3d, picked from 
four application domains. The hubksp program comes from 
physics, and nonh3d is an atmospheric science case. Both 
bem3d and ns3d are applications of parallel computing in the 
field of computational fluid dynamics (CFD). The last one, 
jcg3d is from computational solid mechanics. These particular 
jobs helped us to distinguish the performance in different 
problem domains. 

B. Performance Analysis 
TABLE VI 

SEQUENTIAL JOB PERFORMANCE 

Single Core Physical Node KVM Node 

Bem3d real  36m36.244s 
user  36m34.750s 
sys   0m0.087s 

real  72m0.243s 
user  69m46.451s 
sys   0m2.829s 

Hubksp real  40m6.238s 
user  40m2.452s 
sys   0m3.213s 

real  49m20.904s 
user  48m24.529s 
sys   0m4.448s 

Ns3d real  39m19.016s 
user  38m10.482s 
sys   0m0.320s 

real  45m28.550s 
user  44m25.962s 
sys   0m3.390s 

Nonh3d real  58m35.250s 
user  56m28.103s 
sys   0m0.904s 

real  78m35.344s 
user  74m4.236s 
sys   0m5.023s 

Jcg3d real  82m43.054s 
user  81m39.085s 
sys   0m0.502s 

real  108m14.257s 
user  107m4.393s 
sys   0m6.140s 

 
TABLE VII 

PARALLEL JOB PERFORMANCE 

32 Cores over 
Gigabit Ethernet Physical Cluster KVM Cluster 

Hubksp real  16m11.841s 
user  8m34.624s 
sys   0m32.682s 

real  53m2.332s 
user  11m34.943s 
sys   8m42.274s 

Nonh3d real  42m59.208s 
user  12m28.441s 
sys   1m3.038s 

real  66m23.284s 
user  14m16.380s 
sys   5m45.228s 

 
From sequential jobs’ elapsed-time data listed in Table VI, 

apparently performance results of physical node excels the 
virtual one while running single core. In terms of parallel 
processing, we evaluate hubksp and nonh3d jobs over 32 cores. 
Table VII shows the performance comparison between 
physical and KVM virtual cluster over Gigabit Ethernet.  

It is a comfort to see that the performance drop become not 
explicit between physical and virtual environment over single 
core evaluation. According to Table VI, virtual node shows 
slight performance drop on CPU-intensive cases. On the 
contrary, performance drops are obvious on parallel hubksp 
and nonh3d. It is because that both hubskp and nonh3d jobs 
will output files inside Guest OS during job processing. The 
other possible cause is poor network I/O rate over emulated 
Ethernet by KVM. 

TABLE VIII 
PERFORMANCE COMPARISON 

24 Cores 
Network 
Interface 

Rmax 
(Gflops) 

Efficiency 
(%) 

NetPIPE 
(Gbps) 
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GbE 152.2 56.62 0.74 
IPoIB 199.5 74.21 4 

Physical 
Cluster 

Native IB 232.4 86.45 24 
GbE 84.3 31.36 0.17 
IPoIB 157.8 58.70 4 

KVM 
Cluster 

Native IB 164.4 61.16 23 
Rpeak: 268.8 Gflops 
 

Table VIII are HPL and NetPIPE benchmark results of 
physical and virtual environment. The testbed here is 24 cores 
on two Formosa3 compute nodes. According the NetPIPE 
result, it reveals there is a huge performance drop in 
communication between KVM VMs hosted by distinct physical 
nodes over Gigabit Ethernet. The disk and network I/O devices 
emulated by KQEMU are not capable of high performance 
computing. 

As for the InfiniBand network channel, that is another story. 
The NetPIPE performance drop of virtual cluster over 
InfiniBand is much smaller than that over Gigabit Ethernet. 
These results do prove that PCI passthrough technology really 
benefits classical HPC applications on virtual machine 
environment. Unfortunately, the overall LINPACK 
performance of virtual cluster over InfiniBand native mode 
contributes 61% efficiency, which means there is still much 
room for improvement of KVM cluster. 

C. VM Allocation Time Analysis 
As most research revealed [18]–[19], virtualization does not 

play well with high performance I/O. In this section, we try to 
evaluate the suitability of file-system for deploying virtual 
clusters inside the Formosa3. To check out the possible factor 
interfering VM allocation speed [20], we put file-backed VMs 
on different directories for tests. The Formosa3 plans to offer 
three sorts of cluster-wide file-system for our users. The /home 
and /opt directories are shared via NFS and compute nodes 
mount them over Ethernet interface. The two public working 
space, /work was built by Lustre package, and /gpfswan is from 
IBM GPFS. The default KVM image repository is 
/var/lib/libvirt/images where is the local disk partition 
formatted to ext3 on compute nodes. The Linux-based VM 
image file size we prepared here is about 4GB. We submitted 
different cluster scale cases to Torque, and counted the elapsed 
time spent from submission to private cloud being available. 
Below, the Fig. 7 shows the average allocation-time of each 
cluster scale on different file-system. 

 

 
Fig. 7 Average VM allocation time on different file systems 

 
From Fig. 7, it seeks to capture the fact that users have to 

wait for a longer time till virtual cluster being ready. The 
allocation-time for a virtual cluster keeps increasing when more 
VM images demanded. Cloud users need to be more patient 
when they requested more virtual machines. 

From the allocation-time test results, it proves that putting 
VM images on parallel file-system could bring noticeable 
effect on allocation rate. According to Fig. 7, housing VM 
image files on parallel file-system and local disk both are more 
efficient than on a NFS share. We also found that putting 
images on local disk can retain very stable deploying rate for 
online service. This would be expected, since the local disk’s 
maximum read/write transfer rate is the same on every compute 
node. Putting images on NFS directory was unable to guarantee 
the service level requirement. NFS performance drops 
seriously while staging too many VMs. Although, putting VM 
images on local node really offers stable allocation speed, it 
potentially consumes unknown file size. Generally speaking, 
compute node disk size was fixed and limited. If more VM 
image files should be prepared, putting these images on Lustre 
or GPFS partitions would be adequate for both users and cluster 
administrators since it could not only export large disk size but 
also lower the allocation time. Using parallel file system as the 
image storage will lead to roughly a two times speedup for 64 
VMs’ allocation, compared with NFS. 

V. CONCLUSION AND FUTURE WORK 
Amazon EC2 services raise the level of new service model 

for business. EC2 allows its users to specify their own OS 
environments followed by several selection steps. Rather than 
buying more machines from vendors, this paper gives some 
approaches for how to greenly using current computing cluster. 
The approaches in this paper were to describe a harmless 
solution for providing pre-created cluster environments on a 
physical cluster. We explored the effect and affect of present 
initial results. By means of KVM, we made a dual-use cluster 
for cloud and HPC possible. From our performance evaluation 
experiment, partitioning HPC jobs and VM allocation makes 
private cloud service achieve near-native performance result. 
Furthermore, no matter how HPC-job load changes over time, 
any virtual cluster running on compute nodes will not be 
affected. All techniques or ideas mentioned in this paper could 
be applied to other HPC clusters to present cloud service in data 
center. 

While current approach helps users manage VMs as jobs to 
create a customized cluster, it needs to be refined to provide 
more elastic features. Due to the license issue, our 
implementation currently just offers Linux-based images for 
our clients. No window-based virtual cluster provided in 
Formosa3. And a more accurate reservation mechanism for 
users should be offered. Once virtual cluster finished, those 
VM image files should be saved for a specific period of time, 
and then database marked them as reserved state. And these 
images could be re-invoked for the same user again. The ability 
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to make these improvements will require advanced integration 
of OpenNebula and database systems. Preparing window-based 
image files, a VPN GUI client, and ample contextualization 
scripts will be also our future work. 
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