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 
Abstract—In this paper, we investigated the athermal pressure 

behavior of the structural and elastic properties of scheelite BaWO4 
phase up to 7 GPa using the ab initio pseudo-potential method. The 
calculated lattice parameters pressure relation have been compared 
with the experimental values and found to be in good agreement with 
these results. Moreover, we present for the first time the investigation 
of the elastic properties of this compound using the density functional 
perturbation theory (DFPT). It is shown that this phase is 
mechanically stable up to 7 GPa after analyzing the calculated elastic 
constants. Other relevant quantities such as bulk modulus, pressure 
derivative of bulk modulus, shear modulus; Young’s modulus, 
Poisson’s ratio, anisotropy factors, Debye temperature and sound 
velocity have been calculated. The obtained results, which are 
reported for the first time to the best of the author’s knowledge, can 
facilitate assessment of possible applications of the title material. 

 
Keywords—Pseudo-potential method, pressure, structural and 

elastic properties, scheelite ܹܽܤ ସܱ phase. 

I.INTRODUCTION 

OTH CaWO4 and PbWO4 are promising materials for the 
next generation of cryogenic phonon-scintillation 

detectors [1]-[3]. This has motivated a renewed interest on the 
fundamental physical properties of the AWO4 tungstates (with 
A = Ca, Sr, Ba, Pb, Eu) which under normal conditions 
crystallize in the tetragonal scheelite structure [4].  

The scheelite tungstates are in fact technologically 
important materials used during the last years as solid-state 
scintillators [5]-[7] and in other optoelectronic devices [8]-
[10]. In the last few years, the barium tungstate	ܹܽܤ ସܱ, 
crystal with a Scheelite structure, has attracted interests of 
several research groups due to his applications as laser host 
material, scintillator in high-energy physics detectors and 
oxide ion conductor [11]. Among the tungstate materials, 
ܹܽܤ ସܱ is a potential material to be a universal Raman-active 
crystal [12]-[14]. Structurally, under compression, ܹܽܤ ସܱ 
exists in several forms, such as scheelite, wolframite, 
fergusonite and ݋ܯ݃ܪ ସܱ [15]-[17]. At ambient conditions up 
to 7GPa, it’s known to exist in the scheelite structure, Fig. 1. 
The scheelite crystal structure is characterized by the 
tetragonal space group 4ܫଵ/ܽ	listed as No. 88 in the 
International Tables of Crystallography, with a number of 
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formula units per cell Z=4 [4]. In this structure, the primitive 
unit cell has two ABX4 units. The scheelite crystal structure 
can be described as highly ionic with ܣାଶcations and 
tetrahedral ܺܤସିଶ anions. Each B site is surrounded by four 
equivalents X sites in tetrahedral symmetry and the tetrahedral 
 4ିଶ anions have short B-X bond lengths, which are quiteܺܤ
rigid even under compression [18]. 

The goal of the present study is to examine 
comprehensively the effect of pressure on the structural and 
elastic properties of the scheelite crystal ܹܽܤ ସܱ up to 7GPa 
in order to help understand and control the material properties 
under stress. The rest of the paper has been divided in three 
parts. In Section II, we briefly describe the computational 
techniques used in this study. The most relevant results 
obtained for the structural and elastic properties of the ܹܽܤ ସܱ 
crystal are presented and discussed in Section III. Finally, in 
Section IV we summarized the main conclusions of our work.  
 

 

Fig. 1 1 ൈ 1 ൈ 1 Unit cell of ܹܽܤ ସܱ tetragonal structure (scheelite) 
at ambient conditions). The W atoms are tetrahedrally coordinated to 

oxygen 

II. COMPUTATIONAL METHOD 
Theoretical calculations were performed by employing 

pseudo-potential plane–wave (PP-PW) method as 
implemented in the CASTEP (Cambridge Serial Total Energy 
Package) code [19]. Interactions of valence electrons with ion 
cores were represented by the Vanderbilt-type ultra-soft 
pseudo-potential [20]. The exchange-correlation potential was 
calculated by the generalized gradient approximation (GGA) 
based on Perdew Wang (PW91) [21]. The PW91 is widely 
used in DFT. Moreover, several density functions, such as 
PBE, RPBE and LDA, have been tested in the calculations of 
electronic structures and optical properties for the PbWO4 and 
CaMoO4 crystal. The calculated results using the PW91 are 
more close to the experimental results. The structure of 
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ܹܽܤ ସܱ is similar to PbWO4 and CaMoO4 crystal [12]. So 
they must be the similar properties and the PW91 is selected in 
this paper. In addition, there are many successful calculations 
using PW91 [22], [23]. 

To ensure highly converged and precise results, the 
integration over the Brillouin zone was done over a 6 ൈ 6 ൈ
4	Monkhorst–Pack grid [24]; the kinetic energy cutoff was set 
to 700 eV. The equilibrium lattice constant and positional 
parameters are determined from the global minimum energy. 
The structural parameters were determined using Broyden–
Fletcher–Goldfarb–Shanno (BFGS) minimization technique 
[25]. The self-consistent calculations are considered to be 
converged when the total energy of the system is stable within 
5 ൈ	10ି଻	ܸ݁/ܽ݉݋ݐ.  

III. RESULTS AND DISCUSSION 

A. Equilibrium Structural and Elastic Properties 

In this work, the initial crystal structure has been built based 
on the experimental crystallographic data of scheelite phase 
[26]. To optimize the geometry structure, the ions were 
relaxed until the Hellman–Feynman forces were below 
0.01	ܸ݁	Åିଵ and the cell parameters were relaxed until total 
stresses were below 0.02	ܽܲܩ. The calculated equilibrium 
lattice parameters are shown in Table I along with the 
available experimental and theoretical values for comparison. 
Our obtained results are in good agreement with the 
corresponding measured one. The relative differences between 
the calculated and experimental values of the lattice 
parameters d(%)= (calculated value – measured value)/ 
(measured value) are smaller than ∓1.4%. This good 
agreement serves as a proof of reliability and accuracy of the 
used theoretical method.  

 
TABLE I 

CALCULATED LATTICE PARAMETERS	ሺܽ଴, ܿ଴	, ݅݊	Åሻ , UNIT CELL VOLUME 

ሺܸ, ݅݊	Åଷሻ, BULK MODULUS ሺܤ଴,  ሻ BY MEANS OF VRHܽܲܩ	݊݅

APPROXIMATION AND THE FIRST PRESSURE DERIVATIVE OF THE BULK 

MODULUS ܤ଴
ᇱ  OF ܹܽܤ ସܱ SCHEELITE PHASE STRUCTURE, AT ZERO PRESSURE, 

COMPARED WITH PREVIOUS STUDIES 

This work Exp. [15] Exp. [16] Exp. [17] Exp.[ 26] 

5.69 5.63 5.61 5.61 5.61 

12.84 12.75 12.8 12.72 12.71 

415.19 404.13 402.84 400.32 400.01 

56.28 57.00 52.00 47.00  

4.76 3.50 5.00 4.00  

 

The elastic parameters determine the response of the crystal 
to external forces, as characterized by elastic stiffness 
coefficients ܥ௜௝ , bulk modulus ܤ, shear modulus ܩ, Young’s 
modulus ܧ and Poisson’s ratio ν, and obviously play an 
important part in determining the strength of the materials. 
The values of elastic parameters provide valuable information 
about the bonding characteristic between adjacent atomic 
planes and the anisotropic character of the bonding and 
structural stability [27], [28]. The linear elastic constants form 
a 6×6 symmetric matrix, having 27 different components. Any 
symmetry present in the structure may make some of these 
components equal and others may be fixed at zero. Thus, a 

tetragonal crystal has seven different symmetry elements ( 
ܿଵଵ, ܿଷଷ, ܿସସ, ܿ଺଺, ܿଵଶ, ܿଵଷ	ܽ݊݀	ܿଵ଺). The complete sets of zero-
pressure single crystal elastic constants were calculated by 
using strain-stress method [29]. Table II shows the calculated 
full set elastic constants of ܹܽܤ ସܱ. We are not aware of any 
experimental data. We consider the present elastic constants as 
a prediction study for this crystal. The elastic stability is a 
necessary condition for a stable crystal. A tetragonal crystal 
has to obey the following restrictions of its elastic constants 
[30]: 

 
ଵଵܥ ൐ 0, ଷଷܥ ൐ 0, ସସܥ ൐ 0, ଺଺ܥ ൐ 0, ଵଵܥ െ ଵଶܥ ൐ 0, ଵଵܥ ൅ ଷଷܥ െ

ଵଷܥ2 ൐ 0, 2ሺ	ܥଵଵ ൅ ଵଶሻܥ ൅ ଷଷܥ ൅ ଵଷܥ4 ൐ 0   (1) 
 

In terms of the above conditions, the calculated elastic 
constants (Table II) indicate that BaWO4 scheelite structure is 
mechanically stable at zero pressure.  

The elastic constants ܥଵଵ and ܥଷଷ determine the resistance 
to linear compression in the (a, b) and c directions, 
respectively. The calculated ܥଷଷ for 4ܱܹܽܤ is lower than ܥଵଵ. 
Thus, the c axis is more compressible than a and b axis. The 
 ସସ measures the shear elastic modulus along the [010]ܥ
direction on the (001) plane and the ܥ଺଺ represents the shear 
elastic modulus along the [100] direction on the (010) plane 
[31]. The calculated	ܥସସ	and ܥ଺଺ are 26.87 and 32.86 
respectively. These small values mean a low resistance to the 
monoclinic shear distortion.  

 
TABLE II 

ELASTIC CONSTANTS	ܥ௜௝ሾIN	GPAሿ OF ܹܽܤ ସܱ TETRAGONAL STRUCTURE AT 

ZERO PRESSURE 

C11 C33 C44 C66  C12  C13  C16

89,66  78,91  26,87  32,86  46,4  39,45  9,96 

 

Like the elastic constant tensor, the macroscopic elastic 
parameters, bulk modulus	ܤ and shear modulus	ܩ	, contain 
information regarding the hardness of a material with respect 
to various types of deformation. The bulk modulus is much 
more facile to determine experimentally (by using Birch-
Murnaghan equation [32]) than the elastic constant tensor. 
Alternatively, the bulk and shear moduli are also related to the 
elements of the elastic constant via the Voigt-Reus-Hill 
approach [33]-[35]. Table I provides the calculated Bulk 
modulus ܤ଴ at zero pressure along with available experimental 
data. Our results are in a good agreement with values given by 
experience. The Young’s modulus	ܧ, which measures the 
stress strain ratio in the case of tensile forces and the Poisson’s 
ratio ߥ, which is defined as the negative value of lateral (or 
transverse) strain to the longitudinal strain under uniaxial 
stress and no volume change[36], are given by [31]. 

  
ܧ ൌ

ଽ஻బீ

ଷ஻బାீ
                                    (2) 

 

ߥ ൌ ଷ஻బିଶீ

ଶሺଷ஻బାீሻ
                                       (3)                   

 

The obtained values of the above-mentioned macroscopic 
elastic parameters are listed in Table III.  
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The ratio of bulk modulus to shear modulus,	ܤ଴ ⁄	ܩ , is 
proposed as a criterion to distinguish between ductile and 
brittle characters of a solid. According to the empirical 
formula of Pugh [37], a material is brittle (ductile) if the 
଴ܤ ⁄	ܩ ratio is less (greater) than 1.75. The obtained value of the 
଴ܤ ⁄	ܩ ratio in the present work is equal to 2.24, which predicts 
ܹܽܤ ସܱ to be a ductile material. 

The value of Poison’s ratio is indicative of the degree of 
directionality of the covalent bonds. This value is small 
ߥ) ൌ 0.1ሻ for covalent materials, whereas for the ionic 
materials a typical value of ߥ is 0.25 [31]. As shown in Table 
III, the calculated Poisson’s ratio is about 0.30 forܹܽܤ ସܱ. 
Therefore, the ionic contribution to the interatomic bonding 
for this compound is dominant, which agree with the results 
given in references [18], [38], [39].  

The shear anisotropic factors in different crystallographic 
planes provide a measure of the degree of anisotropy of 
atomic bonding in different planes. A value of unity means 
that the crystal exhibits isotropic properties while values other 
than unity represent varying degrees of anisotropy. From the 
elastic constants, we obtain the shear anisotropic factors given 
for a tetragonal structure by [31]. 

 

ଵܣ ൌ ଶܣ ൌ
ସ஼రర

஼భభା஼యయିଶ஼భయ
ଷܣ      ;   ൌ

ଶ஼లల
஼భభି஼భయ

                (4) 
 

For the (100), (010) and (001) planes, respectively. The 
calculated vales are as follows: ܣଵ ൌ ଶܣ ൌ 1,20, and ܣଷ ൌ 1,31, 
this indicates that the elastic properties of the structure are 
highly anisotropic in the 3 directions. 

 
TABLE III 

CALCULATED BULK, SHEAR AND YOUNG’S MODULI	ሺܤ, ,ܧ	݀݊ܽ	ܩ  ,(	ܽܲܩ	݊݅
POISSON’S RATIO Ν AND ܤ଴ ⁄	ܩ RATIO OF THE	ܹܽܤ ସܱ SCHEELITE STRUCTURE 

AT ZERO PRESSURE. THE SUBSCRIPT V, R AND 0 REFER TO THE VOIGT, REUSS 

AND HILL APPROXIMATIONS, RESPECTIVELY 

૙࡮ ν ࡱ ࡳ ࡮  ⁄ࡳ

 B୚ Bୖ B଴ G୚ Gୖ G଴    

૝ 56.54 56.03 56.28 26.18 24.03 25.11 65.58 0.30۽܅܉۰ 2.24 

 
Once we have calculated the bulk modulus, the shear 

modulus ܩ and the Young’s modulusܧ, we may obtain the 
Debye temperature, which is an important fundamental 
parameter closely related to many physical properties such as 
specific heat and melting temperature. At low temperatures the 
vibrational excitations arise solely from acoustic vibrations. 
Hence, at low temperature the Debye temperature calculated 
from elastic constants is the same as that determined from 
specific heat measurements. We have calculated the Debye 
temperature (ߠ஽) based on the elastic constants using the 
following common relation [40]. 

 

஽ߠ ൌ
௛

௞ಳ
ቂ
3݊
ସగ
ቀ
அಲఘ

ெ
ቁቃ
ଵ ଷ⁄

߭௠                              (5)                                                               

 

here, ݄ is the Plank’s constant, ܭ஻is the Boltzmann’s constant, 
n is the number of atoms per molecule (n=4 forKAlQଶ), ஺ܰ is 
the Avogadro’s number, M is the molecular weight, ߩ ൌ ܯ ܸ⁄  
is the density of mass and ߭௠ is the average sound velocity 
given by [41]. 

߭௠ ൌ ൤
ଵ

ଷ
൬
ଶ

జ೟
య ൅

ଵ

జ೗
య൰൨

ିଵ ଷ⁄

                         (6)                     

 

where ߭௟	ܽ݊݀	߭௧	are the longitudinal and transverse elastic 
wave velocities, respectively, They can be obtained from 
Navier’s equations [40]. 
  

߭௟ ൌ ට
ଷ஻బାସீబ

ଷఘ
 , ߭௧ ൌ ට

ீబ
ఘ

                              (7)                     

 

The calculated sound velocities and Debye temperature as 
well as the density of ܹܽܤ ସܱ scheelite structure at zero 
pressure are given in Table IV. Unfortunately, there are no 
theoretical and experimental results to be compared with them.  

 
TABLE IV 

CALCULATED DENSITY	ߩሺ	݅݊	݃ܯ/݉ଷሻ, LONGITUDINAL, TRANSVERSE AND 

AVERAGE SOUND VELOCITY ( ߭௟, ߭௧, ߭௠, ,ݕ݈݁ݒ݅ݐܿ݁݌ݏ݁ݎ  ଵሻ AND DEBYEିݏ݉	݊݅

TEMPERATURE ሺߠ஽, ܹܽܤ ሻ FOR THEܭ	݊݅ ସܱ SCHEELITE STRUCTURE AT ZERO 

PRESSURE 
 ࣋ ࡰࣂ ࢓࣏ ࢚࣏ ࢒࣏ 

 ૝ 3021.51 2018.23 2205.77 253.99 6.16ࡻࢃࢇ࡮

B. Structural and Elastic Properties under Pressure 

In order to show how to behave the structural parameters 
under pressure, the equilibrium geometries of ܹܽܤ ସܱ 
scheelite structure unit cell were computed at fixed values of 
applied hydrostatic pressure in the range from 0 to	7	ܽܲܩ, 
where, at each pressure, a complete optimization for lattice 
constants is performed. Pressure dependence of the lattice 
parameters is shown in Fig. 2. We clearly observe a quadratic 
dependence in all curves of this compound in the considered 
range of pressure. The solid curve is quadratic least squares 
fit. The values of linear and quadratic pressure coefficients for 
the lattice parameter of this structure are given in Table VI 
together with experimental results of other authors. The 
present results agree well with the previous experimental 
values reports for this material [15]. This result shows the 
power of this method to describe the behavior of a structure 
under pressure and gives confidence in the predicted results.  

  
TABLE V 

CALCULATED LINEAR AND QUADRATIC PRESSURE COEFFICIENTS OF THE 

LATTICE PARAMETERS A (P), C (P) OF ܹܽܤ ସܱ SCHEELITE STRUCTURE 

 a଴ aଵ aଶ c଴ cଵ cଶ 

This 
work 

5,68574
-

0,0275 
9.429
ൈ 10ିସ 

12,842 
-

0,0962 
19,10
ൈ 10ିସ

Exp.[15] 5,6257 
-

0,0276 
6,929
ൈ 10ିସ 

12,749 
-

0.0987 
20,02
ൈ 10ିସ

 
Pressure dependences of the normalized lattice parameters 

(a/a0 and c/c0), normalized unit cell volume (V/V0) (where a0, 
c0 and V0 are zero pressure equilibrium structure parameters) 
are illustrated in Fig. 3.  

It is shown that, as pressure increases, the normalized lattice 
parameter c/c0 decreases more rapidly than the normalized 
lattice parameters a/a0, which indicates that the c-axis is more 
compressible than the a- and b-axes. These results implicate 
that the atomic bonds along the a- and b-directions between 
nearest neighbors are stronger than those along the c-direction. 
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As it is shown in Fig. 3, the volume of the unit cell decreases 
about at 9% and at 7	ܽܲܩ of its initial value at zero pressure.  
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Fig. 2 (a) The lattice constant pressure relation (a–P); the solid line is 
a quadratic least squares fit: aሺ݌ሻ ൌ ܽ଴ ൅ ܽଵ	݌ ൅ ܽଶ	݌ଶ	; (b) The 

lattice constant pressure relation (c–P); the solid line is a quadratic 
least squares fit: cሺ݌ሻ ൌ ܿ଴ ൅ ܿଵ	݌ ൅ ܿଶ	݌ଶ. (c) Evolution of volume 

under pressure 
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Fig. 3 Pressure dependence of the normalized lattice constants (a/a0 
and c/c0), normalized unit cell volume (V/V0) (where a0, c0 and V0 

are zero pressure equilibrium structure parameters) in ܹܽܤ ସܱ 
Scheelite phase 

 

From the present work, we further obtain information on 
bond compressibility (see Fig. 4). In particular, under 
hydrostatic conditions, the W-O short distance is 7% less 
compressible than the Ba-O distance. A similar qualitative 
behavior is found by [17] which gives the value of 10%. For 
scheelite 4ܱܹܽܤ structure, the first neighbor W-O distances is 
more rigid than the Ba-O ones. As a consequence, the volume 
change of BaO8 dodecahedra is larger than that of WO4 
tetrahedra.  

Now we are interested to study the pressure dependence of 
the elastic properties. The first principle studies based on DFT 
can be used to obtain reliable elastic properties of compounds. 
Several methods are available for computation of stiffness 
coefficients, but currently the ‘stress–strain’ method seems to 
be most commonly used and this is the method implemented 
in CASTEP. In this approach, the ground state structure is 

strained according to symmetry dependent strain patterns with 
varying amplitudes and a subsequent computing of the stress 
tensor after a re-optimization of the internal structure 
parameters, i.e., after a geometry optimization with fixed cell 
parameters. The elastic stiffness coefficients are then the 
proportionality coefficients relating the applied stress to the 
computed strain [42].  
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Fig. 4 Pressure dependence of the interatomic bond distances (a) and 
bond length ratio Ba-O and W-O (b) in the Scheelite phase 

structureܹܽܤ ସܱ 
 

In Fig. 5, we present the variation of the elastic constants 
ሺܥ௜௝ሻ, the bulk modulus	ܤ, the shear modulus ܩ and the Born’s 
criteria for tetragonal crystal [30] of ܹܽܤ ସܱ in scheelite phase, 
with respect to the variation of pressure. We clearly observe a 
linear dependence in all curves of elastic constants and bulk 
modulus of this crystal in the considered range of pressure. In 
Table VI, we listed our results for the pressure derivatives 
௜௝ܥ߲ ߲ܲ⁄  and	߲ܤ ߲ܲ⁄ . It is easy to observe that the elastic 
constants ܥ௜௝ increase when the pressure is enhanced in this 
crystal, and satisfy the Born’s criteria (Fig. 5 (c)) indicating 
that scheelite phase ܹܽܤ ସܱ compound is mechanically stable 
up to	7	ܽܲܩ. This result is confirmed by other experimental 
ones [15]-[17]. The calculated pressure derivative ܤᇱ ൌ ܤ߲ ߲ܲ⁄  
is given in Table I with other theoretical and experimental data 
for comparison. The results of our work agree well with the 
previous theoretical and experimental reports for this material. 
To our knowledge, no experimental or theoretical data for the 
pressure derivative of elastic constants of these compounds are 
given in the literature. Then, our results can serve as a 
prediction for future investigations. 

 
TABLE VI 

CALCULATED PRESSURE DERIVATIVES FOR THE ELASTIC MODULUS 
૚૚࡯ࣔ
ࡼࣔ

૜૜࡯ࣔ
ࡼࣔ

૝૝࡯ࣔ
ࡼࣔ

 
૟૟࡯ࣔ
ࡼࣔ

 
૚૛࡯ࣔ
ࡼࣔ

 
૚૜࡯ࣔ
ࡼࣔ

 
૚૟࡯ࣔ
ࡼࣔ

 
࡮ࣔ
ࡼࣔ

 

5,693 3,955 0,6956 2,41262 5,83548 4,30595 0,72774 4,76255
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Fig. 5 Calculated pressure dependence of: (a) elastic constants (ܥ௜௝ሻ	, 
(b) bulk and shear moduli and (c) the Born’s criteria for the 

tetragonal ܹܽܤ ସܱ structure: The solid line is a linear fit 

IV. CONCLUSION 

We have investigated the structural and elastic properties of 
the ܹܽܤ ସܱ scheelite phase structure under pressure. The 
calculations are done by the generalized gradient 
approximation (GGA) potential of Perdew Wang (PW91). A 
summary of our results follows. 
i. The calculated structural parameters at ambient pressure 

of this compound are in a good agreement with the 
available experimental and theoretical data, validating the 
method used in present work. 

ii. The elastic constants, Debye temperature and sound 
velocity are calculated at zero pressure for the ܹܽܤ ସܱ 
scheelite compound.  

iii. Our calculated results for the pressure dependence of the 
structural parameters shows a quadratic dependence in all 
curve of this compound in the considered range of 
pressure. 

iv. For scheelite ܹܽܤ ସܱ structure, the first neighbor W-O 
distances is more rigid than the Ba-O ones. 

v. We have found a linear dependence of bulk modulus and 
elastic constants with applied pressure.  

vi. We are not aware of any experimental or theoretical data 
for the elastic constants and pressure dependence of this 
compound, so our results may be considered as reliable 
predictions of the pressure dependence of the elastic 
properties in this material. 
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