
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

339

Abstract—This paper proposes the use of metrics in design space

exploration that highlight where in the structure of the model and at
what point in the behaviour, prevention is needed against transient
faults. Previous approaches to tackle transient faults focused on
recovery after detection. Almost no research has been directed
towards preventive measures. But in real-time systems, hard
deadlines are performance requirements that absolutely must be met
and a missed deadline constitutes an erroneous action and a possible
system failure. This paper proposes the use of metrics to assess the
system design to flag where transient faults may have significant
impact. These tools then allow the design to be changed to minimize
that impact, and they also flag where particular design techniques –
such as coding of communications or memories – need to be applied
in later stages of design.

Keywords—Criticality, Metrics, Real-Time Systems, and
Transient Faults.

I. INTRODUCTION
transient fault is a temporary unintended change of state
within a logic circuit that lasts for a few state transitions

only. A transient fault, also known as soft error or Single
Event Upset (SEU), is a rare phenomenon and usually not
catastrophic. These types of faults could be induced by alpha
particles from the naturally occurring radioactive impurities,
high energy neutrons induced by cosmic rays, and low-energy
cosmic neutron interactions with 10B found in boro-phospho-
silicat glass (BPSG) [2]. Though transient faults do not affect
the internal structure of the semiconductor, they nevertheless
lead to malfunctions and even failures of the circuit.

Transient faults are a great concern for designing high
availability systems or systems used in electronic-hostile
environments such as outer space. These errors are also severe
in those systems where reliability is a great concern [8, 9, and
11]. Space programs, where a system cannot afford
malfunction while in flight, are vulnerable to transient faults.
Banking transactions, where a momentary failure may cause a
huge difference in balance, are also threatened by transient
faults. For example, if a transient fault causes 1 → 0 bit flips
in the most significant bit of the register storing the amount of
money deposited in a bank account then the effect might be an
unexpected change in balance. Mission critical embedded
applications, and even the execution of simple programs,
where a corrupted intermediate value can corrupt all

Muhammad Sheikh Sadi is with Curtin University of Technology,

Australia (e-mail: muhammad.sadi@postgrad.curtin.edu.au).

subsequent computations, are vulnerable to transient faults
[4], [12].

Traditional approaches to prevent transient faults focus on
recovery after detection. Almost no research has been done on
preventive measures. Avionic systems, or any real time
applications, cannot even tolerate recovery delay when there
is a fault. In real-time systems, hard deadlines are performance
requirements that absolutely must be met. A missed deadline
constitutes an erroneous action and a possible system failure.
In these systems, late data is bad data. For example, it would
be awkward to have to reset the flight control computer
because of a fault while the plane is in the air. Measures are
needed to maintain functionality at all times. Past research has
mostly considered using redundant hardware or software, or
both, but this does not guarantee that real-time criteria can be
met.

The aim of this paper is to examine a preventive approach
as a solution rather than recovery after detection. Focusing on
a preventive approach means that it is first necessary to
consider what changes could affect the functionality desired
[13], and then relate that to a demand for more robustness in
the systems model. That requires some detailed assessment of
both the functions to be provided and the structure and
behaviour of the model. Whatever prevention is nominated
will flow through to the remaining stages and eventually end
as some form of hardware or software, or both.

Clearly, testing conclusively across all structure-behaviour
coordinates is a near-impossible task. Simplification is
needed. This paper proposes the usage of metrics to reduce the
size of the test space. These metrics are simply heuristics that
are used to scan the system model and flag at what structure-
behaviour coordinate a problem can arise. The aim is not to
scan all points but look for key indicators that highlight
particular conditions that need to be addressed. Thus the
metric output will be some priority or it will be a measure of
how long the impact of a transient fault may last, and so on.

II. RELATED WORK
Researchers have evolved several measures to prevent soft

errors. Hardware solutions for soft error mitigation mainly
emphasize circuit level solutions, logic level solutions and
architectural solutions. At the circuit level, the solution is
mainly to increase the critical charge of a circuit node [10].
Logic level solutions [1], [7] mainly propose detection and
recovery in combinational circuits by using redundant or self-
checking circuits. For example, to validate the output of

Muhammad Sheikh Sadi, D. G. Myers, and Cesar Ortega Sanchez

Flagging Critical Components to Prevent
Transient Faults in Real-Time Systems

A

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

340

combinational circuits, these techniques use output parity
generation. Validation of flip-flops is done by providing
redundant latches or by using scan flip-flops to hold redundant
copies of flip-flop data. Architectural solutions include
dynamic implementation verification architecture (DIVA)
[19], and block-level duplication used in IBM Z-series
machines [6].

Software based approaches include redundant programs to
detect and/or recover the problem [18], duplicating
instructions [16], task duplication [12], and by dual use of
super scalar data paths [17]. EDDI [16] duplicate instructions
and program data to detect soft errors which in turn create
higher memory requirements and increase register pressure.
Hardware and software co-design approaches [3], [5], and
[14] use the parallel processing capacity of chip
multiprocessors (CMPs) and redundant multi threading to
detect and recover the problem.

One of the more interesting of these approaches [14] is a
chip level redundantly threaded multiprocessor with recovery
(CRTR) scheme for transient fault detection and recovery.
There are certain faults from which CRTR cannot recover. If a
register value is written prior to committing an instruction,
and if a fault corrupts that register after the committing of the
instruction then CRTR fails to recover that problem. Since
CRTR commits the leading thread before checking and the
trailing thread after checking, and uses the trailing thread state
for recovery, if any fault arises in the trailing thread itself,
then the recovery may be wrong.

Others [3], [15], and [18] have followed similar approaches.
However, in all cases the system is vulnerable to soft error
problems in key areas. Further, the complex use of threads
presents a difficult programming model.

III. METHODOLOGY OF THE RESEARCH
Modern embedded systems design begins by constructing a

single abstract model that captures the functionality demanded
in the requirements specifications. In this research, Unified
Modeling Language (UML) has been chosen as a modeling
tool. This research assumes that such a model might be
created without considering the effect of transient faults.
Specifically, this research will examine the use of metrics in
design space exploration that highlights where in the structure
of the model, and at what point in the behaviour, prevention is
needed against transient faults. Fig. 1 symbolizes the plan in
short.

The proposed metrics are outlined briefly in the following
paragraphs.

A. Structural Vulnerability Factor
This metric is the composition of ‘Fan In’ and ‘Fan Out’;

‘Functional distance’; and ‘Feedback or recursion of
components’ metrics. It measures the structural vulnerability
of the UML model. The constituents of this metric are
described as follows.

Fig. 1 Methodology of the proposed research

1) ‘Fan In’ and ‘Fan Out’: These metric measures the number
of components connected to and from a particular component.
‘Fan In’ represents the number of connections to that
component and ‘Fan Out’ represents the number of
connections from that component. The metric classifies the set
of components affected by any transient fault arising within
that particular component. The larger the number, the more
critical the component is, and the greater the probability is of
interruption by a transient fault.

2) Functional distance: These metric measures the functional
distance of a node from the starting node. Usually, if a
transient fault arises within a component then its effect
continues to all following connected components. A fault in
the initial components will therefore tend to have a more
devastating effect serious loss of system functionality or
system failure proportionately increases with the increase of
closeness of the nodes with the starting node.

3) Feedback or recursion of components: Feedback or
recursion within a system model sees the impact of a transient
fault continue for a possibly significant duration. Further, the
larger the number of iterations, the more serious the potential
problem is. It is important therefore, to identify feedback or
iteration within the system model.

B. Bits’ Frequency in Object File
UML does not presently offer a simulation capability and

so does not allow such measurements to be made. For that
reason, the UML model was mapped into C++ to gain an
executable program. The generated C++ code from Rhapsody
tool was further processed to have a clear representation of the
whole model including all states and transitions between
states. Since transient faults only alter a bit value from 1→0 or
0→1, the object file of the C++ program was taken to inject a
transient fault and for further tests. Binary Editor was used to
open the object file where every state and transition was
clearly monitored. Faults were injected at different states in

Abstract Model in UML

Vulnerable
to Transient

Faults?

N

Y

Apply
Metrics

i)Structural
Vulnerability

Factor
ii) Bits’

Frequency in
Object file

Synthesize Model

Requirement Specification for Embedded
Systems

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

341

this object file. The frequency of faults at a particular state
depends on the frequency of that state’s bits in the object file.
The more the frequency of any state’s bits in the object file,
the more susceptible the state is towards transient faults. This
frequency is the ratio between the number of a state’s bits in
the object file and the total number of bits in the object file.

IV. EXPERIMENTAL ANALYSIS
To test the validity of the metrics, the following statechart

diagram (Fig. 2) was used. The statechart diagram shows an
on-board missile evasion system. There are six states (Idle,
FoeDetected, Evading, CMsDeployed, FiringWeapons, and
TimingOut); four different types of triggers (evFoeDetected,
evEvade, evFire, and tm (delay time)) that cause change of
states from one to another; two guards; and two actions in this
statechart diagram. ‘Idle’ state is the initial state and the final
state as well. At the ‘Idle’ state, if ‘evFoedetected’ signal is
detected then it is transitioning to the ‘FoeDetected’ state. In
the next phase, depending on the signals ‘evEvade’ or
‘evFire’, the transition is occurred to either ‘Evading’ state or
‘FiringWeapons’ state. At the ‘FiringWeapons’ state the value
of the attribute ‘wpnsToFire’ is assigned the number 2 and the
recursion continues until the value becomes zero. There are
some other transitions where there is only time elapsing. At
the end, the ‘Idle’ state is achieved again.

FoeDetected
CMsDeployed

Idle
tm(4000)

evFoeDetected

tm(4000)

evFoeDetected

TimingOut

tm(4000)tm(4000)

tm(3000)

Evading evEvade

tm(3000)

evEvade FiringWeapons
evFire/
wpnsToFire = 2;
evFire/
wpnsToFire = 2;

[wpnsToFire == 0]

tm(3000)/
wpnsToFire--;

[else] [wpnsToFire == 0]

tm(3000)/
wpnsToFire--;

[else]

Fig. 2 Statechart diagram of on-board missile evasion system

Table I shows the characteristics of different states in the
diagram based on different metrics. The description of the
metrics is given in previous section. ‘Idle’ state is the initial
and final state, and for testing purposes, it was not taken into
consideration.

As stated, the UML model was mapped into C++ to gain an
executable program. The object file of the C++ program was
taken to inject transient faults and for further tests. Binary
Editor was used to open the object file where every state and
transition was clearly monitored. Table II shows the maximum
effects of injected faults at different states. Two types of
effects (number of affected states and number of operations)
are shown in the table. The table shows that due to the fault
injected at ‘FoeDetected’ state, the maximum number of
affected states is 5 and the maximum number of affected

operations is 6. In both cases, these values are the maximum
in their corresponding columns.

TABLE I

THE CHARACTERISTICS OF THE DIAGRAM BASED ON DIFFERENT METRICS
States Fan

In
Fan
Out

Number
of

Iterations
if

Used
Recursively

Number
of

States
(Next
to It)

Number
of

Operatio-ns
(Next to It)

Foe
Detected

1 2 - 5 6

Evading 1 1 - 2 2

CMs
Deploye

d

1 1 - 1 1

Firing
Weapon

s

2 1 2 2 2

Timing
Out

1 1 - 1 1

Several tests were performed where syntactical errors were

occurred due to random transitioning of bits. Other than those
errors, the rest of the bit transitions introduced faults which
affected incoming states and operations. Table II summarizes
the maximum effects that were caused by fault injections.

TABLE II

THE EFFECT OF INJECTED FAULTS AT DIFFERENT STATES
States where faults

were injected
Maximum

Number of
affected
states

Maximum
Number of
affected
operations

FoeDetected 5 6

Evading 2 2

CMsDeployed 1 1

FiringWeapons 2 3

TimingOut 1 1

From the above tests, it can be observed that the structural

vulnerability of a state in this model depends on the number of
‘Fan In’, ‘Fan Out’, iterations (if it is used recursively),
possible incoming states next to it, and possible incoming
operations next to it. If in a state we define the number of ‘Fan
In’ as Fi, the number of ‘Fan Out’ as Fo, the number of
iterations (if it is used recursively) as Ir, the number of
possible incoming states next to it as Ns, and the number of
possible incoming operations next to it as No, then the
Structural Vulnerability Factor (SVF) of individual states can
be defined as (1).

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

342

1
)(

),,,,(

∑
=

++++

=
∑

n

j
j

oNj
sNj

rIj
oFj

iF

NNIFF

SVF S
osroi

S (1)

Where n is the number of states.

From (1):

)39)(

 14),,,,(where(

, 39.0
39
14

1

=++++

=

==

∑

∑

=

n

j

j
o

j
s

j
r

j
o

j
i

dFoeDetecte
osroi

dFoeDetecte

NNIFFand

NNIFF

SVF

The values of SVF for ‘Evading’, ‘CMsDeployed’,
‘FiringWeapons’, and ‘TimingOut’ states were calculated
according to this formula and plotted in Table III.

In the next phase of the test, the frequency of a state’s bits

(SF) in the object file, which is the ratio between the number
of a state’s bits in the object file and the total number of bits in
the object file, was calculated. If this frequency for

‘FoeDetected’ state is dFoeDetecteF then its definition can be
shown as (2).

fileobject in the bits ofnumber total
 state dFoeDetectefor

 fileobject in the bits ofnumber

=dFoeDetecteF (2)

27.0

485
131

==

And the values of ratio for ‘Evading’, ‘CMsDeployed’,
‘FiringWeapons’, and ‘TimingOut’ states were calculated
according to this formula and plotted in Table III.

The Cumulative Vulnerability Factor (CVF) of a particular

state SCVF is defined as (3).

),(S
S

SS FSVFCVF ∑= (3)

From (3):

66.0)27.0,39.0(== ∑
dFoeDetecte

dFoeDetecteCVF

Similarly the CVF for ‘Evading’, ‘CMsDeployed’,
‘FiringWeapons’, and ‘TimingOut’ states were calculated
according to this formula and plotted in Table III.

TABLE III
VALUES OF SVF, F AND CVF FOR DIFFERENT STATES

States SVF F CVF
FoeDetected 0.39 0.27 0.66
Evading 0.15 0.17 0.32
CMsDeployed 0.10 0.08 0.18
FiringWeapons 0.23 0.40 0.63
TimingOut 0.10 0.08 0.18

After measuring CVF, user may define the criticality
threshold to find the critical states. If for example the
criticality threshold is 0.30 then it can be observed from Table
III that there are three critical states and they are
‘FoeDetected’, ‘FiringWeapons’, and ‘Evading’ states.
‘FoeDetected’ is the most critical state and the criticality of
‘FiringWeapons’ is close to ‘FoeDetected’ state followed by
‘Evading’ state.

V. CONCLUSION
This paper proposes the use of metrics to assess the system

design to flag where transient faults may have significant
impact. These tools then allow the design to be changed to
minimize that impact, and they also flag where particular
design techniques need to be applied in later stages of design.
Hence whatever prevention is nominated will flow through to
the remaining stages. Eventually this will end as some form of
hardware or software, or both and thus will prevent transient
faults in real-time systems design via a small shift in the
design methodology.

REFERENCES
[1] M. Zhang, S. Mitra, T. M. Mak, N. Seifert, N. J. Wang, Q. Shi, K. S.

Kim, N. R. Shanbhag, and S. J. Patel, "Sequential Element Design With
Built-In Soft Error Resilience," Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 14, pp. 1368-1378, 2006.

[2] M. Zhang, "Analysis and design of soft-error tolerant circuits," Ph.D.
Thesis, University of Illinois at Urbana-Champaign, United States --
Illinois, 2006.

[3] Z. Xinping and Q. Wei, "Prototyping a fault-tolerant multiprocessor SoC
with run-time fault recovery," presented at 43rd ACM/IEEE Design
Automation Conference , pp. 53 - 56, 2006.

[4] V. Narayanan and Y. Xie, "Reliability concerns in embedded system
designs," Computer, vol. 39, pp. 118-120, 2006.

[5] M. W. Rashid, E. J. Tan, M. C. Huang, and D. H. Albonesi, "Power-
efficient error tolerance in chip multiprocessors," Micro, IEEE, vol. 25,
pp. 60-70, 2005.

[6] Meaney, S. B. Swaney, P. N. Sanda, and L. Spainhower, "IBM z990 soft
error detection and recovery," Device and Materials Reliability, IEEE
Transactions on, vol. 5, pp. 419-427, 2005.

[7] S. Krishnamohan, "Efficient techniques for modeling and mitigation of
soft errors in nanometer-scale static CMOS logic circuits," Ph.D. Thesis,
Michigan State University, United States -- Michigan, 2005.

[8] R. K. Iyer, N. M. Nakka, Z. T. Kalbarczyk, and S. Mitra, "Recent
advances and new avenues in hardware-level reliability support," Micro,
IEEE, vol. 25, pp. 18-29, 2005.

[9] B. T. Gold, J. Kim, J. C. Smolens, E. S. Chung, V. Liaskovitis, E.
Nurvitadhi, B. Falsafi, J. C. Hoe, and A. G. Nowatzyk, "TRUSS: a
reliable, scalable server architecture," Micro, IEEE, vol. 25, pp. 51-59,
2005.

[10] J. M. Cazeaux, D. Rossi, M. Omana, C. Metra, and A. Chatterjee, "On
transistor level gate sizing for increased robustness to transient faults,"
presented at 11th IEEE International On-Line Testing Symposium, pp.
23 - 28, 2005.

[11] S. Borkar, "Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation," Micro, IEEE, vol.
25, pp. 10-16, 2005.

[12] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin,
"Reliability-aware co-synthesis for embedded systems," presented at
15th IEEE International Conference on Application-Specific Systems,
Architectures and Processors, pp. 41 - 50, 2004.

[13] M. Hiller, A. Jhumka, and S. Neeraj, "EPIC: profiling the propagation
and effect of data errors in software," Transactions on Computers, vol.
53, pp. 512-530, 2004.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

343

[14] A. G. Mohamed, S. Chad, T. N. Vijaykumar, and P. Irith, "Transient-

fault recovery for chip multiprocessors," IEEE Micro, vol. 23, pp. 76,
2003.

[15] T. N. Vijaykumar, I. Pomeranz, and K. Cheng, "Transient-fault recovery
using simultaneous multithreading," presented at 29th Annual
International Symposium on Computer Architecture, pp. 87-98, 2002.

[16] N. Oh, P. P. Shirvani, and E. J. McCluskey, "Error detection by
duplicated instructions in super-scalar processors," Reliability, IEEE
Transactions on, vol. 51, pp. 63-75, 2002.

[17] J. Ray, J. C. Hoe, and B. Falsafi, "Dual use of superscalar datapath for
transient-fault detection and recovery," presented at 34th ACM/IEEE
International Symposium on Microarchitecture, pp. 214 - 224, 2001.

[18] S. K. Reinhardt and S. S. Mukherjee, "Transient fault detection via
simultaneous multithreading," presented at 27th International
Symposium on Computer Architecture, pp. 25- 36, 2000.

[19] T. M. Austin, "DIVA: a reliable substrate for deep submicron
microarchitecture design," presented at 32nd Annual International
Symposium on Microarchitecture, pp. 196 - 207, 1999.

