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 
Abstract—Floods have huge environmental and economic 

impact. Therefore, flood prediction is given a lot of attention due to 
its importance. This study analysed the annual maximum streamflow 
(discharge) (AMS or AMD) of Karkheh River in Karkheh River 
Basin for flood predicting using ARIMA model. For this purpose, we 
use the Box-Jenkins approach, which contains four-stage method 
model identification, parameter estimation, diagnostic checking and 
forecasting (predicting). The main tool used in ARIMA modelling 
was the SAS and SPSS software. Model identification was done by 
visual inspection on the ACF and PACF. SAS software computed the 
model parameters using the ML, CLS and ULS methods. The 
diagnostic checking tests, AIC criterion, RACF graph and RPACF 
graphs, were used for selected model verification. In this study, the 
best ARIMA models for Annual Maximum Discharge (AMD) time 
series was (4,1,1) with their AIC value of 88.87. The RACF and 
RPACF showed residuals’ independence. To forecast AMD for 10 
future years, this model showed the ability of the model to predict 
floods of the river under study in the Karkheh River Basin. Model 
accuracy was checked by comparing the predicted and observation 
series by using coefficient of determination (R2). 
 

Keywords—Time series modelling, stochastic processes, ARIMA 
model, Karkheh River. 

I. INTRODUCTION 

LOODS are a natural process influenced largely by the 
weather and driven by the amount of precipitation and 

length of time it. After heavy precipitation, rivers and 
catchments may overflow. This type of flooding is most 
common in Iran and is known as riverine flooding. Also, 
floods have a huge environmental and economic impact. 
Hydrologists use flood analysis to estimate and predict flood 
occurrence in the future in order to design and operation of 
hydraulic structures such as dams, and reservoirs, etc. Flood 
analysis at hydrological phenomena is a form of extreme value 
analysis such as AMS values. Hydrologists predict extreme 
hydrological events such as flooding using different methods 
and models, such as probability distributions, flood frequency 
analysis, and stochastic models, etc. 

One of the best models for the prediction of floods is 
stochastic models such as ARIMA (time series models). These 
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models are commonly used in water resource management and 
hydrology. The beauty of time series modelling is that future 
values of a variable can be estimated using its historical values 
(past values). Ahmad et al. applied time series modelling of 
the annual maximum flow of river Indus at Sukkur, they found 
that ARIMA (2,1,1) was appropriate for this series [10]. 
Srikanthan et al. used time series models to analyze annual 
flow of Australian streamflows. ACF and PACF were used to 
specify the suitable form of ARIMA models (Box-Jenkins 
time series models) [11], [4]. Nguyen et al. applied a statistical 
approach for prediction of annual maximum rainfall data at 15 
rain gage stations in Quebec (Canada) for the 1961-1990 
period [7]. 

Stojković et al. suggested that the annual streamflows 
(discharge) simulated by the stochastic ARIMA model were 
suitable for hydrological simulations in large European rivers 
[12]. Mirzavand and Ghazavi used time series modelling for 
forecasting of groundwater level in an arid environment and 
suggested the AR (2) model is suitable [5]. Naeem studied 
stochastic modelling of the daily rainfall for the period 1981–
2010 in Pakistan [6]. Gargano et al. used a stochastic model 
for daily residential water [3]. Also, Nigam et al. forecasted 
river runoff based on the modelling of time series [8]. 

The research attempts to demonstrate the occurrences of the 
rainfall and river streamflow and predict this two phenomenon 
using stochastic ARIMA models (time series models) [11], 
[4]. The specific emphasis has been given for the accurate 
flood predicting and warning for an effective management of 
flood tragedy if needed [9]. 

The applicability of data based on stochastic analysis is 
studied for the 3rd largest river in Iran and perennial medium 
size river named Karkheh. The river spans in Karkheh basin in 
the west of the Iran, located in the central and southern regions 
of the Zagros mountain range. The Karkheh basin has a 
catchment of about 50,000 km2 and river 900 kilometers long. 
Hydrologically, the basin is divided into five sub-basins, 
Gamasiab, Qarasou, Kashkan, Saymareh and south Karkheh. 
Fig. 1 shows the location of the hydrometric stations in the 
studied basin. 

Data pertaining to the river streamflow (AMD) have been 
collected from hydrometric station situated Jelogir Majin. The 
Jelogir Majin Station is located upstream of the Karkheh dam 
reservoir and between longitudes 320 58׳ N and latitudes 470 
 E. The time plot of the AMD time series has been given in ׳48
Fig. 3. The data ranges have been taken as annual cumulative 
and beginning from 1958 till 2005. We collected this series 
from the Iran Water Resources Management Company 
(IWRMC). 
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Fig. 1 The location of the hydrometric stations in Karkheh basin, Iran 
 

II. METHODS 

Rainfall-runoff and the flood frequency analysis are two 
main approaches in a flood analysis. The rainfall-runoff 
method uses rainfall statistics and a catchment model to 
predict floods; whereas, flood frequency analysis produces a 
flood frequency curve and uses only peak flow data to make 
the prediction. Also, another method of predicting floods is by 
using stochastic modelling (ARMA/ARIMA model). A time 
series (stochastic model) has four main components which are 
the trend component, the periodic component, the catastrophic 
component and the random component. An ARMA/ARIMA 
model generates an artificial series for prediction. In this 
method, we use the values of a phenomenon at past times in 
order to modelling extreme hydrological events such as floods. 

An ARIMA model has four basic steps: identification, 
parameters estimation, diagnostic checking, and forecasting. 
The form of non-seasonal ARIMA model is ARIMA (p,d,q) 
and can be written as: 

 

tqtP aBWB )()(                                  (1) 

 
or 
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at denotes the residual series, B backward shift operator 
defined as BZt=Zt-1, B²Zt=Zt-2 and so on, d=degrees of 
differencing and the terms of ϕ and θ denotes coefficient value 
of an AR and MA process of order p and q, respectively [2]. 

The visual displays of the series, such as plotting of data 
against time, autocorrelation function (ACF) and partial 
correlation function (PACF), are the main tools used for 
identification of the model. Stationarity of a series is 
determined with ACF and PACF. If a series recognizes non-
stationarity, we need differencing by trial and error. 
Differencing is commonly selected as one (d=1), if a series has 
non-stationarity. 

After selecting the best order of differencing (d), we 
required to identify the order of the p and q parameters. The 
ACF and PACF of differenced series, help to indentify the 
order of p and q. Also, it was recommended to suggest a few 
different values of p and q to get the best model.  

After selecting the order of p, q and d, we need to 
estimation parameters. For this purpose, three methods, 
unconditional least square (ULS), conditional least square 
(CLS) and maximum likelihood (ML), were used for the 
estimation of parameters of selected models. The maximum 
likelihood (ML), conditional least square (CLS) and 
unconditional least square (ULS) methods are used to estimate 
the model parameters. The parameters of a good model have 
two stationary and invertibility conditions. The models which 
have these conditions were suitable for entrance to the next 
stage (diagnostic checking). 

Diagnostic checking is applied to see if the model is 
adequate or not. There are two tests for in this stage: Port 
Manteau Lack-of-Fit test and Residual Autocorrelation 
Function Test (RACF and RPACF). In the first test, if the 
p>chi squared value was greater than the level of significant 
(0.05), the ARIMA model is considered adequate. In the 
second test, the ARIMA model is considered adequate if the 
residuals have independence. In other words, Autocorrelation 
and Partial Autocorrelation Function (RACF and RPACF) 
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were not significant, which means the value of residuals at any 
lag will not affect the value of residual at the next lag. 

The best model has parsimony. Akaike Information Criteria 
(AIC) was used for the parsimony of parameters. The model 
with the minimum AIC was selected as the best model. SAS 
and SPSS software can find the best model based on the AIC 
values calculated for a range of p and q. 

At the end, the best model for predicting of hydologic 
phenomenon was the model that passed the diagnostic 
checking and has the minimum AIC. The final step was to 
generate a prediction of future values. Then, we compared the 
predicted and observation (original) data series. The basic 
methodology of ARIMA development is shown in Fig. 3. 

 

 

Fig. 2 ARIMA model development 

III. RESULT AND DISCUSSION 

The objective of this study was to identify a suitable 
ARIMA model based on the Box-Jenkins approach. Since 
annual river runoff (streamflow) is a non-seasonal 
phenomenon, we need to identify the order (p,d,q) for a non-
seasonal univariate model. Then, the least square estimates of 
the parameters of time series models (ARIMA model) are used 
for predicting the river streamflow. The four-stage method 
contains model Identification, parameters estimation, 
diagnostic checking and forecasting (predicting) that are fitted 
to time series models (ARIMA model). 

Before the start of modeling, we must plot the observations 
of natural data against time, as this will allow to show the 
important aspects of a time series such as seasonality, trend, 
and outliers, etc. [1]. 

 

 

Fig. 3 Time series of natural AMD at Karkheh River 
 

 

Fig. 4 Time series of AMD at Karkheh River (d=1) 
 
Fig. 3 shows that there is little increase trend for AMD. The 

natural AMD series are not stationary, and for this reason, we 
first differentiated natural data to achieve a stationary series. 
This plot is shown in Fig. 4; it is stationary and there is no 
trend. The choice of the order of p, d and q for the 
identification model, in practice, the degree of differencing d 
is assumed one (d=1), while the autocorrelation function and 
partial autocorrelation function are plotted to guess the order 
of p and q. ACF and PACF of the AMD data for natural data 
(d=0) is shown in Figs. 5 and 6, and for d=1 in Figs. 7 and 8. 
The runoff of the Karkheh River shows a non-seasonal 
pattern, the same can be seen in the ACF and PACF plots and 
hence the flow pattern requires a non-seasonal model. An 
analysis of significant ACF and PACF plots implies the one 
and four order non-seasonal ARMA parameterization of AMD 
series. 

The results of values for the parameters estimation methods 
(ML (maximum likelihood), CLS (conditional least square) 
and ULS methods (unconditional least square)) of suggested 
models (1,1,0), (1,1,1) and (4,1,1) for AMD are shown in 
Table I. This table shows that all three models are suitable for 
modelling because the parameters of all models have two 
stationary and invertibility conditions. We enter the diagnostic 
check stage in order to compare suggested models together 
and select the best model. The diagnostic checking test is 
applied to see if the model is adequate or not. The results of 
this test are indicated in Table II. This table shows that all 
three selected models are adequate for the predicting of AMD 
data. 
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Fig. 5 Autocorrelation Function for natural AMD Series 
 

 
Fig. 6 Partial Autocorrelation Function for natural AMD Series 
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Fig. 7 Autocorrelation Function for AMD Series (d=1) 
 

 

Fig. 8 Partial Autocorrelation Function for AMD Series (d=1) 
 

Also, the independency of the resulting studied series, the 
correlogram of this series are computed for lag (M=N/5) is 
shown in Fig. 9. This figure shows that most of the computed 
lags lie inside the tolerance interval (±2/√N, at 95% 
confidence limits) and the residuals have independence. The 
goodness-of-fit statistic for the parsimony of series (Akaike 
Information Criteria (AIC)) is shown in Table III. Therefore, 
the ARIMA (4,1,1) model in the CLS estimation parameter 

method is the best model for AMD at Karkheh River. Table 
IV shows the predicted AMD for 10 years ahead of original 
data for the period from 2006 to 2015 by applying the best 
models. Fig. 10 shows the forecasted series for these data. The 
corresponding observed values are also shown in Fig. 11, and 
since agreement between the observed and predicted values is 
very good (R2=0.84), it is confirmed that the ARIMA (4,1,1) 
model is adequate for the predicting of AMD. 
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TABLE I 
VALUES OF NON-SEASONAL ARIMA MODEL PARAMETERS FOR AMD 

Estimation 
Method 

Type (Order) and Values of 
parameters ARIMA(p,1,q) 

Absolute 
Value of t 

Probability 
of t 

Stationary 
Condition 

Invertibility 
Condition 

ML 
P(1) = -0.48656 

Q(0) 
-3.81 0.0001 Satisfy  

CLS 
P(1) = -0.48713 

Q(0) 
-3.78 0.0005 Satisfy  

ULS 
P(1) = -0.49708 

Q(0) 
-3.88 0.0003 Satisfy  

ML 
P(1) = 0.10744 
Q(1) = 0.93539 

0.5104 
0.0001< 

Satisfy Satisfy 
0.5104 

0.0001< 

CLS 
P(1) = 0.11274 
Q(1) = 0.96723 

0.4926 
0.0001< 

Satisfy Satisfy 
0.4926 

0.0001< 

ULS 
P(1) = 0.12820 
Q(1) = 0.99998 

0.4072 
0.0001< 

Satisfy Not Satisfy 
0.4072 

0.0001< 

ML 
P(4) = -0.3317 
Q(1) = 0.86679 

0.0243 
0.0001< 

Satisfy Satisfy 
0.0243 

0.0001< 

CLS 
P(4) = -0.33489 
Q(1) = 0.86679 

0.0339 
0.0001< 

Satisfy Satisfy 
0.0339 

0.0001< 

ULS 
P(4) = -0.36065 
Q(1) = 0.89524 

0.0208 
0.0001< 

Satisfy Satisfy 
0.0208 

0.0001< 
ML: Maximum Likelihood CLS: Conditional Least Square ULS: Unconditional Least Square 

 
TABLE II 

RESULT OF AUTOCORRELATION CHECK OF RESIDUALS AMD 

ARIMA Model 
Estimation 

Method 
To Lag Df Chi-Square 

Pr>Chi 
Square 

Adequacy for 
Modelling 

ARIMA(1,1,0) 

ML 

6 
12 
18 
24 

5 
11 
17 
23 

9.99 
11.25 
14.32 
17.26 

0.0754 
0.4228 
0.6447 
0.7962 

Satisfy 

CLS 

6 
12 
18 
24 

5 
11 
17 
23 

9.68 
10.94 
14.02 
16.93 

0.0850 
0.4484 
0.6659 
0.8128 

Satisfy 

ULS 

6 
12 
18 
24 

5 
11 
17 
23 

10.02 
11.29 
14.38 
17.33 

0.0748 
0.4190 
0.6400 
0.7928 

Satisfy 

ARIMA(1,1,1) ML 

6 
12 
18 
24 

4 
10 
16 
22 

5.32 
5.93 
9.21 

12.45 

0.2562 
0.8212 
0.9046 
0.9473 

Satisfy 

ARIMA(4,1,1) 

CLS 

6 
12 
18 
24 

4 
10 
16 
22 

4.63 
5.20 
8.26 

10.89 

0.3269 
0.8775 
0.9409 
0.9763 

Satisfy 

ML 

6 
12 
18 
24 

4 
10 
16 
22 

1.30 
2.77 
7.46 

10.70 

0.8608 
0.9863 
0.9635 
0.9787 

Satisfy 

CLS 

6 
12 
18 
24 

4 
10 
16 
22 

1.36 
2.98 
7.56 

10.41 

0.8504 
0.9818 
0.9610 
0.9822 

Satisfy 

ULS 

6 
12 
18 
24 

4 
10 
16 
22 

1.25 
2.53 
7.61 

11.47 

0.8702 
0.9904 
0.9596 
0.9674 

Satisfy 

ML: Maximum Likelihood CLS: Conditional Least Square ULS: Unconditional Least Square 
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Fig. 9 Auto correlogram of Residual Series Parameter for AMD 
 

TABLE III 
GOODNESS OF FIT STATISTIC FOR AMD 
ARIMA 
Model 

Estimation 
Method 

Akaikc's 
Statistic 

(1,1,0) 

ML 103.4247 

CLS 103.4469 

ULS 103.4316 

(1,1,1) ML 95.2824 

(4,1,1) 

CLS 93.1350 

ML 90.8381 

CLS 88.8680 

ULS 91.0387 

 
TABLE IV 

FORECASTS AMD FROM PERIOD 2006-7 TO 2015-16 

Period 
AMD 

Forecast Observation 

2006-7 1451 1300 

2007-8 1385 1323 

2008-9 1092 1175 

2009-10 984 1004 

2010-11 1257 1253 

2011-12 1276 1187 

2012-13 1382 1346 

2013-14 1431 1401 

2014-15 1319 1330 

2015-16 1312 1290 

 

 

Fig. 10 Comparison of Forecasted and Observed data for AMD 
(2006-2015) 

 

Fig. 11 Correlation between actual values and predicted values of 
AMD in Karkheh River 

IV. CONCLUSION 

Recognizing and predicting AMS (discharge) of the 
Karkheh River at Jelogir Majin Station during a statistical 
period is necessary for flood control and the planning of 
agricultural activities. Results from this reviewing indicated 
that: 
• The best ARIMA models for AMD series with the least 

Akaike information criterion (AIC) (AIC=88.87) and 
which passed diagnostic checks was (4,1,1) in the CLS 
estimation parameter method. Its residual was 
independent, homoscedastic and approximately normally 
distributed. By comparing the models’ synthetic series 
with the original series, their accuracies were checked. 
The predicted AMD data showed very good agreement 
with the actual recorded data (R2=0.84). This gave 
increasing confidence of the selected ARIMA models. 

• The study reveals that the Box-Jenkins (ARIMA) model 
methodology could be used as an appropriate tool to 
predict the flood in this river for the up-coming 10 years 
(2006-2015). Also, this methodology can help farmers in 
the area, in order to best plan agricultural activities to 
enlarge the areas of land to be cultivated using 
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supplemental irrigation. 
• The significant ACF and PACF functions with high 

orders can be caused by factors such as area, good 
vegetation and snowmelt. The good vegetation of the 
region and the forest causes water retention in the soil 
surface layer and delay in the rise in surface runoff. 

• The ARIMA model is suitable for short-term predicting of 
a series, because the ARMA family of models can model 
short-term durability very well. The AR model is a finite 
memory model, thus it does not fare well in long-term 
predicting. 

• Model identification is the critical step in ARIMA 
modelling. The values of p, q and d had to be determined 
visually and they depended on the modeler’s experience 
and judgment. 
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