
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2732

Formal Analysis of a Public-Key Algorithm
Markus Kaiser, Johannes Buchmann

Abstract— In this article, a formal specification and verification of
the Rabin public-key scheme in a formal proof system is presented.
The idea is to use the two views of cryptographic verification: the
computational approach relying on the vocabulary of probability
theory and complexity theory and the formal approach based on
ideas and techniques from logic and programming languages. A major
objective of this article is the presentation of the first computer-proved
implementation of the Rabin public-key scheme in Isabelle/HOL.
Moreover, we explicate a (computer-proven) formalization of cor-
rectness as well as a computer verification of security properties
using a straight-forward computation model in Isabelle/HOL. The
analysis uses a given database to prove formal properties of our
implemented functions with computer support. The main task in
designing a practical formalization of correctness as well as efficient
computer proofs of security properties is to cope with the complexity
of cryptographic proving. We reduce this complexity by exploring
a light-weight formalization that enables both appropriate formal
definitions as well as efficient formal proofs. Consequently, we
get reliable proofs with a minimal error rate augmenting the used
database, what provides a formal basis for more computer proof
constructions in this area.

Keywords— public-key encryption, Rabin public-key scheme, for-
mal proof system, higher-order logic, formal verification.

I. INTRODUCTION

CRYPTOGRAPHIC algorithms are crucial security tools
for guaranteeing secrecy of sensitive data. Moreover,

their area of application is widely spread and growing. Conse-
quently, in domains where security is a major issue, as in elec-
tronic commerce or electronic voting, the need of confidence
in correct implementations is increasing dramatically. Leaks
in security, for example in a communication between banks,
could be very costly and should be prevented. Consequently,
the use of correct implementations of cryptographic algo-
rithms is essential for security, what means that implementing
cryptographic algorithms must be done with extreme care.
A verification of these algorithms with reliable methods is
a central objective.

A verification of an algorithm can prove crucial properties or
in the optimal case all relevant facts needed for its application.
Verification approaches for cryptographic primitives have been
directed in two distinct directions: the computational approach
relying on the vocabulary of probability theory and complexity
theory and the formal approach based on ideas and techniques
from logic and programming languages (compare [1], where a
formal approach and a computational approach as well as their
combination are given, an example involving Isabelle/HOL
is presented in [9]). A proof of functional correctness of a
given implementation can be achieved by formal verification.

The authors a re with the Technische Universität Darmstadt, 64289 Darm-
stadt, Germany. This work was partially funded by the German Federal
Ministry of Education and Technology (BMBF) in the framework of the
Verisoft project under grant 01 IS C38. The responsibility for this article
lies with the authors.

But, in the area of cryptography the used algorithms are often
very complex, hence formal verification is a big challenge and
therefore only achieved with much effort.

We show that a formal verification with computer sup-
port in the area of cryptography is possible by exploring
a light-weight formalization that enables both appropriate
formal definitions as well as efficient formal proofs. Our
formal analysis (functional correctness as well as arguments
concerning security of the given implementation) yields the
first computer-proved implementation of the Rabin public-key
scheme in Isabelle/HOL. Consequently, we get reliable proofs
with a minimal error rate augmenting the used database, what
provides a formal basis for more computer proof constructions
in this area.

A central objective of our research is a combination of the
formal approach and the computational approach. This article
is part of an effort to unify the formal and the computational
views of cryptographic verification. The idea is to unify both
verification approaches in cryptography by embedding one
into the other: formalizing computational aspects as well as
their computer verification embed the computational approach
in the formal approach. We obtain a formal verified com-
putational description of a cryptographic primitive, that can
be used in practice (compare II-D). More specifically, this
work continues our recent work that provides useful formal
descriptions of mathematical background and cryptographic
algorithms computer-proven with Isabelle/HOL (compare [4]
and [3]). Besides, the formally verified cryptographic algo-
rithms are components of a cryptographic client.

This article is organized as follows. We review the Rabin
public-key scheme originally introduced in [7] (compare II).
Therefore, we explicate the original definition of the Rabin
public-key function (compare II-A), illustrate a corresponding
decryption algorithm (compare II-B), and outline the applica-
tion of the Rabin function for signature (compare II-C). After
that, we show how the Rabin functions may be used in practice
(compare II-D). In III Isabelle/HOL is outlined (compare III-
A). Furthermore, in III-B, we introduce a computation model
that allows formal verification of computational effort of a
function. III-C provides an overview of the formalization and
verification. Furthermore, we explore a formal description and
verification of the Rabin functions (compare IV). We introduce
our formal specification (compare IV-A) and a formal proof of
its correctness (compare IV-B). Moreover, we computer-prove
properties concerning security (compare IV-C). Therefore, we
apply a formal version of our computation model. V provides
a conclusion.

II. RABIN PUBLIC-KEY SCHEME

In 1979 Michael Rabin introduced in his well known paper
([7]) a new class of public-key functions, where a number

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2733

n = p · q with large primes p and q is involved. The number
n is the public key, moreover p and q are the private keys that
can be used for signing and decryption. A main result given in
[7] is that for any given number n the efficient inversion of the
function y = En(x) that is described below, for even a small
percentage of the values of y implies the efficient factorization
of n.

A. Public-Key Function

For a given number n = p · q that is a product of two
large prime numbers p, q, and for given b, 0 ≤ b < n the
function En,b(x) is defined for 0 ≤ x < n by En,b(x) ≡
x(x + b) mod n, where En,b(x) < n. In the case that b = 0,
En,b(x) = En,0(x) ≡ x2 mod n. Below, the Rabin public-key
function E with b = 0 is refered by Aencrypt.

B. Decryption

An inversion of En,0(x) can be calculated by Algorithm (1)
(compare [7]) where the four square roots of c are obtained by
the computation of solutions modp and modq that are com-
posed to solutions mod n. For a0 ∈ Z with a0 ≡ 1 mod p and
a0 ≡ 0 mod q, a1 ∈ Z with a1 ≡ 1 mod q and a1 ≡ 0 mod p
and for mp and mq with c ≡ m2

p mod p and c ≡ m2
q mod q,

z0 = a0mp + a1mq solves the congruence c ≡ z2 mod n and
x0 = z0 mod n is a solution < n.

For a fixed prime r and a quadratic residue d mod r we
write

√
d for any of the two integer numbers with (

√
d)2 ≡

d mod r. Moreover −√
d denotes r −√

d.
A computation of a number x with

x2 + bx ≡ c mod r (1)

can be realized by the extraction of square roots mod r.
For d = b/2 mod r a computation of x given by (1) can be

denoted by (x+d)2 ≡ c+d2 mod r or by x = −d+
√

c + d
2

and x = −d − √
c + d

2
, respectively. Consequently, (1) (an

extraction of square roots mod r) can be used to compute
x).

In the following we concentrate on the case that p ≡ q ≡
3 mod 4 (p = 4np − 1 and q = 4nq − 1).

Algorithm (1).
Input: c ≡ x2 mod n, p, q with p ≡ q ≡ 3 mod 4, a0 ∈ Z

with a0 ≡ 1 mod p and a0 ≡ 0 mod q, a1 ∈ Z with a1 ≡
1 mod q and a1 ≡ 0 mod p

Output: 0 ≤ xi < n, 1 ≤ i ≤ 4 with En,0(xi) = c

1) mp = c
p+1
4 mod p

2) mq = c
q+1
4 mod q

3) x1 = (a0mp + a1mq) mod n
4) x2 = (a0mp − a1mq) mod n
5) x3 = n − x1 mod n
6) x4 = n − x2 mod n
7) return (x1, x2, x3, x4)

C. Application for Signature

The application of the Rabin function E (compare II-A) for
signature needs two large prime numbers p and q that can be
produced by a primality test (compare [3]). As before, (n, b),
where n = p · q and 0 ≤ b < n, is public, but p and q remain
private.

Algorithm (2).
Input: message x0 ∈ N, public key (n, b), prime numbers

p and q, compression function h
Output: signature (z, x) of x0

1) choice of a random number z with length k
2) x1 = x0‖z
3) c = h(x1) with binary length of c < n
4) if there is a solution x of x(x + b) ≡ c mod n then

return (z, x) else 1
For given (n, b), (z, x), h the number c = h(x‖z) as well as

the congruence x(x+b) ≡ c mod n can be computed or tested,
respectively (notation: Averification, Algorithm (1): Adecrypt,
Algorithm (2): Adigital).

D. Use of the Rabin Functions

We remark how the given algorithms can be used in practice.
The idea is that a message is signed (encryption) in order to
determine the correct square root as plaintext (decryption).

Encryption:

For n = p · q, b = b0 · b1, where p, q, b0 and b1 are large
prime numbers, m ∈ Zn, the encryption (c, z, x, h) of m is
computed as follows.

• Aencryption(m,n) = c
• Adigital(m,n, h, b0, b1) = (z, x)
• encryption: (c, z, x, h)

Decryption:
• Adecryption(c, z, x, h, p, q) = (x1, x2, x3, x4)
• For (j ∈ {1, 2, 3, 4}): if Averification(xj , z, x, b, h) = 1:

xj

In the following we discuss our formalized version of the
Rabin functions (compare II). Therefore we introduce a formal
description of these functions that provide a formal base for a
computer analysis of the Rabin encryption scheme as well as
the Rabin signature scheme. Moreover, we show that computer
verification of these schemes is practical.

III. OVERVIEW OF THE FORMALIZATION

We illustrate the formal proof system Isabelle/HOL and
explore a computation model with respect to efficient algo-
rithms. Moreover, we give an overview of the formalization
and verification of the Rabin functions reviewed in II.

A. Isabelle/HOL

Formal proof systems provide computer support for formal
verification. But the correctnes of a formal proof using a
formal proof system relies on the correctness of the applied
computer system. A formal proof system works on automated

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2734

Formal Computation

Properties

Formal Basis

(Logic, Functional Programming)

=⇒ Computer
=⇒ (formally) verified properties

Fig. 1. Construction pattern in Isabelle/HOL

or interactive proof constructions. In our work, we use the
interactive formal proof system Isabelle/HOL (proof assistant
for higher-order logic, which can be used for interactive proof
constructions, formal specifications, as well as verification in
higher-order logic and functional programming).

The formal proof language of Isabelle/HOL that consists of
higher-order logic and functional programming, is used to give
definitions and lemmata, which are based on a large database.
These definitions and (proven) lemmata can be used to prove
further lemmata and theorems, which results in an augmented
data base for the purpose of building up new theories (compare
to Figure III-A).

In the lines below some Isabelle/HOL code examples are
explained.

Remark: (Isabelle/HOL code)
• int: integer number datatype
• num: natural number datatype
• bool: boolean datatype
• (x::int): variable of type int
• f x or (f x): function f applied to x
• consts example :: ”[int, num] ⇒ bool”; (declaration of a

function/predicate)
• defs example def: ”example i n ≡ i < (int n)”; (definition

of a function/predicate with an application of function int)
• lemma ”(x::int) < (y::int) =⇒ x ≤ y”; (computer lemma)
• ˆz: exponent z
• zprime: set of (integer) prime numbers
• zgcd: (integer) greatest common divisor

More information about Isabelle/HOL (that is successfully
applied in the Verisoft project ([5]) are given in [6], which de-
scribes constructions with this tool. A further useful reference
is [10]. There, parts of the large database are mapped. Besides
[10] contains other references about Isabelle/HOL.

B. Computation Model

In this chapter, concepts of complexity theory with respect
to cryptography are given. A major term concerning public-
key cryptography is polynomial complexity. In cryptography,
for encryption, decryption, signature, verification and other
primtives, efficient algorithms are needed with respect to

practical applications. But, breaking a cryptographic algorithm
should remain hard (not efficient). In constucting new crypto-
graphic algorithms, hard problems that are hard on average are
needed. A definition of efficient can be given by polynomial
complexity described by the complexity class P or by Landau-
notation (O-notation).

A decision problem B is a problem with yes or no as
answers (input x, where x is coded in a way that allows a
measurement of the size of x, for example a binary code with
length |x| = n). Usually, a given computation problem can be
mapped to a decision problem.

P is the class of all decision problems with property (P).
(P) B ∈ P if there is an algorithm that answers yes (no)
for any input x where the answers is yes (no), where time
is measured in terms of bit operations that are bounded
by a polynomial function of |x|.

NP is the class of all decision problems with property (NP).
(NP) B ∈ P if for any input x where the answers is
yes there is an algorithm that can verify this fact in
polynomial time. If the answers is no, termination of this
algorithm is not certain, but in the case of termination,
the answers is no.

A decision problem B is NP -complete if all problems in
NP can be reduced to B in polynomial time: B ∈ P =⇒
P = NP .

In cryptography it is mostly assumed that P �= NP .
Many hard problems on that public-key cryptography is based
(integer factoring, discrete logarithm problem) lie in NP but
are not related to a NP -complete problem. A main aspect of
using these problems in cryptography is that they are hard on
average ([8], p. 331 - 335, [2]).

Complexity can be given in another way, by O-notation.
For k ∈ N, X, Y ⊆ Nk and f : X → R, g : Y → R,

f ∈ O(g) if there are b, c ∈ R with b, c > 0 where for all
x = (x1, . . . , xk) ∈ Nk with xi > b, 1 ≤ i ≤ k, (1) and (2)
hold.
(1) x ∈ X ∩ Y (f(x), g(x) are definied)
(2) f(x) ≤ cg(x)

([2], p. 5)
Example.

• f ∈ O(1) if g(x) = 1 for all x ∈ X ∩ Y
• f ∈ O(xk), x, k ∈ N
A cryptographic algorithm A with input x ∈ Nk (k ∈ N)

has polynomial complexity if there are e1, . . . , ek ∈ N where
time complexity cp of A is O(|x1|e1 · . . . · |xk|ek). Algorithm
A is regarded as efficient if cp(A) ∈ O(|x1|e1 · . . . · |xk|ek).
In cryptographic practice, O-constants as well as e1, . . . , ek

have to be small if an algorithm is regarded as efficient. A
cyrptographic algorithm has to be efficient in functionality,
but breaking it must not be efficient.
Example.

a : Z2 → Z with a(x, y) = x + y (− : Z2 → Z with
−(x, y) = x−y) is of time complexity O(max{|x|, |y|}), mp :
Z2 → Z with mp(x, y) = x·y is of time complexity O(|x||y|),
mod : Z2 → Z with mod(x, y) = x mod y, div : Z2 → Z
with div(x, y) = x/y are of time complexity O(|x||y|), exp :

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2735

Z2 → Z with exp(x, y) = xy is efficient, a computation of
the greatest common divisor of x and y (gcd(x, y)) is efficient

([2], p. 7 - 10, p. 37, 38)
With respect to the Rabin public-key algorithm, that means,

the computation of f(x) = x2 mod n is efficient where n =
p ·q. Moreover, extracting x from f(x) with knowledge of p, q
is efficient.

A main aim of this article is to keep formal verification
easy, but a formalization and verification of P , NP , and O-
notation, respectively, is impractical in order to reach this main
aim. Consequently, this article explicates the definition of a
straight-forward computation model.

For any z ∈ Z, there are functions
• a

(0)
z : Z → Z with a

(0)
z (x) = z + x

• mp
(0)
z : Z → Z with mp

(0)
z (x) = z · x

• mod(0)
z : Z → Z with mod(0)

z (x) = x mod z, div(0)
z :

Z → Z with div(0)
z (x) = x/z

• gcd(0)
z : Z → Z with gcd(0)

z (x) = gcd(x, z)
and
• a

(1)
z : Z → Z with a1

z(x) = x + z

• mp
(1)
z : Z → Z with mp1

z(x) = x · z
• mod(1)

z : Z → Z with mod(1)z(c) = z mod c, div(1)
z :

Z → Z with div(1)
z (c) = z ÷ c

• gcd(1)
z : Z → Z with gcd(1)

z (c) = gcd(z, c)
that are efficient. In this context, more efficient functions, for

example −z : Z → Z with −z(x) = z − x and expz : Z → Z
with expz(x) = zx for any z ∈ Z, can be used.

For any f : Z → Z with cp(f) ∈ O(|x|e0) and
g : Z → Z with cp(g) ∈ O(|x|e1), cp(f), cp(g) ∈
O(|x|emax) where emax = max{e0, e1}: for f, g there are
b0, c0, b1, c1 ∈ R with b0, c0, b1, c1 > 0 where for all x ∈
N with x > b0, cp(f) ≤ c0|x|e0 and for all x ∈ N
with x > b1, cp(g) ≤ c1|x|e1 . Therefore cp(f), cp(g) ≤
cmax|x|emax , cmax = max{c0, c1} for all x ∈ N with x >
bmax = max{b0, b1}. Furthermore, cp(f o g) ∈ O(|x|emax)
(cp(f o g) ≤ cmax|max{x, g(x)}|emax , b0 = b0 = 1).

A computation model for efficiency computing can be
defined by the following calculus.

C is based on function efficient (compare to Figure III-B):
• Z = {f : Z → Z}
• efficient : Z → {0, 1}
• For all integer numbers z ∈ Z, E(z) = {a(0)

z ,mp
(0)
z ,

mod(0)
z , div(0)

z , gcd(0)
z , a

(1)
z ,mp

(1)
z , mod(1)

z , div(1)
z , gcd(1)

z }
• For all z ∈ Z and for all f ∈ E(z), efficient(f) = 1 can

be derived by C
• For all z ∈ Z and for all f, g ∈ E(z): from efficient(f) =

1 and efficient(g) = 1, efficient(f o g) = 1 can be derived
by C

In general, the only inference rule of C indicates that the
composition of efficient functions remains efficient. A formal
application of C is explained in IV-C.

C. Overview of the Formalization and Verification

Formal functions beeing useful for realizing the Rabin
encryption scheme as well as the Rabin signature scheme
are easy to define. They can directly be compiled from the

efficient(f) = 1, z ∈ Z, f ∈ E(z)

efficient(f) = 1, efficient(g) = 1
efficient(f o g)

, f, g ∈ E(z)

Fig. 2. Computation model for efficiency C

c = m2 mod n, a0 · p + a1 · q = 1

zp = c
p+1
4 mod p

zq = c
q+1
4 mod q

m1 = (a0mp + a1mq) mod n
m2 = (a0mp − a1mq) mod n
m3 = n − m1 mod n
m4 = n − m2 mod n
return (m1,m2,m3,m4)

Fig. 3. Algorithm (1)

functions given in II. We implemented the functions modq,
mod prim, mod key0, and mod key1 as basic elements of our
formal description. These formalized functions correspond to
the functions Aencrypt, Adecrypt, Adigital, and Averification

(function E with b = 0, Algorithm (1), Algorithm (2)). In the
definitions of these functions the parameter b is considered
as 0. Furthermore, we consider prime numbers p, q, where
p ≡ 3 mod 4 and q ≡ 3 mod 4. Aencrypt, Adecrypt, Adigital,
and Averification can be formally specified as follows.

For n ∈ Z, n = p · q and m ∈ {1, . . . , n − 1}:
• Aencrypt(m,n) = m2 mod n
• Adecrypt(c, p, q) = (m1,m2,m3,m4) where

c = m2
j mod (p · q) for j ∈ {1, 2, 3, 4},

|{m1,m2,m3,m4}| = 4 or Adecrypt(c, p, q) = x
where c = x2 mod (p · q) (compare to Figure III-C)

• Adigital(m,n, h, p, q) = (z, x) where x ∈ Z random
number with length k ∈ N, and h(m,x) = z2 mod n
(h compression function with output length < n)

• Averification(m, z, x, n, h) = 0 or 1, whether h(m,x) �=
z2 mod n or h(m,x) = z2 mod n

In this article, a formal verification of the functions modq,
mod prim, mod key0, and mod key1 provides computer-proven
lemmata describing functional correctness as well as argu-
ments concerning security.

Our formal analysis is a light-weight verification, since in
some cases needed mathematical foundations are imported to
the computer system as facts. If these (mathematical) facts
are given as lemmata, they could be proven formally. Con-
sequently, this article describes a reliable formal verification
from the area of cryptography and provides computer support
in education as well as in research in this area.

IV. FORMAL ANALYSIS OF THE RABIN FUNCTIONS

With respect to the main objective this article from I, we
provide a formal analysis of the Rabin functions given in II

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2736

and III-C in the formal proof system Isabelle/HOL. The idea is
to unify the two views of cryptographic verification by a con-
struction of a Isabelle/HOL theory involving both, functional
correctness as well as computational aspects. Therefore we
discuss a formal description of these functions. Besides, we
explore computer proofs of properties expressing aspects of
functional correctness or security. In order to achieve efficient
(practical) computer verification, a formal compilation of the
computation model from III-B is applied.

A. Implementation

We present Isabelle/HOL functions that are based on the
Rabin functions. A formal function is given by its declaration
and its definitions as a constant.

Function modq

Function modq, given as follows, realizes the algo-
rithm Aencrypt and can be used to represent the algorithm
Averification. Fundamental datatype is int (type of integer
numbers).

consts modq :: ”[int, int] ⇒ int”;

defs modq def: ”modq m n ≡ (m∗m) mod n”;

This function implements the squaring of an integer m
modulo n.

Function mod prim

Function mod prim can be used for decryption and signing.
While a ciphertext is of type int, a prime is of type num and
must in some cases be mapped to type int by the function int.

consts mod prim :: ”[int, num] ⇒ int”;

defs mod prim def: ”mod prim c k ≡ cˆ ((k+1) div 4) mod
(int k)”;

Function mod prim realizes the computation of a square root
modulo a prime number. That means, for a prime number k,
this function computes a square root of c mod k, if c is a
quadratic residue mod k and k ≡ 3 mod 4 (the other square
root of c mod k is (k−(mod prim c k)) mod (int k)).

Function mod key0 and Function mod key1

Function mod key0 and function mod key1 using function
mod prim realize algorithm Adecrypt. Besides, they can be
used for a realization of algorithm Adigital. The main datatype
of the given computation is int. Primes are of type num.

(1)

consts mod key0 :: ”[int, int, num, num, int] ⇒ int”;
defs mod key0 def:

”mod key0 def x z p q c ≡ ((x∗(int p)∗(mod prim c
q))+((z∗(int q)∗(mod prim c p))”;

(2)

consts mod key1 :: ”[int, int, num, num, int] ⇒ int”;
defs mod key1 def:

”mod key1 def x z p q c ≡ ((x∗(int p)∗(mod prim c
q))−(z∗(int q)∗(mod prim c p))”;

These functions compute a composition of a square root of
c mod p and a square root of c mod q to a square root of c
mod p · q, if c is a quadratic residue mod p · q.

Formal Verification

A formal verification of these functions under given precon-
ditions in Isabelle/HOL is realized by a computer verification
of appropriate lemmata with consequences determined by
postconditions. A central aspect of this article is to provide
a corresponding computer verification.

As mentioned before, we determine n ∈ Z given by the
product of two primes p, q, that is n = p · q. Furthermore,
m ∈ {1, . . . , n − 1} (message space). These conditions guar-
antee that modq implements the Rabin public-key encryption
Aencrypt(m,n) = m2 mod n. Moreover, the Rabin decryption
algorithm Adecrypt(j, c, p, q) = mj where mj ∈ {x ∈ Zn :
c = x2 mod n} for j ∈ {1, 2, 3, 4} (or Adecrypt(c, p, q) =
(m1,m2,m3,m4)) can be realized by mod prim, mod key0
and mod key1.

If h is a compression function with output length < n, the
Rabin algorithm for digital signature Adigital(m,n, h, p, q) =
(z, x) where x ∈ Z random number with length k ∈ N,
h(m,x) = z2 mod n as well as the Rabin algorithm for
verification Averification(m, z, x, n, h) = 0 or 1, whether
h(m,x) �= z2 mod n or h(m,x) = z2 mod n can be realized
by a composition of modq, mod prim, mod key0 and mod key1.

The square roots of c mod p · q are:
• (mod key0 x z p q c) mod n
• (n − (mod key0 x z p q c)) mod n
• (mod key1 x z p q c) mod n
• (n − (mod key1 x z p q c)) mod n
Beside the formal definitions of the Rabin functions, a

formulation (with proofs) of computer lemmata expressing
interesting properties of these functions, is of great relevance
with respect to a formal analysis. A property of interest in
this context provides information concerning the functional
correctness of a given implementation or the security of used
functions. Both aspects are illustrated below.

B. Correctness

In general, correctness of cryptographic encryp-
tion/decryption functions is formulated as follows.

Adecrypt(Aencrypt(x)) = x

But, the output of the Rabin decryption function is not
unique, what implies that this formulation is not used in
this paper. Therefore, we prove a different property to verify
the functional correctness of the Rabin encryption/decryption
scheme.

Aencrypt(Adecrypt(Aencrypt(x))) = Aencrypt(x)

This correctness property can be proven in the case of the
Rabin encryption/decryption scheme. A more precise formu-
lation is given below.

Correctness Property: If p and q are prime numbers, where
p ≡ 3 mod 4 and q ≡ 3 mod 4, n = p · q, and x, z ∈ Z with

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2737

x ·p+z ·q = 1, then for m ∈ {1, . . . , n−1} with gcd(m,n) =
1, (Adecrypt(j, m2 mod n, p, q)2 mod n = m2 mod n, where
each Adecrypt(j, m2 mod n, p, q) ∈ {i : i2 mod n = m2 mod
n} (j ∈ {1, 2, 3, 4}).

A formal compilation of this property is given below.

lemma ”[|prime p; prime q; p mod 4 = 3; q mod 4 = 3; ¬((int
p) dvd (m::int)); ¬((int q) dvd (m::int)); 0 <= m; ¬((int p)
dvd (m·m) mod ((int p)·(int q))); ¬((int q) dvd (m·m) mod
((int p)·(int q))); ¬(2 dvd (int p)); ¬(2 dvd (int q)); ¬((int p)
dvd (int q)); ¬((int q) dvd (int p)); x·(int p) + z·(int q) = 1|]

=⇒
((modq (mod key0 x z p q ((m·m) mod ((int p)·(int q))))
((int p)·(int q)))) = ((modq m ((int p)·(int q))))”;

lemma ”[|prime p; prime q; p mod 4 = 3; q mod 4 = 3; ¬((int
p) dvd (m::int)); ¬((int q) dvd (m::int)); 0 <= m; ¬((int p)
dvd (m·m) mod ((int p)·(int q))); ¬((int q) dvd (m·m) mod
((int p)·(int q))); ¬(2 dvd (int p)); ¬(2 dvd (int q)); ¬((int p)
dvd (int q)); ¬((int q) dvd (int p)); x·(int p) + z·(int q) = 1|]

=⇒
((modq (mod key1 x z p q ((m·m) mod ((int p)·(int q))))
((int p)·(int q)))) = ((modq m ((int p)·(int q))))”;

For a better understanding of these lemmata we skipped
the datatypes of the variables, furthermore we write · for a
multiplication.

C. Further Properties

Beside the correctness property we computer proved further
interesting lemmata given below. A main result are computer
lemma expressing security arguments. More interesting lem-
mata are given below.

Decryption and Factoring:

A main result given in [7] is that for any given number n
the efficient inversion of the function y = En,0(x), for even
a small percentage of the values of y implies the efficient
factorization of n. A paper proof of this result is given in [7].

We explored a computer analysis of this interesting math-
ematical property illustrated below. That means we formulate
appropriate formal lemmata proven with computer support.
For a better understanding of these formal lemmata, we give
these properties in a less formal way. A main aspect of this
formal verification is the easy construction compared with a
complete formal verification approach.

A basis for our computer proof construction are Property
(1) and Property (2).

Property (1). If algorithm A0 computes p from input n effi-
ciently, and algorithm A1 computes q from input n efficiently,
where n = p · q and p, q are prime, and x · p + z · q = 1 for
x, z ∈ Z, then a computation of

modq(mod key0(x, z, p, q, modq(m,n)), n)) =
modq(m,n) and

modq(mod key1(x, z, p, q, modq(m,n)), n)) =
modq(m,n)

is efficient.

(A computation of p, q implies the recoverage of a message
m.)

Property (2). If n = p·q, where p, q are prime and p ≡ 3 mod
4, q ≡ 3 mod 4, for m,x ∈ {1, · · · , n−1} and gcd(m,n) = 1,
gcd(x, n) = 1, c = m2 mod n, c = x2 mod n, m mod p =
x mod p, m mod q = (q−x) mod q m mod p = (p−x) mod
p, m mod q = x mod q and algorithm A computes m from
input c efficiently, then a computation of

1) gcd(A(c) − x, n) = p, n/ gcd(A(c) − x, n) = q
2) gcd(A(c) − x, n) = q, n/ gcd(A(c) − x, n) = p

is efficient.

(A computation of a plaintext from a ciphertext c implies
the factorization of n.)

A computer compilation of Property (1) and Property (2)
can be done by the following lemmata. Complexity of the
involved functions is handled by an extra theory. That means,
we implemented a predicate efficient that holds when a func-
tion f can be computed efficiently (f ∈ P) in a defined way.
efficient is given in a minimal way in order to keep formal
proving practical.

Computation Model:

We express computational complexity of the formalized
Rabin functions by a formal light-weight computational model
(??). This computational model is very easy but effective. We
formalized a predicate efficient that holds when a function f
can be computed efficiently (f ∈ P) in a defined way. efficient
is given in a minimal way in order to keep formal proving
practical.

efficient: (Z −→ Z) −→ {0, 1},

where efficient(f) = 1
if f ∈ {fadd,z, fdiff,z, fmult,z, fx,z, fdiv,z, fzdiv,z, fmod,z,
fzmod,z, fgcd,z for all z ∈ Z} ((Z −→ Z) = {f : Z −→ Z}).

• fadd,z(z′) = z + z′

• fdiff,z(z′) = z − z′

• fmult,z(z′) = z · z′
• fx,z(z′) = zz′

• fdiv,z(z′) = z/z′

• fzdiv,z(z′) = z′/z
• fmod,z(z′) = z mod z′

• fzmod,z(z′) = z′ mod z
• fgcd,z(z′) = gcd(z, z′)
Moreover efficient(f) ∧ efficient(g) =⇒ efficient(f o g).

Computer Lemmata (Property (1)):

A formal version of Property (1) is expressed by the
following computer lemmata.

lemma [| prime (p::num); prime (q::num); p mod 4 = 3; q
mod 4 = 3;

A0((n::int))=p; A1(n)=q; n=(int p)·(int q);
zgcd((m::int),(int n)) = 1; (x·(int p) + z·int q)) = 1|]
=⇒ (modq (mod key0 x z A0(n) A1(n) (modq m n)) n) =

(modq m n)”;

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2738

lemma ”[| prime (p::num); prime (q::num); p mod 4 = 3; q
mod 4 = 3;

A0((n::int))=p; A1(n)=q; n=(int p)·(int q);
zgcd((m::int),(int n)) = 1; (x·(int p) + z·(int q)) = 1|]
=⇒ (modq (mod key1 x z A0(n) A1(n) (modq m n)) n) =

(modq m n)”;

lemma ”[| efficient A0(n); efficient A1(n)|] =⇒ efficient
((add ((mult x) ((mult A0(n)) ((mod operator n) ((exponent
c) ((div operator 4) ((add A1(n)) 1))))))) o ((mult z) o (mult
A1(n)) o ((mod operator n) o ((exponent c) o ((div operator
4) o (add A0(n)))))))”;

lemma ”[| efficient A0(n); efficient A1(n)|] =⇒ efficient
((diff ((mult x) ((mult A0(n)) ((mod operator n) ((exponent
c) ((div operator 4) ((add A1(n)) 1))))))) o ((mult z) o (mult
(A1(n)) o ((mod operator n) o ((exponent c) o ((div operator
4) o (add A0(n)))))))”;

Remark:
• (add x) z = x+z
• (diff x) z = x−z
• (mult x) z = x∗z
• (mod operator n) x = x mod n
• (exponent x) n = xˆ n
• (div operator n) x = x div n
• (add ((mult x) ((mult A0(n)) ((mod operator n) ((expo-

nent c) ((div operator 4) ((add A1(n)) 1)))))) o ((mult z)
o (mult A1(n)) o ((mod operator n) o ((exponent c) o
((div operator 4) o (add A0(n))))))) = (modq (mod key0
x z A0(n) A1(n) (modq m n)) n)

• (diff ((mult x) ((mult A0(n)) ((mod operator n) ((expo-
nent c) ((div operator 4) ((add A1(n)) 1)))))) o ((mult z)
o (mult (A1(n)) o ((mod operator n) o ((exponent c) o
((div operator 4) o (add A0(n))))))))= (modq (mod key1
x z A0(n) A1(n) (modq m n)) n)

More Computer Lemmata (Property (2)):

A formal version of Property (2) is given by the following
computer lemmata.

lemma ”[|(n::num) = (p::num)·(q::num); zgcd((m::int),(int n))
= 1;

prime p; prime q; (c::int) = ((m::int)·m) mod ((int p)·(int
q));

(c::int) = ((x::int)·x) mod ((int p)·(int q));
m mod (int p) = x mod (int p); (m mod (int q)) = (((int

q)−x) mod (int q)); (A c) = m|]
=⇒ (zgcd((A c)−x,n) = (int p)) ∧ ((int n) div zgcd((A

c)−x,n) = (int q))”;

lemma ”[|(n::num) = (p::num)·(q::num); zgcd((m::int),(int n))
= 1;

prime p; prime q; (c::int) = ((m::int)·m) mod ((int p)·(int
q));

(c::int) = ((x::int)·x) mod ((int p)·(int q));
m mod (int p) = ((int p)−x) mod (int p); (m mod (int q))

= (x mod (int q)); (A c) = m|]
=⇒ (zgcd((A c)−x,n) = (int q)) ∧ ((int n) div zgcd((A

c)−x,n) = (int p))”;

lemma ”efficient ((zgcd n) o (diff m))”;

lemma ”efficient ((div alg n) o ((zgcd n) o (diff m)))”;

Remark:
• (div alg n) x = n/x
• (zgcd n) x = zgcd n x
• (diff m) x = m−x
• ((div alg n) o (zgcd n) o (diff m)) = n/(zgcd n (m−x))

V. CONCLUSION

We formally described and computer-proved the Rabin
functions introduced in [7]. Therefore we reviewed relevant
aspects from [7] to illustrate the mathematical background of
the given formalized public-key functions.

A formal analysis with computer support provides a com-
plex, but useful approach to verify the functional correctness
of implementations of cryptographic algorithms. Moreover,
the computer-proven lemmata augment the given database
that is basic for many Isabelle theories. This implementation
is a component of a formally verified cryptographic client
compiled in the Verisoft project.

This article is part of an effort to unify the formal and
the computational views of cryptographic verification. More
specifically, this work continues our recent work that provides
useful formal descriptions of mathematical background and
cryptographic algorithms computer-proven with Isabelle/HOL
(compare [4] and [3]).

In this article we explored a formal specification and
verification of the Rabin encryption and signing scheme in
order to computer-prove interesting properties of this formal
description. Therefore we used Isabelle/HOL to formally ver-
ify functional correctness as well as arguments concerning
security of the given implementation, what means that we
proved formal properties of the investigated functions with
computer support. This shows that formal verification in the
area of cryptography is possible. More exactly, we explored a
construction of proofs with a minmal error rate. Furthermore,
we augmented a proof database that can be used for further
proof constructions.

The idea is to unify both verification approaches in cryptog-
raphy by embedding one into the other: formalizing computa-
tional aspects as well as their computer verification embed the
computational approach in the formal approach. We obtained
a formal verified computational description of a cryptographic
primitive, that can be used in practice (compare II-D).

REFERENCES

[1] Martin Abadi and Jan Jürjens. Formal Eavesdropping and its Compu-
tational Interpretation, 2001.

[2] Johannes Buchmann. Einführung in die Kryptographie. Springer-Verlag,
2 edition, 2001.

[3] Johannes Buchmann and Markus Kaiser. Computer Verification in
Cryptography. In International Conference of Computer Science, Vienna,
Austria, volume 12, 2006.

[4] Johannes Buchmann, Tsuyoshi Takagi, and Markus Kaiser. A Frame-
work for Machinery Proofs in Probability Theory for Use in Cryptog-
raphy, 2005. Kryptotag in Darmstadt.

[5] http://www.verisoft.de.
[6] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL

– A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2739

[7] Michael Rabin. Digitalized signatures and public key functions as
intractable as factorization, 1979. Massachusetts Institute of Technology,
Laboratory for Computer Science, Cambridge, Massachusetts.

[8] Nigel Smart. Cryptography: An Indroduction. McGraw-Hill Education,
2003.

[9] Christoph Sprenger, Michael Backes, Birgit Pfitzmann, and Michael
Waidner. Cryptographically Sound Theorem Proving, 2006.

[10] http://isabelle.in.tum.de.

