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Abstract—In designing a low-energy-consuming buildings, the
heat transfer through a large glass or wall becomes critical. Multiple
layers of the window glasses and walls are employed for the high
insulation. The gravity driven air flow between window glasses or wall
layers is a natural heat convection phenomenon being a key of the heat
transfer. For the first step of the natural heat transfer analysis, in this
study the development and application of a finite volume method for
the numerical computation of viscous incompressible flows is
presented. It will become a part of the natural convection analysis with

high-order scheme, multi-grid method, and dual-time step in the future.

A finite volume method based on a fully-implicit second-order is used
to discretize and solve the fluid flow on unstructured grids composed
of arbitrary-shaped cells. The integrations of the governing equation
are discretised in the finite volume manner using a collocated
arrangement of variables. The convergence of the SIMPLE segregated
algorithm for the solution of the coupled nonlinear algebraic equations
is accelerated by using a sparse matrix solver such as BICGSTAB. The
method used in the present study is verified by applying it to some
flows for which either the numerical solution is known or the solution
can be obtained using another numerical technique available in the
other researches. The accuracy of the method is assessed through the
grid refinement.

Keywords—Finite volume method, fluid flow, laminar flow,
unstructured grid.

[. INTRODUCTION

HE characteristic of industrial applications is the
geometrical complexity of interesting domains and
therefore, the use of unstructured meshes for computational
fluid analysis has become general. The main reason for this is
the ability of unstructured meshes to discretize arbitrary and
complex domains and the ease of local and adaptive grid
refinement which enhances the efficiency of the solution as
well as solution accuracy. In addition, solution algorithms for
computing flows on unstructured grids have been continuously
developed. Among the discretization methods, the finite
volume methods (FVM) are most widely wused for
computational fluid dynamic (CFD) applications. This is
mainly due to the inherent conservativeness of FVM and ease
of understanding. These FVMs are capable to accommodate
arbitrary polyhedral grids composed of cells of various
topologies.
Muzaferija [1] developed a numerical code to improve the
efficiency of CFD calculations in complex geometries
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encountered in wide engineering problems. The approach is to
enable solutions free from the numerical error to be achieved
economically by employing local mesh refinement to resolve
regions of steep gradients, and using a multi-grid method to
accelerate the convergence of the basic iterative solution
technique. In order to identify regions requiring local
refinement, and to assure the quality of the numerical solution,
it was necessary to devise and investigate the use of error
indicators.

Recently, Lestari [2] has developed and implemented the
unsteady algorithms for incompressible Navier-Stokes flow on
triangular unstructured grids. Three time integration methods
such as a fully-implicit, Crank-Nicolson and an explicit
four-step Runge-Kutta method use. A vertex-centered
discretization with median-dual control volume is used and the
equal order velocity pressure interpolation method is chosen to
avoid the checkerboard problem in pressure commonly
encountered in using a collocated grid. The numerical
algorithm used to solve the resulting equations is derived from
the SIMPLER algorithm. The Runge-Kutta SIMPLER uses the
four-stage Runge-Kutta to update the velocities directly
without a pressure correction equation in addition to fully
implicit and Crank-Nicholson methods. The Runge-Kutta
scheme is observed to perform well on low Reynolds number
cases, but it becomes more unstable at higher Reynolds number,
with the necessity of a finer grid density and lower time step.

Hadzi [3] has developed a fully-implicit second-order FVM
to solve the unsteady fluid-flow equations on unstructured grids.
Computational points are located in the cell center and a
collocated variable arrangement is used. A segregated solution
procedure is employed to solve the resulting set of non-linear
algebraic equations. It leads to a decoupled system of linear
algebraic equations for each dependent variable. The linearized
equation systems are solved using a conjugate gradient solver.
The SIMPLE algorithm, leading to an equation for the pressure
correction, is used to establish the pressure-velocity coupling,
calculate the pressure, and update the velocity filed to satisfy
the continuity constraint.

Mathur and Murthy [4] have developed a pressure-based
finite-volume scheme for unstructured meshes. The method
admits arbitrary convex polyhedral meshes, including meshes
with hanging nodes. Cell-based, collocated storage is used and
discretization operators for the convective and diffusive fluxes
are formulated so as to reduce to the well-known forms on
body-fitted structured grids. Higher-order fluxes as well as
secondary diffusion terms are computed using linear
reconstruction and limiting similar to methods used for
compressible flows. To minimize storage requirements, a
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segregated solution strategy is favored, with pressure and
velocity coupled using the SIMPLE algorithm. An algebraic
multigrid solver is used for the solution of linearized equations.

Unstructured grid methods have been the focus of a
considerable amount of CFD research over the last a few
decays. Engineers and scientists are interested in various
phenomena of fluid flow in a complex geometry. A single
numerical code for CFD is not fully satisfied the all of the
requirements and thus, a number of CFD codes have been
developed. In the middle of developing a new CFD code to
calculate the natural convection phenomena next to the window
cavity in the near future, we have implemented a code based on
the SIMPLE method [5] for solving three-dimensional
incompressible flow using unstructured grids. To validate the
numerical methods, two validation calculations of lid-driven
cavity and back-ward step flow are performed and the
comparison shows the numerical methods implemented

properly.

1. GOVERNING EQUATION

A.Reynolds Transportation Equation

The conservation equations for mass and momentum are
used in their integral form for the numerical method. In terms of
control volume method with arbitrary and unstructured meshes,
the conservation equations are given in the coordinate-free
form and the momentum equation is resolved in terms of
Cartesian vector components. The conservation of a certain
flow quantity means that its variation inside a control volume
can be expressed as the net effect of the amount of the quantity
being transported across the boundary by convection and
diffusion and any sources or sinks within the control volume.
The fluid is regarded as continuum, which assumes that the
matter is continuously distributed in space [3].

In the derivation of the governing equations of fluid
dynamics the Eulerian or control volume approach is

conveniently used, rather than Lagrangian or material approach.

Conservation equations represent the laminar flow of an
incompressible Newtonian fluid. In some cases, additional
processes take place and therefore, besides the basic equations,
some additional transport equations have to be solved along
with the mass and momentum equations.

The equations for the transport of a scalar variable can be
written in the following form [3]:

%quadv +[[p#7-T,96]-d5 = [Quav + [, -dS (1)

where ¢ stands for the transported variable, T, is the diffusion
coefficient and Q, s and Q,, stand for the surface exchange

terms and volume sources, respectively. The momentum and
energy equations can also be written in the form of (1).
Equation (1) is therefore used as the generic equation for
deriving the numerical procedure even though the momentum
equation has to be treated as additional terms.

B. Conservation of Mass

The conservation equation of the continuity equation, for a
control volume drive from (1) implies that the rate of change of
the mass inside the control volume V is equal to the difference
between inflow and outflow mass fluxes across the volume
surface S . In integral form, the continuity equation can be
written as:

%deV+I[pV]-d§:0 2)

where, p is the fluid density and v is the velocity. In
incompressible flow, the first term in (2) is zero and the
convection term cannot be ignored.

C.Conservation of Momentum

The conservation equation for momentum implies that the
total variation of momentum, represented by the time variation
of momentum within the control volume and the transfer of
momentum across the boundary of the control volume by fluid
motion, is caused by the net force acting on the fluid in the
control volume.

%JdeV+'!pW~d§=!6~d§+prde 3)

where o is the stress tensor representing the surface forces and
f, represents the vector of body forces acting on the fluid. The

stress tensor for Newtonian fluid can be expressed as:
a:y[?w(*vﬂ—pl 4)

where p is the pressure, # is the dynamic viscosity of the
fluid and | is the unit tensor. The vector (3) has to be resolved
into specific directions resulting in three equations. The three
equations are able to be solved independently.

D.Boundary Condition

To obtain the proper solutions, boundary conditions have to
be specified at boundaries according to the type of equations. In
general, the type of the boundary conditions can be classified
into two groups: Dirichlet and Neumann boundary conditions.

Dirichlet boundary condition, when the value of a dependent
variable at the boundary is specified,

#(r.t)= (). )

Neumann boundary condition, when the gradient of a
dependent variable boundary is specified

Vo(r,t)=f(t). (6)

III. NUMERICAL METHOD

The FVM used in this study is based on a second-order
accurate  spatial  discretization ~ which  accommodates
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unstructured ~ meshes ~ with  arbitrary-shaped  cells.
Computational points are located in the cell center and a
segregated solution procedure is employed to solve the
resulting set of non-linear algebraic equations. This leads to a
decoupled system of linear algebraic equations for each
dependent variable. The linearized equation systems are solved
using a BICGSTAB solver. The SIMPLE algorithm for the
pressure correction to satisfy the continuity equation is used to
establish the pressure-velocity coupling.

A. Discretization

The computational domain is discretized by an unstructured
mesh composed of a finite number of cells (control volume).
Each control volume is bounded by a number of faces which
compose the control volume surface. There is no restriction in
the shape that the control volumes may have, i.e. an arbitrary
polyhedral shape is possible as shown in Fig. 1. A data structure
based on cell face is employed. It provides the data connectivity
between the cells sharing the same cell face.

Neighbor cell
- s ol |
’\ f’ I
‘( I ” ]
P | - ]
[] T [
I =
= = -
- = ]
5 = o,
” ]
45 |~ Py
— Vi A
y r M o
Cell

Fig. 1 Control volume of arbitrary shape.

First of all, the discretization procedures are applied for a
Reynolds transport equation. The same procedure can be
applied to the governing equations for fluid flow. When the
Reynolds transport equation is integrated over a control volume,
it will be appeared as:

F) L ~ - -
aquﬁdv +> [[ 0 -T,V4]-dS; = [Q, v+ [G,s-dS; (7)
Vo is Vo is
B. Convection Term
Convection term, which is the second term in LHS in (7)
gives the rate at which variable ¢, enters or leaves the control

volume through the cell face due to the mass flux F;:

Fj:IpV~d§:(pV)j~§j (®)

i

The velocity V. at the CV face, needed for the evaluation of

i
the mass fluxes, is obtained from an interpolation between two
neighboring cell-center values.

The convective flux in (7) is approximated as:

C= jp¢\7-d§ =F4, ©)

i

where F; is the mass flux through the cell face j. One of the

simplest is the linear interpolation, which provides the second-
order accuracy. The value at the face center, which lies at the
line connecting two neighboring cell centers, is obtained as:

¢J =gy, +(1- w)¢Pj (10)

where o is the interpolation factor calculated from distance
between cell face and center point. Linear interpolation is
usually referred to as central-differencing scheme (CDS)
according to the geometry conditions. On the other hand, a
widely used scheme, which guarantees bounded solutions
(stable) is the upwind differencing scheme (UDS). The value of
¢; at cell-face center is approximated by the value at CV center

on the upwind side of the face.

4y i F <0 (b

p ={¢PU if F>0
UDS is unconditionally stable and it prevents the oscillatory
solutions by scarifying accuracy. Since it is first-order scheme,
UDS was found to be numerically very diffusive, requiring a
very fine grid resolution to achieve acceptable accuracy.
To obtain the accuracy and the stability, the second-order
CDS approximation can be blended with the first-order UDS
approximation.

CJ:‘]i¢j:JJ¢UD+ﬁJJ(¢CD*¢UD) (12)

where £ is the blending factor with a value between zero and

one. It is recommended to use the values of the blending factor
as close to one as possible.

C.Diffusion term
The diffusion flux in (7) through the face j can be
calculated as:

[T,gradg-dS ~ 3" [T gradg-dS~YI,(V4),-dS; =D, (13)

i

where I, is the diffusion coefficient, which depends on each

equation. In order to calculate the diffusion term on the cell face,
an approximation of the derivative at the CV face is needed.
This could be computed by interpolation of cell-center
gradients to the cell-face center [6].

. ST
(V¢)j :(¢Pj _¢Po)ﬁ+ V¢j _(V¢j 'dsj) §j ~d§j (14)

J ]

In (14), the first term on the RHS represents a
central-difference approximation of the derivative in the
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direction of a straight line connecting cells F, and P,. This

term is treated implicitly. The second term which corrects the

error due to the fact that we need the derivative in the direction

of cell-face normal direction is calculated using previous values

of the variables and treated explicitly (source term).
D.Gradient at Cell Center

The gradient at the cell center can be calculated using Gauss
theorem directly and mid-point rule.

fgradqﬁdV ~ Y 4,08,
\ j

Y45, (15)
(gradg),,, =

PO

E. Algebraic Equation

By combining the approximations of all terms (convection,
diffusion, source terms and so on), an algebraic equation for
each CV is obtained.

nnb

Avofro + Z A¢j¢pj = b,p (16)

where the index j represents the neighbor nodes and b,

contains source terms, contributions from the transient term,
parts of convection and diffusion terms which are treated
explicitly.

S,
A, =—r¢jg+min(mj,0) (17

J

Ay = Z[max(mj,O) +Fj1 + (p\;t)PO

Z_ZJAM +ZH; +(p\;t)w

wm,

\d

|

by :Zrm‘ [V—dej _(V—dej)

[z

]

0
(pV )P(i
ot

_Zﬂaﬁmj (¢1‘HD _¢?D)+q¢v s +
]

IV. PRESSURE CALCULATION

The discretization procedures are applicable to the
momentum and other transport equations for scalar quantities
which can be represented in the form of the Reynolds transport
equation. The difficulty to apply the procedures and obtain
proper solutions is that there is no equation which contains the
pressure as a dominant variable and thus, the pressure cannot be
obtained directly. For compressible flows the density may be
considered as a dependent variable which can be computed
from the continuity equation, while the pressure can be
obtained from an equation of state. In incompressible flow, the
continuity equation is only an additional constraint on the

velocity field which can be satisfied only by adjusting the
pressure field. However, it is not obvious how this adjustment
of pressure needs to be performed.

A.SIMPLE Algorithm

The SIMPLE method is based on an iterative procedure to
satisfy the pressure constraint. Firstly, the linearized
momentum equations are solved, using a known pressure of
previous time step. The modified velocity field obtained from
the momentum equation is used to calculate the continuity
equation. Since the current velocity field does not satisfy the
continuity equation, a mass residual will be produced. This
value is then used to calculate the correction of pressure field.
An appropriate equation between the velocity and pressure
corrections is derived from the momentum equation. After the
pressure correction, the velocities and pressure are updated.
However, the new estimated velocities do not satisfy
momentum equation, and thus, the iterative procedure is
continued until both the momentum and the continuity
equations are satisfied.

Since collocated variable arrangement is used, a simple
linear interpolation (second order difference) of velocity can
lead to oscillations in the pressure field. In order to avoid
oscillations of solutions, a special interpolation is required. It
implies that the cell face velocity depends not only on the
velocity field but also on the pressure field. The third-order
pressure diffusion term is added to the velocity, which does not
scarify the accuracy.

V =V, +6V, (18)

[ Vo J _ Voo + Vi
A/O j A/PO+A/Pj

where overbar denotes the arithmetic average of the values at
cell B, and P;.

B. Pressure Correction

By employing the SIMPLE algorithm [6], the correction of
the mass flux through the cell face can be expressed in term of
the gradient of the pressure correction and the final pressure
correction equation of incompressible flow can be obtained as:

nnb

Avo p;’o + ZA:J pij = bPO (19)
]

where super script * implies the value which satisfy the
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momentum equation. After solving the equation, the
pressure-correction process is used to correct and update
pressure and velocity fields and mass fluxes.

p=p +4,p (20)
B VA
V=V +V =V —K"O(Vp )oo

3, =01 +3, =0+ Aypy — AP,

where f, is an under-relaxation factor, which is necessary

because the calculated pressure-correction is usually
overestimated due to simplifications. The general value of
under-relaxation factor g, are 0.1 to 0.3 for steady problems.

In unsteady, it can be chosen up to 1 [3].

V.RESULTS AND DISCUSSION
A.Lid Driven Cavity

Lid-driven-cavity flow has been a test and validation
problem for the viscous codes developed in this study. Its
elliptic and nonlinear nature, which is common in general
engineering problem is the characteristics of the problem, and
provides a good test of the computational procedure. In
addition, the simple geometry is another advantage. The
configuration used in this study is showing in Fig. 2.

I']Iil‘l

(a)

Fig. 2 (a) Geometry and (b) grid of lid driven cavity

The velocity at the top of the cavity is set at 1 unit velocity
(typically 1 m/s). The cavity is a square and its height and width

are unit dimensions (typically 1 m). The other three boundaries
are viscous walls, which are non-slip boundaries. The Reynolds
number is defined by height or width and velocity at the top.

Re = Ayl
Y7

2]

where p is the density, U, is the speed of the top wall
boundary, L is the length of square cavity, and x is the
viscosity of the fluid. Flow at Reynolds number of 100, 400 and
1000, is simulated and compared with results of [7].

The uniform and square grid is used in this numerical
simulation, as shown in Fig. 2. The unstructured grid has one
layer of z direction for two-dimensional flow. The
fully-implicit scheme is used with considerably large time step
(1x10") for steady state. Oscillations of the residuals of mass
and momentum equations are observed at a short initial period
when the flow is under development. Fig. 3 shows the
u-velocity profile along the centerline, and the v-velocity
profile along the horizontal centerline. The more refined mesh
gives a more accurate profile than the coarser mesh in Fig. 3 (c).

Fig. 4 shows streamlines of the three Reynolds numbers. The
streamlines from the present analysis can be seen in a right hand
side in Fig. 4. The streamline profiles match well with that of
previous study [7] in left hand side. The main vortex is slightly
off center, closer to the upper right corner when the Reynolds
number is 100. Two single vortices are observed at the left and
right lower corners of the cavity. The size of the right vortex is
slightly larger than that of the left one.

The center of the vortex core at Re=400, the main circular
flow is centered about a point which is slightly above and to the
right of the center of the cavity as show in Fig. 4. The large
secondary vortex at the lower right can be observed than
Re=100. The streamlines in case of Re=1000 shows the same
structure as that of the Re=400. Some small changes are
observed in the size and location of the vortexes as shown in
Fig. 4 (c).
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Fig. 3 u and v velocity at Re= (a) 100, (b) 400, and (c) 1000

(a)
Reference [Ghia]

(c)
Reference [Ghia]

Fig. 4 Streamline at Re= (a) 100, (b) 400, and (c) 1000

(b) B. Backward-Facing Step Flow

The next validation case in this study is simulation of flow
through a two-dimensional channel with a backward-facing
step. This case has been generally recognized as a good
validation case due to the characteristics in interaction between
the reverse flow behind the step and the shear layer from the
step edge. The reattachment point of the separated region next
to the backward-facing step is strongly dependent on Reynolds
number.
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(a) L

[

(b)

Fig. 5 Backward-facing step of (a) geometry and (b) grids

Fig. 5 shows a schematic view of a backward-facing step
channel and a grid used in this study. The length of the total
channel, L, is 20 unit lengths. The inlet of the channel at the
right hand side is heights of 0.5 units while the overall height of
the channel, H , is 1 unit. The expansion ratio, which is defined
as the ratio of the height of the channel to the inlet height is 2. In
some studies, the expansion ration is used as 1.94 [8]. In this
study, the expansion ratio of two is used. There is ignorable
difference of results between 2 and 1.89 of expansion ratio [8],
[9]. We directly compare the results between experimental [8]
and computation results in this study.

The profile of the velocity entering the channel is set to the
velocity profile of fully developed two-dimensional channel
flow. It is a parabolic profile for the x-directional velocity

component U .
y 2
=V | 1-| —— 22
u avg[ [H —hj] ( )

where the constant V,

w 18 average velocity along the inlet. In

this study, the average velocity of the inflow across the inlet is
set to 1 unit velocity. There cases were tested for Reynolds
numbers of 100, 389, and 1000. The Reynolds number for this
problem is defined by:

pvavg H
H

Re = (23)

In the Reynolds numbers of 100, and 389, the steady state
solver with a considerably large time is used and we obtain
stable and converged solutions. However, in the Reynolds
number of 1000, we use fully implicit method with a time step
size 0.1 because of the stability problem. After 20 unit time, the
residual (relative error) is reduced to under 1x107*.

—&— Reference
'1 —0— This study 1

xho
=

o 1 2 3 4 & 6 7
Rey /1000

Fig. 6 Location of reattachment as function of Reynolds numbers

The flow is laminar when the Reynolds number is less than
1200, while the flow is two-dimensional when the Reynolds
number is less than 400 [8]. In Fig. 6, the reattachment points
move downstream as the Reynolds number increases from 100
to 400, and thus the CFD results of this study agree well with
experimental results. However, at Re=1000, the differences are
quite large because of its three-dimensional effects. The similar
differences can be found in Fig. 7. The developing flow and
reattachment point after backward-facing step is properly
predicted.

VI. CONCLUSIONS

In this study, the numerical algorithms for incompressible
Navier-Stokes flow on unstructured grids with arbitrary shaped
cells have been developed. Third order diffusion method is
chosen to avoid the checkerboard pressure oscillation generally
encountered in a collocated method for solving incompressible
flow. The numerical algorithm used to solve the final linear
equations is derived from the SIMPLE algorithm. The
numerical models used in this study have been validated using
two typical validation problems such as the lid-driven cavity
and the backward-facing step channel. A good agreement with
existing experimental data and numerical data is obtained for
all cases except high Reynolds flow (1000) of a
backward-facing step because of its three-dimensional effect.
Even though the accuracy of the solution is acceptable, the
convergence of the numerical code developed in this study is
still slow because of some abundant processes in it. It is
required a code optimization and acceleration techniques such
as local time step, arithmetic multi-grid methods and so on.
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