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Abstract—A forecasting model for steel demand uncertainty in 

Thailand is proposed. It consists of trend, autocorrelation, and 
outliers in a hierarchical Bayesian frame work. The proposed model 
uses a cumulative Weibull distribution function, latent first-order 
autocorrelation, and binary selection, to account for trend, time-
varying autocorrelation, and outliers, respectively. The Gibbs 
sampling Markov Chain Monte Carlo (MCMC) is used for parameter 
estimation. The proposed model is applied to steel demand index data 
in Thailand. The root mean square error (RMSE), mean absolute 
percentage error (MAPE), and mean absolute error (MAE) criteria 
are used for model comparison. The study reveals that the proposed 
model is more appropriate than the exponential smoothing method. 

 
Keywords—Forecasting model, Steel demand uncertainty, 

Hierarchical Bayesian framework, Exponential smoothing method.  

I. INTRODUCTION 
HE steel industry in Thailand is experiencing growing 
demands as the economy continues to expand and 

government infrastructure spending increases. Steel is a major 
raw material that is widely used in downstream industries, 
such as those in the automotive, electrical appliance and 
electronic, petrochemical, machinery, and packaging sectors. 
The Iron and Steel Institute of Thailand by [1] has reported in 
Fig. 1 the overall steel market has increased on average 7.31% 
percent per year during 1997 to 2011. Since the steel demand 
is uncertain, forecasting is useful for the stake holders. The 
steel demand index monthly time series data in [2] motivated 
us to find an appropriate model for forecasting the steel 
demand time series data in Thailand.  

Times series data usually consist of trend (long term 
direction), seasonal (systematic, calendar related movements) 
and the irregular (unsystematic, short term fluctuations) 
components.  

Outliers and autocorrelation can also be implicit in time 
series data. Outliers are values far from most others in a data 
set. The autocorrelation specifies that the values of a series of 
data at particular points in time are highly correlated with the 
value which precede and succeed them. 
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Fig. 1 Overall steel market increasing on average 7.3% per year 

 
Some classical forecasting models are exponential 

smoothing, moving average, autoregressive integrated moving 
average (ARIMA). However, there are other methods trying to 
detect those components. Reference [3] described a binary 
selection model to account for the outliers. Reference [4] used 
a cumulative Weibull distribution to detect the trend. 
Reference [5] added a latent autocorrelation in the model. 
Reference [6], combining the models proposed by [3]-[5], 
proposed a Bayesian model for forecasting parts demand 
consisting of trend, autocorrelation, and outliers, and found 
that the performance of the proposed model was better than 
the exponential smoothing model. 

Reference [7] modified the model of [6] by reducing the 
number of parameters to avoid over fitting, using 
noninformative proper priors instead of noninformative 
improper priors, and adjusting the constant in the outlier term. 
The noninformative priors commonly used are a normal 
distribution with zero mean and large variance and an inverse 
gamma distribution with a large scale parameter [8]. For 
instance, N(0,1.0E06)  is used for each fixed effect and the 
mean of each prior, and inverse gamma (IG), IG(0.1,0.001) , 
is used for the variance of each prior. Their modified model 
was applied to the vegetable prices data in Thailand used in 
their previous study [9]. They found that their modified model 
was the most appropriate, compared to the exponential and 
Seasonal ARIMA models. 

The proposed model uses a cumulative Weibull distribution 
function, a latent first-order autocorrelation, and a binary 
selection, to account for trend, autocorrelation, and outliers, 
respectively. The proposed model is applied to steel index 
data. It is compared with the exponential smoothing method. 
The root mean square error (RMSE), mean absolute 
percentage error (MAPE), and mean absolute error (MAE) 
criteria are used for model comparison. 

This paper is organized as follows. Section II briefly 
describes the hierarchical Bayesian method, Gibbs sampling, 
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cumulative Weibull distribution, binary selection, and 
autocorrelation. The proposed model, parameter estimation 
and the application are also explained in this section. In 
Section III, the result of the study is presented. Lastly, in 
Sections IV and V the discussion and conclusion are drawn.  

II. METHODOLOGY AND APPLICATION 

A.  A Hierarchical Bayesian Model  
For a vector of data 1,..., )( T

my y=y and a vector of 
parameters 0 1, ,..., )( T

nθ θ θ=θ , a hierarchical Bayesian model 
[10] is expressed as (1):  

 

 f ( | )p( )p( | ) f ( )= y θ θθ y y
                                   (1) 

 
where f ( | )y θ  is a likelihood, p( | )θ y  is a posterior distribution 
which stands for the marginal probability density of the 
parameter vector θ  given the data ,  p( )y θ  is a prior distribution 
of θ , which summarizes any priori or alternative knowledge 
on the distribution of θ , and f ( )y  is the marginal distribution 
of data y . The most common hierarchical Bayesian model has 
three levels [10]. Level 1 specifies the distributions for the 
data given parameters; level 2 specifies the prior distributions 
for parameters given hyper-parameters; and level 3 specifies 
the distribution for hyper-parameters. The hierarchical 
Bayesian model is call “hierarchical” since it has several 
levels. 

The Gibbs sampling, a particular MCMC method, is widely 
used for parameter estimation. The MCMC algorithms which 
include random walk Monte Carlo methods are the class of 
algorithms for sampling from probability distributions based 
on constructing a Markov chain that has the desired 
distribution as its equilibrium distribution [11]. A set of 
vectors θ  with density p( | )θ Y in which the model parameters 
can be estimated is the final result of the MCMC. 

Sampling from the posterior p( | )θ y , 0 1, ,..., )( nθ θ θ=θ , the 
Gibbs sampler requires a random starting point of parameters 
of interest, ( )(0) (0) (0) (0)

1 2, ,..., nθ θ θ=θ . 

The steps of Gibbs sampling are 
1) Sample (1)

1θ  from (0) (0)
1 2p( ,..., , )nθ θ θ y . 

2) Sample (1)
2θ  from (1) (0) (0)

2 1 3p( , ,..., , )nθ θ θ θ y .  

Use updated value of (1)
1θ . 

3) Sample (1)
3θ  from (1) (1) (0)

3 1 2p( , ,..., , )nθ θ θ θ y .  

Use updated value of (1)
1θ  and (1)

2θ . 
4) Sample (1) (1)

4 , ..., nθ θ  similarly to step 1 to 3 

5) Sample (2)θ  using (1)θ  as a starting point and continually 
using the most updated values. 

6) Repeat until we get M  samples, with each sample being 
a vector of (1) (2) ( ), ,..., Mθ θ θ , where M  is the number of 
samples . 

7) Monte Carlo integration on those draws to the quantity of 
interest can be done. For example, the mean of 0θ  results 
from (2): 

 

( )
0 0

1

1E( )
M

i

iM
θ θ

=

= ∑                                   (2) 

B.  A Proposed Model 
Let ty  be time series data at time t, 1,...,t n= .The ty  are 

assumed to have a normal distribution whose mean can detect 
trend and autocorrelation and whose variance can detect 
outliers. The proposed model is created from (3) and is 
defined as (4)-(6): 

 

t t ty μ ε= +                                                (3) 
  

( ( | , ) )t tw t aμ γ α δ= Δ +                                  (4) 
 

( )2
N 0, (1 )t t yε γ ζ σ⎡ ⎤∼ +⎣ ⎦                                (5) 

 

( )N ( ( | , ) ), (1 )t t t yy w t aγ α δ γ ζ σ⎡ ⎤∼ Δ + +⎣ ⎦               (6) 

 
The mean of ty  is (7), 
  

   E( ) ( ( | , ) )t ty w t aγ α δ= Δ + ,                            (7) 
 

and the variance of ty  is (8),  
    

            
2

Var( ) (1 )t t yy γ ζ σ⎡ ⎤= +⎣ ⎦ .                         (8) 
 

where γ  is the expectation of z  , the sum of time series data 
within the study period, ( | , )w t α δ  is a cumulative Weibull 
trend and ( | , ) ( | , ) ( 1 | , )w t w t w tα δ α δ α δΔ = − − , ta  is a 
latent autocorrelation at time t, tζ  is an outlier at time t, and 

2
yσ  is the common variance of ty .  
A cumulative Weibull distribution function to is defined as 

(9): 
 

( / )1 , 0( , , )
0 , 0

te tt
t

δα

ω α δ
−⎧= − ≥⎪

⎨
= <⎪⎩

                             (9) 

 
Following [3], [6], [7], we use a binary selection for 

outliers. The observation tY  is associated with a latent binary 
variable { }0,1tς ∈ . The tY  is identified as an outlier if 1tς =

and is not an outlier if 0tς = . The prior distribution for tς  is a 
Bernoulli distribution such that the probability that 1tς =  is 
assumed to be about 0.05 since the outlier occurrence is a rare 
event.  

Following [5]-[7], we use first-order autocorrelation AR(1) 
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model to detect an autocorrelation. The AR(1) is defined as 
(10): 

 
2

1N( , )t t aa aλ σ−∼                                     (10) 
 

Hence, the proposed hierarchical Bayesian model is as 
follows: 

For a Bayesian method, a prior distribution is assigned to 
each parameter. A non informative prior assigned to each fix 
effect coefficient and the mean of each prior is (0,1.0E06)N  
and to the variance of each prior is IG(0.1,0.001) [8]. For an 
outlier, a Bernoulli (Bern), Bern(0.05), is assigned to the 
outlier variable, since the outlier occurrence is assumed to be 
about 5 %. The first-order autocorrelation model, AR(1), is 
used for the latent autocorrelation. 

The details of priors are as follows: 
Data: 

2p( ΙG(0.1,0.001)yσ ∼)  
 Trend: 

( | , ) ( | , ) ( 1 | , )w t w t w tα δ α δ α δΔ = − − , where ( | , )w t α δ  is 
a cumulative Weibull distribution, 

2
[0, )N ( , )α αα μ σ∞∼ , p( ) N 1.0E06)αμ ∼ (0, ,

2p( ) G(0.1,0.001)ασ ∼ Ι , 2
[0, )N ( , )δ δδ μ σ∞∼ , 

( ) ( )p ~ N 0,1.0E06δμ , 2( ) G(0.1, 0.001)p δσ ∼ Ι  
Latent autocorrelation AR(1): 

2
1N( , )t t aa aλ σ−∼ , 2p( G(0.1,0.001)Aσ ) ∼ Ι  

N(0,1.0E06)λ ∼ , 0 0a =  
Outliers: 

ern(0.05)tζ ∼ Β  
Expectation of total observed data: 

2
[0, )N ( , )γ γγ μ σ∞∼ , p( N(0,1.0E06)γμ ) ∼  

Total observed data: 
2N( , )zz γ σ∼ , 2p( ) G(0.1, 0.001)zσ ∼ Ι  

Forecast one step ahead: 
f ( | , ..., ) ... f ( | )f ( , ..., | )p( )d11 1 1y y y y y ytt n n= ∫ ∫ ++ θ θ θ θ   

C. Application to Steel Demand Index Data  
The steel demand index monthly time series data from 

January, 2000 to September, 2013 (165 months) have been 
extracted from the database of the Iron and Steel Institute of 
Thailand [1]. The last year (9 months) data have been reserved 
for model validation, so the data set of 156 observations is 
used for model estimation.  

A time series plot is used to explore the data. The proposed 
Bayesian model is applied to those data. The Gibbs sampling 
MCMC is used for parameter estimation and prediction via the 
programming in Open BUGS. We found that the Gibbs 
sampling MCMC was converged when it was run for 15,000 
iterations after discarding the first 1,000 iterations. The rest of 
them were used to compute the posterior means and standard 
errors. Visual analysis via trace plots, history plots, kernel 
density plots, and autoregressive plots is used for MCMC 

convergence diagnostics. For the exponential smoothing, the 
parameters are estimated via the SPSS for Windows software. 
The RMSE, MAPE, and MAE are criteria for a model 
comparison. 

III. RESULTS 
The trace plots of some response means, for instance, in 

Fig. 2 show that the Gibbs sampling MCMC is convergent. 
The parameters estimate is presented in Table I.  

The RMSE, MAPE, and MAE in the estimation period (156 
months) and in the validation period (9 months) are shown in 
Table II. Since all error measurements of the proposed model 
are smallest in both estimation period and validation period, 
the proposed model has better perform than the exponential 
smoothing method. 

The graphs of the actual and predicted values from the 
proposed model in the estimation period and validation period 
of are shown in Figs. 3 and 4, respectively. It is evident that 
the predicted values from the proposed model are very close to 
the actual values. 

 

 
Fig. 2 Trace plots of some parameters indicating that the MCMC is 

converged 

IV. DISCUSSION 
The proposed model can detect trend, outliers and 

autocorrelation components. It is appropriate for steel demand 
in Thailand because those extraordinary events usually occur 
in time series data while the traditional times series such as 
exponential smoothing method cannot account for all those 
events. The advantage of a Bayesian method is that it can 
solve a problem of complicated models via MCMC. The 
proposed model can be applied to other industrial uncertain 
products demand time series consisting of those extra-ordinary 
components. This would be valuable to anyone who would 
like to obtain an appropriate forecasting model for those kinds 
of data. 
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TABLE I 
PARAMETER ESTIMATES SHOWING THAT γμ AND 

2
zσ  ARE QUITE LARGE  

Parameter Value Parameter Value 

α  149.50 γμ  1083.00 

λ  10.59 2
Yσ  10.19 

δ  240.31 2
ασ  33.60 

γ  515.00 2
δσ  41.35 

αμ  57.44 2
γσ  30.48 

δμ  88.63 2
zσ  4400.00 

 
TABLE II 

MODEL COMPARISON SHOWING THAT THE PROPOSED MODEL HAS BETTER 
PERFORMANCE IN BOTH ESTIMATION AND VALIDATION PERIODS  

Period  Method 
Error Measurement 

RMSE MAPE MAE 
Estimation 1. Proposed  1.01 5.24 1.12 

 period     Bayesian model       
  2. Exponential  11.60 6.93 8.73 
        Smoothing        
        (Simple Seasonal)       

Validation  1. Proposed 7.92 5.10 6.63 
period     Bayesian model       

  2. Exponential 8.51 5.94 7.37 
      Smoothing       
     (Simple Seasonal)       

 

 
Fig. 3 Actual values and predicted values in the estimation period 

showing that they are very close 
 

 
Fig. 4 Actual values and predicted values in the validation period 

showing that they are very close 

V. CONCLUSION 
The proposed model using a cumulative Weibull 

distribution function, first-order autocorrelation, and a binary 
selection, to account for trend, outliers, and autocorrelation, 
respectively is well-suited to forecasting the uncertain steel 
demand. It takes into account all main components which 
usually occur in time series data, resulting in more superior 
than the exponential smoothing. 
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