
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

339

 
 

  
Abstract—This paper proposes the use of metrics in design space 

exploration that highlight where in the structure of the model and at 
what point in the behaviour, prevention is needed against transient 
faults. Previous approaches to tackle transient faults focused on 
recovery after detection. Almost no research has been directed 
towards preventive measures. But in real-time systems, hard 
deadlines are performance requirements that absolutely must be met 
and a missed deadline constitutes an erroneous action and a possible 
system failure. This paper proposes the use of metrics to assess the 
system design to flag where transient faults may have significant 
impact. These tools then allow the design to be changed to minimize 
that impact, and they also flag where particular design techniques – 
such as coding of communications or memories – need to be applied 
in later stages of design. 
 

Keywords—Criticality, Metrics, Real-Time Systems, and 
Transient Faults. 

I. INTRODUCTION 
transient fault is a temporary unintended change of state 
within a logic circuit that lasts for a few state transitions 

only. A transient fault, also known as soft error or Single 
Event Upset (SEU), is a rare phenomenon and usually not 
catastrophic. These types of faults could be induced by alpha 
particles from the naturally occurring radioactive impurities, 
high energy neutrons induced by cosmic rays, and low-energy 
cosmic neutron interactions with 10B found in boro-phospho-
silicat glass (BPSG) [2]. Though transient faults do not affect 
the internal structure of the semiconductor, they nevertheless 
lead to malfunctions and even failures of the circuit. 

Transient faults are a great concern for designing high 
availability systems or systems used in electronic-hostile 
environments such as outer space. These errors are also severe 
in those systems where reliability is a great concern [8, 9, and 
11]. Space programs, where a system cannot afford 
malfunction while in flight, are vulnerable to transient faults. 
Banking transactions, where a momentary failure may cause a 
huge difference in balance, are also threatened by transient 
faults. For example, if a transient fault causes 1 → 0 bit flips 
in the most significant bit of the register storing the amount of 
money deposited in a bank account then the effect might be an 
unexpected change in balance. Mission critical embedded 
applications, and even the execution of simple programs, 
where a corrupted intermediate value can corrupt all 
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subsequent computations, are vulnerable to transient faults 
[4], [12]. 

Traditional approaches to prevent transient faults focus on 
recovery after detection. Almost no research has been done on 
preventive measures. Avionic systems, or any real time 
applications, cannot even tolerate recovery delay when there 
is a fault. In real-time systems, hard deadlines are performance 
requirements that absolutely must be met. A missed deadline 
constitutes an erroneous action and a possible system failure. 
In these systems, late data is bad data. For example, it would 
be awkward to have to reset the flight control computer 
because of a fault while the plane is in the air. Measures are 
needed to maintain functionality at all times. Past research has 
mostly considered using redundant hardware or software, or 
both, but this does not guarantee that real-time criteria can be 
met.  

The aim of this paper is to examine a preventive approach 
as a solution rather than recovery after detection. Focusing on 
a preventive approach means that it is first necessary to 
consider what changes could affect the functionality desired 
[13], and then relate that to a demand for more robustness in 
the systems model. That requires some detailed assessment of 
both the functions to be provided and the structure and 
behaviour of the model. Whatever prevention is nominated 
will flow through to the remaining stages and eventually end 
as some form of hardware or software, or both.  

Clearly, testing conclusively across all structure-behaviour 
coordinates is a near-impossible task. Simplification is 
needed. This paper proposes the usage of metrics to reduce the 
size of the test space. These metrics are simply heuristics that 
are used to scan the system model and flag at what structure-
behaviour coordinate a problem can arise. The aim is not to 
scan all points but look for key indicators that highlight 
particular conditions that need to be addressed. Thus the 
metric output will be some priority or it will be a measure of 
how long the impact of a transient fault may last, and so on. 

II. RELATED WORK 
Researchers have evolved several measures to prevent soft 

errors. Hardware solutions for soft error mitigation mainly 
emphasize circuit level solutions, logic level solutions and 
architectural solutions. At the circuit level, the solution is 
mainly to increase the critical charge of a circuit node [10]. 
Logic level solutions [1], [7] mainly propose detection and 
recovery in combinational circuits by using redundant or self-
checking circuits. For example, to validate the output of 
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combinational circuits, these techniques use output parity 
generation. Validation of flip-flops is done by providing 
redundant latches or by using scan flip-flops to hold redundant 
copies of flip-flop data. Architectural solutions include 
dynamic implementation verification architecture (DIVA) 
[19], and block-level duplication used in IBM Z-series 
machines [6]. 

Software based approaches include redundant programs to 
detect and/or recover the problem [18], duplicating 
instructions [16], task duplication [12], and by dual use of 
super scalar data paths [17]. EDDI [16] duplicate instructions 
and program data to detect soft errors which in turn create 
higher memory requirements and increase register pressure. 
Hardware and software co-design approaches [3], [5], and 
[14] use the parallel processing capacity of chip 
multiprocessors (CMPs) and redundant multi threading to 
detect and recover the problem. 

One of the more interesting of these approaches [14] is a 
chip level redundantly threaded multiprocessor with recovery 
(CRTR) scheme for transient fault detection and recovery. 
There are certain faults from which CRTR cannot recover. If a 
register value is written prior to committing an instruction, 
and if a fault corrupts that register after the committing of the 
instruction then CRTR fails to recover that problem. Since 
CRTR commits the leading thread before checking and the 
trailing thread after checking, and uses the trailing thread state 
for recovery, if any fault arises in the trailing thread itself, 
then the recovery may be wrong. 

Others [3], [15], and [18] have followed similar approaches. 
However, in all cases the system is vulnerable to soft error 
problems in key areas. Further, the complex use of threads 
presents a difficult programming model. 

III. METHODOLOGY OF THE RESEARCH 
Modern embedded systems design begins by constructing a 

single abstract model that captures the functionality demanded 
in the requirements specifications. In this research, Unified 
Modeling Language (UML) has been chosen as a modeling 
tool. This research assumes that such a model might be 
created without considering the effect of transient faults. 
Specifically, this research will examine the use of metrics in 
design space exploration that highlights where in the structure 
of the model, and at what point in the behaviour, prevention is 
needed against transient faults. Fig. 1 symbolizes the plan in 
short. 

The proposed metrics are outlined briefly in the following 
paragraphs. 

A. Structural Vulnerability Factor  
This metric is the composition of ‘Fan In’ and ‘Fan Out’; 

‘Functional distance’; and ‘Feedback or recursion of 
components’ metrics.  It measures the structural vulnerability 
of the UML model. The constituents of this metric are 
described as follows. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Methodology of the proposed research 
 
1) ‘Fan In’ and ‘Fan Out’: These metric measures the number 
of components connected to and from a particular component. 
‘Fan In’ represents the number of connections to that 
component and ‘Fan Out’ represents the number of 
connections from that component. The metric classifies the set 
of components affected by any transient fault arising within 
that particular component. The larger the number, the more 
critical the component is, and the greater the probability is of 
interruption by a transient fault. 
 
2) Functional distance: These metric measures the functional 
distance of a node from the starting node. Usually, if a 
transient fault arises within a component then its effect 
continues to all following connected components. A fault in 
the initial components will therefore tend to have a more 
devastating effect serious loss of system functionality or 
system failure proportionately increases with the increase of 
closeness of the nodes with the starting node. 
 
3) Feedback or recursion of components: Feedback or 
recursion within a system model sees the impact of a transient 
fault continue for a possibly significant duration. Further, the 
larger the number of iterations, the more serious the potential 
problem is. It is important therefore, to identify feedback or 
iteration within the system model. 

B. Bits’ Frequency in Object File 
UML does not presently offer a simulation capability and 

so does not allow such measurements to be made. For that 
reason, the UML model was mapped into C++ to gain an 
executable program. The generated C++ code from Rhapsody 
tool was further processed to have a clear representation of the 
whole model including all states and transitions between 
states. Since transient faults only alter a bit value from 1→0 or 
0→1, the object file of the C++ program was taken to inject a 
transient fault and for further tests. Binary Editor was used to 
open the object file where every state and transition was 
clearly monitored. Faults were injected at different states in 

Abstract Model in UML 

Vulnerable 
to Transient 

Faults? 

N 

Y

Apply 
Metrics 

i)Structural 
Vulnerability 

Factor 
ii) Bits’ 

Frequency in 
Object file 

Synthesize Model 

Requirement Specification for Embedded 
Systems 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

341

 
 

this object file. The frequency of faults at a particular state 
depends on the frequency of that state’s bits in the object file. 
The more the frequency of any state’s bits in the object file, 
the more susceptible the state is towards transient faults. This 
frequency is the ratio between the number of a state’s bits in 
the object file and the total number of bits in the object file. 

IV. EXPERIMENTAL ANALYSIS 
To test the validity of the metrics, the following statechart 

diagram (Fig. 2) was used. The statechart diagram shows an 
on-board missile evasion system. There are six states (Idle, 
FoeDetected, Evading, CMsDeployed, FiringWeapons, and 
TimingOut); four different types of triggers (evFoeDetected, 
evEvade, evFire, and tm (delay time)) that cause change of 
states from one to another; two guards; and two actions in this 
statechart diagram. ‘Idle’ state is the initial state and the final 
state as well. At the ‘Idle’ state, if ‘evFoedetected’ signal is 
detected then it is transitioning to the ‘FoeDetected’ state. In 
the next phase, depending on the signals ‘evEvade’ or 
‘evFire’, the transition is occurred to either ‘Evading’ state or 
‘FiringWeapons’ state. At the ‘FiringWeapons’ state the value 
of the attribute ‘wpnsToFire’ is assigned the number 2 and the 
recursion continues until the value becomes zero. There are 
some other transitions where there is only time elapsing. At 
the end, the ‘Idle’ state is achieved again. 

 

FoeDetected
CMsDeployed

Idle
tm(4000)

evFoeDetected

tm(4000)

evFoeDetected

TimingOut

tm(4000)tm(4000)

tm(3000)

Evading evEvade

tm(3000)

evEvade FiringWeapons
evFire/
wpnsToFire = 2;
evFire/
wpnsToFire = 2;

[wpnsToFire == 0]

tm(3000)/
wpnsToFire--;

[else] [wpnsToFire == 0]

tm(3000)/
wpnsToFire--;

[else]

 
Fig. 2 Statechart diagram of on-board missile evasion system 

Table I shows the characteristics of different states in the 
diagram based on different metrics. The description of the 
metrics is given in previous section. ‘Idle’ state is the initial 
and final state, and for testing purposes, it was not taken into 
consideration.  

As stated, the UML model was mapped into C++ to gain an 
executable program. The object file of the C++ program was 
taken to inject transient faults and for further tests. Binary 
Editor was used to open the object file where every state and 
transition was clearly monitored. Table II shows the maximum 
effects of injected faults at different states. Two types of 
effects (number of affected states and number of operations) 
are shown in the table. The table shows that due to the fault 
injected at ‘FoeDetected’ state, the maximum number of 
affected states is 5 and the maximum number of affected 

operations is 6. In both cases, these values are the maximum 
in their corresponding columns. 

 
TABLE I 

THE CHARACTERISTICS OF THE DIAGRAM BASED ON DIFFERENT METRICS  
States Fan 

In 
Fan 
Out 

Number 
of 

Iterations 
if 

Used 
Recursively 

Number 
of 

States 
(Next 
to It) 

Number 
of  

Operatio-ns 
(Next to It) 

Foe 
Detected 

1 2 - 5 6 

Evading 1 1 - 2 2 

CMs 
Deploye

d 

1 1 - 1 1 

Firing 
Weapon

s 

2 1 2 2 2 

Timing 
Out 

1 1 - 1 1 

 
Several tests were performed where syntactical errors were 

occurred due to random transitioning of bits. Other than those 
errors, the rest of the bit transitions introduced faults which 
affected incoming states and operations. Table II summarizes 
the maximum effects that were caused by fault injections. 

 
TABLE II 

THE EFFECT OF INJECTED FAULTS AT DIFFERENT STATES 
States where faults 

were injected 
Maximum 

Number of 
affected 
states 

Maximum 
Number of 
affected 
operations 

FoeDetected 5 6 

Evading 2 2 

CMsDeployed 1 1 

FiringWeapons 2 3 

TimingOut 1 1 

 
From the above tests, it can be observed that the structural 

vulnerability of a state in this model depends on the number of 
‘Fan In’, ‘Fan Out’, iterations (if it is used recursively), 
possible incoming states next to it, and possible incoming 
operations next to it. If in a state we define the number of ‘Fan 
In’ as Fi, the number of ‘Fan Out’ as Fo, the number of 
iterations (if it is used recursively) as Ir, the number of 
possible incoming states next to it as Ns, and the number of 
possible incoming operations next to it as No, then the 
Structural Vulnerability Factor (SVF) of individual states can 
be defined as (1). 
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The values of SVF for ‘Evading’, ‘CMsDeployed’, 
‘FiringWeapons’, and ‘TimingOut’ states were calculated 
according to this formula and plotted in Table III. 

In the next phase of the test, the frequency of a state’s bits 

( SF ) in the object file, which is the ratio between the number 
of a state’s bits in the object file and the total number of bits in 
the object file, was calculated. If this frequency for 

‘FoeDetected’ state is dFoeDetecteF then its definition can be 
shown as (2). 

fileobject   in the bits ofnumber  total
 state dFoeDetectefor 

 fileobject   in the bits ofnumber  

=dFoeDetecteF         (2) 

                    
27.0

485
131

==
 

And the values of ratio for ‘Evading’, ‘CMsDeployed’, 
‘FiringWeapons’, and ‘TimingOut’ states were calculated 
according to this formula and plotted in Table III. 

The Cumulative Vulnerability Factor (CVF) of a particular 

state SCVF is defined as (3). 
 

  ),( S
S

SS FSVFCVF ∑=                            (3)  

From (3): 
 

66.0)27.0,39.0( == ∑
dFoeDetecte

dFoeDetecteCVF  

 
Similarly the CVF for ‘Evading’, ‘CMsDeployed’, 
‘FiringWeapons’, and ‘TimingOut’ states were calculated 
according to this formula and plotted in Table III. 
 

TABLE III 
VALUES OF SVF, F AND CVF FOR DIFFERENT STATES 

States SVF F CVF 
FoeDetected 0.39 0.27 0.66 
Evading 0.15 0.17 0.32 
CMsDeployed 0.10 0.08 0.18 
FiringWeapons 0.23 0.40 0.63 
TimingOut 0.10 0.08 0.18 

After measuring CVF, user may define the criticality 
threshold to find the critical states. If for example the 
criticality threshold is 0.30 then it can be observed from Table 
III that there are three critical states and they are 
‘FoeDetected’, ‘FiringWeapons’, and ‘Evading’ states. 
‘FoeDetected’ is the most critical state and the criticality of 
‘FiringWeapons’ is close to ‘FoeDetected’ state followed by 
‘Evading’ state. 

V. CONCLUSION 
This paper proposes the use of metrics to assess the system 

design to flag where transient faults may have significant 
impact. These tools then allow the design to be changed to 
minimize that impact, and they also flag where particular 
design techniques need to be applied in later stages of design. 
Hence whatever prevention is nominated will flow through to 
the remaining stages. Eventually this will end as some form of 
hardware or software, or both and thus will prevent transient 
faults in real-time systems design via a small shift in the 
design methodology. 
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