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Abstract—In this paper, we prove a strong convergence result 

using a recently introduced iterative process with contractive-like 
operators. This improves andgeneralizes corresponding results in the 
literature in two ways: iterativeprocess is faster, operators are more 
general. At the end, we indicatethat the results can also be proved 
with the iterative process witherror terms. 
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I. INTRODUCTION 

ET C  be a nonempty convex subset of a normed space E
and CCT →:  a mapping. Throughout this paper, N

denotes the set of all positive integers, I the identity mapping 
on C and )(TF the set of all fixed points of .T  

The Picard or successive iterative process [12] is defined by 
the sequence }{ nu  : 
 

⎩
⎨
⎧

∈=
∈=

+ .N,
,

1

1

nTuu
Cuu

nn

              (1) 

 
The Mann iterative process [11] is defined by the sequence
}{ nv  : 
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where }{ nα is in ).1,0(  

The sequence }{ nz defined by 
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where }{ nα and }{ nβ  are in ),1,0(  is known as the Ishikawa 
iterative process [5]. 

Ishikawa process can be seen as a "Double Mann iterative 
process" or "a hybrid of Mann process with itself". Recently, 
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Khan [8] introduced a new process for one mapping by the 
sequence }{ nx  :  
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where }{ nα is in ).1,0(  This process is independent of all 

Picard, Mann and Ishikawa iterative processes since }{ nα and 

}{ nβ  are in ).1,0(  Khan [8] has shown both analytically and 
numerically that this process converges faster than all Picard, 
Mann and Ishikawa iterative processes for contractions. 

On the other hand, Berinde [1] introduced a new class of 
quasi-contractive type operators on a normed space E
satisfying  
 

xTxLyxTyTx −+−≤− δ       (5) 
 
for any 10,, <<∈ δEyx  and .0≥L  

To appreciate this class of operators, we have to go through 
some definitions in a metric space ),( dX  . 
A mapping XXT →: is called an a -contraction if  
 

,, allfor  ),(),( XyxyxadTyTxd ∈≤  
 
where .10 << a  
The map T is called Kannan mapping [7] if there exists

),0( 2
1∈b such that  
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A similar definition is due to Chatterjea [2]: there exists

),0( 2
1∈c such that  

 
., allfor  )],(),([),( XyxTxydTyxdcTyTxd ∈+≤  

 
Combining the above three definitions, Zamfirescu [14] 

proved the following important result. 
Theorem 1. Let ),( dX be a complete metric space and

XXT →: a mapping for which there exist real numbers

ba,  and c  satisfying ,10 << a ),,0( 2
1∈b ),,0( 2

1∈c
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such that for each pair ,, Xyx ∈ at least one of the following 
conditions holds: 

 

z1 ),(),( yxadTyTxd ≤ for all Xyx ∈,  

z2 )],(),([),( TyydTxxdbTyTxd +≤  for all Xyx ∈,  

)],(),([),()( 3 TxydTyxdcTyTxdz +≤ for all ., Xyx ∈  
 
Then T has a unique fixed point p and the Picard iterative 

sequence }{ nx  defined by N,1 ∈=+ nTxx nn  converges to 

p for any arbitrary but fixed .1 Xx ∈  

An operator T satisfying the contractive conditions )( 1z , 

)( 2z and )( 3z in the above theorem is called Zamfirescu 
operator. The class of Zamfirescu operators is one of the most 
studied classes of quasi-contractive type operators. In this 
class, Mann and Ishikawa iterative processes are known to 
converge to a unique fixed point of .T  

This class of mappings is larger than not only contractions 
but also Kannan mappings and Zamfirescu operators. Berinde 
[1] used the Ishikawa iterative process (3) to approximate 
fixed points of this class of operators in a normed space. 
Actually, the following was his main theorem: 

Theorem 2. [1] LetC  be a nonempty closed convex subset 
of a normed space .E  Let CCT →:  be an operator 

satisfying (5). Let }{ nz be defined by the iterative process (3). 

If )(TF φ≠  and ∞=∑∞
= nnn βα1 then }{ nx converges 

strongly to a fixed point of .T  
This kind of operators was further studied by Khan [9], 

[10], for example. 
Imoru and Olatinwo [4] gave a more general definition: An 

operatorT  is called a contractive-like operator if there exists a 
constant )1,0[∈δ and a strictly increasing and continuous 
function ),,0[),0[: ∞→∞φ  with ,0)0( =φ such that for 
each ,, Eyx ∈  

 
( )xTxyxTyTx −+−≤− φδ        (6) 

 
Our purpose in this paper is to prove a convergence result 

for approximating fixed points of the class of contractive-like 
operators defined in (6) using the iterative process (4) in the 
setting of normed spaces. In this way, our results improve and 
generalize corresponding results of [1] in two ways: iterative 
process used is simpler and faster, and the class of mappings is 
more general. 

II. APPROXIMATING FIXED POINTS IN NORMED SPACES  
Here is our main theorem which deals with the iterative 

process (4) for the mappings defined in (6) in normed spaces. 

Theorem 3.Let C  be a nonempty closed convex subset of 
a normed space .E  Let CCT →:  be an operator 

satisfying (6) and .)( φ≠TF Let }{ nx  be defined by the 

iterative process (4).Let }{ nα be such that 10 << nα  for all 

N∈n  and .1 ∞=∑∞
= nn α  Then }{ nx  converges strongly to 

a point of ).(TF  
Proof.Let ).(TFw∈ Then  
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for all N∈n . 
Since )1,0(,10 ∈<< nαδ and ,1 ∞=∑∞

= nn α  we get  
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Hence .0lim =−→∞ wxnn  Consequently →nx w
).(TF∈  This completes the proof. 

Liu [6] introduced iterative processes with error terms. 
Later on, Xu [13] improved these processes by giving more 
satisfactory error terms. Both processes constitute 
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generalizations of Mann and Ishikawa iterative processes. Our 
iterative process with error terms in the sense of Xu looks like:  
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where }{ nu  is a bounded sequence in .C  Numerous papers 
have been produced on Ishikawa and Mann iterative processes 
with errors and follow a similar computational techniques as 
those without errors, see, for example, [3]. To avoid repetition, 
we omit the proof here. 
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