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Abstract—The flexible follower response of a translating cam with
four different profiles for rise-dwell-fall-dwell (RDFD) motion is
investigated. The cycloidal displacement motion, the modified
sinusoidal acceleration motion, the modified trapezoidal acceleration
motion, and the 3-4-5 polynomial motion are employed to describe the
rise and the fall motions of the follower and the associated four kinds of
cam profiles are studied. Since the follower flexibility is considered,
the contact point of the roller and the cam is an unknown. Two
geometric constraints formulated to restrain the unknown position are
substituted into Hamilton’s principle with Lagrange multipliers.
Applying the assumed mode method, one can obtain the governing
equations of motion as non-linear differential-algebraic equations. The
equations are solved using Runge-Kutta method. Then, the responses of
the flexible follower undergoing the four different motions are
investigated in time domain and in frequency domain.

Keywords—translating cam, flexible follower, rise-dwell-fall-
dwell, response

I. INTRODUCTION
Pasin [1] studied a valve control mechanism of internal

combustion engines. The longitudinal vibrations of the moving
rod were neglected, and the rod was loaded by a variable axial
force. The equation of bending vibrations of this rod was
obtained using the classical bending theory and d’Alembert’s 
principle. Then the partial differential equation with variable
coefficients was reduced to a system of ordinary differential
equations of second order with periodic coefficients using
Galerkin method. The stability of the rod and consequently of
the cam mechanism was investigated according to the
parameters of speed and stroke. Yilmaz and Kocabas [2] studied
the longitudinal vibrations of a follower which is the linear
active component of a cam mechanism. The basic Bernoulli
method was applied to solve the partial differential equation
which was supplied by taking the viscous damping factor into
consideration. Followers driven by high-speed, dwell-type,
rotating disk cams can exhibit undesirable residual vibrations
during dwell. Felszeghy [3] studied a cam with a translating
roller follower. He idealized the follower structure as a single
degree-of-freedom, spring-mass-dashpot, linear system. These
residual vibrations were obtained with closed-form solutions to
the steady-state vibrations obtained with a circular convolution
integral. The steady-state vibrations, which can extend over the
entire cam cycle, were periodic and continuous.

Teodorescu and Rahnejat [4] introduced a fast converging
mathematical model to predict the peculiarities of the non-
conforming contact between an infinitely long cylinder and a

coated elastic substrate. The proposed method was then
integrated into a multi-physics analysis of the valve train system
of a racing type internal combustion engine. Due to relatively
high loads and speeds experienced, particularly in the cam-
tappet contacts, hard wear resistant coatings are used, which
greatly influence the contact mechanics performance. Results
indicate that the layer thickness is the determining factor in
contact characteristics, which alters during the cam cycle.
Therefore, for optimal performance coatings of non-uniform
thickness should ideally be applied to the circumference of the
cam rather than the usual coating of the tappet surface with a
given thickness. Wu etc. [5] studied that a translating cam
driven by an offset slider-crank mechanism has varying
velocity, and the follower motion can be arbitrarily chosen for
only the forward or the return stroke of the translating cam. By
employing the concept of velocity instant center, the cam
profile, the path of cutter, the pressure angle and the radius of
curvature of the cam can be expressed parametrically, and the
follower motion of the remaining stroke can be analyzed
analytically. The cam profile has concave, convex and flat
portions. Cveticanin [6] modeled the mechanism as a cam-
follower-driveshaft system where the flexibility of the camshaft
and of the follower was considered. The dynamics of cam
mechanism was analyzed. The non-linear and damping
properties of the system were also taken into consideration. For
constant angular velocity of the cam the mechanism was
modeled as a two-degree-of-freedom system. The mathematical
model of the system was described with two coupled
parametrically excited non-linear second-order differential
equations. The stability of motion of the system has been
investigated. Based on the criterion of stability the method for
obtaining cam profile was developed. The conditions for stable
and asymptotic stable motion of the follower were analytically
determined.

Wu etc. [7] proposed a novel translating follower that has
symmetrical double rollers and also demonstrated how to design
such a cam mechanism. Two identical rollers are symmetrically
mounted on opposite sides of the follower. The two rollers take
turns to contact the cam when the cam rotates. The application
of this follower can greatly reduce the pressure angle on both
the rising and the falling motions of the follower. It may also
reduce the induced forces. Naskar and Acharyya [8] conducted a
comprehensive experimental analysis for measuring dynamic
response of jerk optimized, stress optimized and size optimized
cams, with advanced techniques of data acquisition and data
processing. A precision manufacturing process was employed
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for preparing cam surface. Results showed close matching of
experimental outputs with theoretical predictions of
displacement and values of follower preset. A method was
suggested for specifying the causes behind deviations of
predicted cam displacements from actual displacements.

In this paper, the flexible follower response of a translating
cam with four different profiles for RDFD motion is
investigated. The follower rod pinned with a roller which is
restrained within the rotating cam groove. Since the follower
flexibility is considered, the contact point of the roller and the
cam is an unknown. Two geometric constraints are established
to restrain the unknown contact position. They are substituted
into Hamilton’s principle as Lagrange multipliers. The 
transverse deflection of the follower is expanded with the
assumed mode method in which the mode is time-dependent
since the follower is driven to lengthen or shorten when the cam
is rotating. The follower response with four different profiles for
RDFD motion is obtained. The time histories and the FFT
spectra of the flexible follower responses are investigated.

Ⅱ. DERIVATION OF GOVERNING EQUATIONS
A cam mechanism including a rigid cam with a translating

roller-follower is shown in Fig. 1. The flexible follower rod is
assumed to be Rayleigh beam. The follower rod has a separate
part, the roller, which is pinned to the follower stem. Since the
roller moves in groove, the roller maintains contact with the cam
and rolls on the cam surface as the cam rotates. The rigid-body
translating motion and the flexible transverse deflection are
restrained by the contact constraints.

The kinetic energy and strain energy of the follower, the
kinetic energy of the roller, and the work done by the constraint
forces are formulated first. The follower deflections are
expanded using the assumed mode method. Then, the governing
equations of the flexible follower rod are derived by employing
Hamilton’s principle. 

2.1 The kinetic energy and strain energy of the system
Using the envelopes theory to determine the cam profile, the

profile coordinates ( CC yx 1,1 ) are derived as (refer to Fig. 1)
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in which br is the base-circle radius of the cam, and rr is the
roller radius.

And the coordinates of the roller center E are
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A rotating frame 1 1 1O x y fixed on the cam which rotates
with a constant angular speed is shown in Fig. 2. A fixed
frame 2O xy is also used and its unit coordinate vectors are

denoted as { , }Ti j . The 2O x axis coincides with the
centerline of the undeformed rod. The flexible follower
undergoes a transverse deflection, ),( txv . The end point E

moves to be Eafter deformation. The transverse deflection
at the end point E are denoted as Ev , i.e., ( , )Ev v l t . A fixed
frame 1O XY is also used. The fixed coordinates for the
points C and E are
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2.1.1 The kinetic energy and strain energy of the rod
An arbitrary point P on a cross-section of the follower rod is

deformed to be the point P, shown in Fig. 2. The position
vector PR can be expressed as

jiR )()( , vyvyx xP  (5)

where the subscript means to take partial derivative with respect
to x .

The velocity of the point Pis derived as

jiR vvyx xP   ][ , (6)

where the dot symbol means to take derivative with respect to
time t.

The kinetic energy rodT of the rod can be expressed as
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where denotes the mass density of the rod. A is cross-
sectional area of the rod. I is the area moment of inertia of the
rod cross-section. It is known form Eq. (7) that the kinetic
energy of the rod contains the rigid-body and flexible
translational and rotational energies.

Applying the strain-stress relationship of Hooke’s law, one 
has the strain energy rodU of the rod as follows,



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:8, 2010

736

dxvIEdVvyEU
Ex

xx
V

xxrod  
0

2
,

2
, 2

1)(
2
1

(8)

where E denotes Young’s modulus of beam material.

2.1.2 The kinetic energy of the roller
The kinetic energy of the roller including the translational and

rotational energies is derived as
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where rm and rJ are the mass and the polar mass moment of
inertia of the roller, respectively.

2.1.3 Constraint equations
From the geometric relationship as shown in Fig. 2, two

constraint equations for the point E are derived as

01  EE vX (10)
02  dxY EE (11)

It is seen that the rigid-body motion and the flexible
vibration are coupled under the geometric constraints.

2.2 Assumed mode method
One end of the follower rod is restrained with a rigid cylinder

and the other end is connected to the roller. For satisfying the
boundary condition at the rigid cylinder end, one can expand the
deflections by applying assumed mode method as follows,
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where ix is the mode shape which is dependent on time since
the follower is driven by the cam to lengthen or shorten. )(tbi is
the associated amplitudes for the transverse deflection. Though
the polynomial expansion is a simple assumed mode method, it
can easily formulate the moving boundary problem.

2.3 Hamilton’s principle
Applying Hamilton’s principle for the whole system, one has 

the variation equation
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where rodT and rollerT are the kinetic energy of the follower
rod and the roller, respectively. rodU is the strain energy of the

follower rod. 1 1 and 2 2 are the works done by the
constraint forces.

Substituting equation (12) into Hamilton’s principle (13), one 
can obtain the system equation of motion. The equation is
expressed as

   0λΦQQNQQM Q  T , (14)

where M, N,and λare mass matrix, nonlinear vector, and
Lagrange multiplier, respectively. It is noted that the mass
matrix is time-dependent. Q is the generalized coordinates
vector and expressed as

].[ 21 EN xbbb Q (15)

The two constraints as expressed in equations (10) and (11)
are combined as the following form
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Differentiating equation (16) with respect to time, one has the
constraint velocity equation
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Then differentiating equation (17) with respect to time, one
has the constraint acceleration equation
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Combining the nonlinear ordinary differential equation (14)
and the constraint acceleration equation (18), one obtains the
following expression
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The above equation is the differential-algebraic equation
which governs the vibration of the translating roller-follower
cam mechanism. Applying the Runge-Kutta integration method,
one can obtain the vibration response of the follower.

Ⅲ. CAM PROFILES FOR RDFD MOTION
The schematic of a cam mechanism is shown in Fig. 1. The

displacement function of the follower rod when the cam rotates
an angle  is denoted as )(S . The rise-dwell-fall-dwell
(RDFD) motion studied in this paper is described in Fig. 2.

Four cam profiles are considered with different rise and fall
motions. They include the cycloidal displacement (sinusoidal
acceleration) motion, the modified sinusoidal acceleration
motion, the modified trapezoidal acceleration motion, and the 3-
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4-5 polynomial motion. The displacement function )(S for
the rise segment is given with the following five functions:
(Chen [9])
1. Cycloidal displacement motion:
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2. Modified sinusoidal acceleration motion:

8
0 

 :














 )4sin(
)4(4

1
4

)(









 TSS (21.1)

8
7

8





 :


















 )

63
4cos(

)4(4
9

44
2)( 











 TSS

(21.2)





8

7 :

















 )4sin(
)4(4

1
44

4)(










 TSS (21.3)

3. Modified trapezoidal acceleration motion:
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4. 3-4-5 polynomial motion:
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In Eqs. (20) –(23), is the period of the rise segment and

TS is the total lift magnitude. In this study,  is set to 2
 .

The above five motions are used for the rise portion of the cam.
The rise functions are applicable to the fall with slight
modification. To convert rise functions to fall functions, it is
only necessary to subtract the rise displacement function )(S

from the maximum lift TS . The period of the fall segment is also

set to 2
 .

IV. NUMERICAL RESULTS AND DISCUSSIONS
The flexible follower vibration response of the translating

cam with four different profiles for RDFD motion is
investigated by using the numerical analysis. Due to the flexible
follower, the contact point of the roller and the cam can not be
determined by using kinematics analysis. The unknown contact
point will be solved by using the proposed dynamic analysis
including the geometric constraint equations. The transverse
response at the end point of the follower is solved to show that
the contact point is different from that under the assumption of
the rigid follower rod. Four different cam profiles including the
cycloidal displacement motion, the modified sinusoidal
acceleration motion, the modified trapezoidal acceleration
motion, and the 3-4-5 polynomial motion are employed to study
the vibration of the flexible follower. The four different motions
are applied to model the rise and fall displacement curves.

For the consistence of the comparison of the four different
cam profiles, the related parameters are given the same values
and listed in Table 1. The zero initial conditions are assumed.
The time step for the numerical integration is set to 32 10

s.
The follower vibration with two rotation speeds of cam is

analyzed. First, the rotation speed is set to  240 rad/s .
The time history of the transverse response at the end point of
the follower undergoing the four different motions is obtained
and plotted in Figs. 4-7. It is observed form the figures that the
time response contains two major components for every period.
Taking the first period to interpret, one can see that the response
during  90~0t and  270~180 has large amplitude
with low frequency while that during  180~90t and
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 360~270 has small amplitude with high frequency. These
may be explained that the large response amplitude during

 90~0t and  270~180 is excited since the follower
undergoes the rise and the fall motions while the small response
amplitude during  180~90t and  360~270 is due
to the dwell segments of the cam. The high frequency response
during the dwell segments is the free vibration and may accord
with the natural frequency of the flexible follower. This is
verified by using the FFT analysis. From Figs 4-7, it is also
shown that the high frequency response for the cycloidal
displacement motion is the smallest and the low frequency
responses are almost the same order for the different motions
except for the modified trapezoidal acceleration motion. When
the follower undergoes the modified trapezoidal acceleration
motion, both the low and the high frequency responses are
excited to the largest.

To gain an insight into the relationship of the response and
the frequency, the fast Fourier transformation is performed to
obtain the FFT spectra diagram for the four profiles. These
spectra are shown in Figs. 8-11. The natural frequencies of the
clamped follower rod for the two dwell segments are calculated.
During  180~90t , the length of the follower from the
bottom end of the rigid cylinder is 66 mm while that is 81 mm
during  360~270t . The first three natural frequencies
for the follower length, 66 mm, are 10469, 65615, and 183741
rad/s and for 81 mm are 6951, 43563, and 121990 rad/s.
Except for the cycloidal displacement motion, there are many
peaks appearing near the frequencies, 30 and 46 . They
are close to the fundamental frequencies, 6951 and 10469 rad/s.
That verifies the high frequency response is excited majorly due
to the first natural mode. For low frequency peaks, it is found
form Figs. 8-11 that the distinct peaks occur at even number
times the rotation speed . The largest peak occurs at four
times for all the different profiles. This may be explained
that the cam profile experience four segments for every rotation
thus the peak at four times  is excited most seriously.
Furthermore, it is also observed from the figures that the peak at
four times for the cycloidal displacement motion is larger
than that for the other three motions. The high frequency peaks
for the modified trapezoidal acceleration motion are larger than
those for the other three motions.

The cases with the rotation speed =360 rad/s are also
investigated. The FFT spectra diagrams are shown in Figs. 12-
15. Many peaks are found near the frequencies, 19  and
30. They are close to the fundamental frequencies, 6951 and
10469 rad/s. This phenomena is the same as the cases for
=240 rad/s. For low frequency peaks, the distinct peaks also
occur at even number times . The peak at four times  is
also the largest one for all the different profiles. The peak at four
times  for the cycloidal displacement motion is larger than
that for the other three motions. The high frequency peaks for
the modified trapezoidal acceleration motion are larger than
those for the other three motions. Comparing the cases with
=240 rad/s and 360 rad/s from Figs 8-15, one can find that
for all four profiles the responses with =360 rad/s are larger
than those with =240 rad/s. This is due to the centrifugal
force effect.

V. CONCLUSIONS
The flexible follower response of a translating cam with four

different profiles for RDFD motion is studied. The governing
equations are derived by using Hamilton’s principle and the 
assumed mode method. Since the follower flexibility is
considered, the contact point of the roller and the cam is an
unknown. Two geometric constraints formulated to restrain the
unknown position are substituted into the dynamics modeling
with Lagrange multipliers. From the time histories of the
follower response, it is obviously found that the response
amplitude for the rise and the fall segments is larger while that
for the dwell segments is smaller. The response for the modified
trapezoidal acceleration motion is lager than that for the other
motions. From the FFT spectra analysis, it is found that the high
frequency response is excited majorly due to the first natural
mode. The largest peak occurs at four times for all the
different profiles. The peak at four times for the cycloidal
displacement motion is larger than that for the other three
motions. The high frequency peaks for the modified trapezoidal
acceleration motion are larger than those for the other three
motions.
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ST 15 mm ρ 7.8×10-6 kg/mm3

β π/2 d 112 mm

γf 5 mm γb 26 mm

A 78.54 mm2 γr 5 mm

I 490.87 mm4 mr 0.003 kg

E 2.1×108 kg/mm．s2 Jr 0.625 kg．mm2
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Fig. 1 Schematic of the cam mechanism.
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Fig. 2 Deformed configuration of the cam mechanism
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Fig. 3 The rise-dwell-fall-dwell motion of the follower.
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Fig. 4 The time history at the end point E of the follower undergoing
cycloidal displacement motion for 240 rad/s .
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Fig. 5 The time history at the end point E of the follower undergoing
modified sinusoidal acceleration motion for 240 rad/s .

Table I The related parameters values
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Fig. 6 The time history at the end point E of the follower undergoing
modified trapezoidal acceleration motion for 240 rad/s .
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Fig. 7 The time history at the end point E of the follower undergoing
3-4-5 polynomial motion for 240 rad/s .
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Fig. 8 The response spectra at the end point E of the follower
undergoing cycloidal displacement motion for

240 rad/s .
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Fig. 9 The response spectra at the end point E of the follower
undergoing modified sinusoidal acceleration motion for

240 rad/s .
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Fig. 10 The response spectra at the end point E of the follower
undergoing modified trapezoidal acceleration motion for

240 rad/s .
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Fig. 11 The response spectra at the end point E of the follower
undergoing 3-4-5 polynomial motion for 240 rad/s .
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Fig. 12 The response spectra at the end point E of the follower
undergoing cycloidal displacement motion for

360 rad/s .
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Fig. 13 The response spectra at the end point E of the follower
undergoing modified sinusoidal acceleration motion for

360 rad/s .
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Fig. 14 The response spectra at the end point E of the follower
undergoing modified trapezoidal acceleration motion for

360 rad/s .
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Fig. 15 The response spectra at the end point E of the follower
undergoing 3-4-5 polynomial motion for 360 rad/s .


