
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

80

FHOJ: a new Java benchmark framework
Vinh Quang La

International Business Consulting
University of Applied Sciences Offenburg, Germany

Email: vla@stud.fh-offenburg.de
Dirk Jansen

Department of Electrical Engineering
University of Applied Sciences Offenburg, Germany

Email: d.jansen@fh-offenburg.de

Abstract—There are some existing Java benchmarks, application
benchmarks as well as micro benchmarks or mixture both of them,
such as: Java Grande, Spec98, CaffeMark, HBech, etc. But none
of them deal with behaviors of multi tasks operating systems. As
a result, the achieved outputs are not satisfied for performance
evaluation engineers.

Behaviors of multi tasks operating systems are based on a schedule
management which is employed in these systems. Different processes
can have different priority to share the same resources. The time is
measured by estimating from applications started to it is finished does
not reflect the real time value which the system need for running those
programs. New approach to this problem should be done.

Having said that, in this paper we present a new Java benchmark,
named FHOJ benchmark, which directly deals with multi tasks
behaviors of a system. Our study shows that in some cases, results
from FHOJ benchmark are far more reliable in comparison with some
existing Java benchmarks.

Keywords—Java Virtual Machine, Java benchmark, FHOJ frame-
work.

I. INTRODUCTION

Because of the dynamic linking mechanism, it makes the
Java benchmark more difficult to implement in comparison
with C/C++ benchmark. In C/C++ benchmark we can tell
about the performance of a system without even running
it, through seeing binary code which is achieved after the
linking process. Since the linking process in Java is dynamic,
performance factors when a JVM interacts with the class file
library must be added on into a Java benchmark.

In the context of multi thead systems, behavior of the system
is not linear to different tasks that are in use at the same
time. Those differences are based on the different employed
scheduling mechanism in this system. Generally, the linear
time measurement method in Java for a single task in a multi
task system does not produce precise values.

The linear time measurement is the way to use the timer, eg:
System.currentTimeMillis() or System.nanoTime() which Java
runtime environment supplies. In most cases, Java runtime
environment encapsulates Timer which is supported by the OS
with some modifications in its features. Virtually, it adds more
burden to the system since more processing time is needed
for object timers instantiation. That hides the real value of
time spent on each single process. To our knowledge, there is
currently no Java runtime environment that provides functions

to access real values of the run time that a system spends for
programs.

In the FHOJ benchmark, instead of using the timer opera-
tions which Java runtime environment supplies, we use a native
timer operations that OS supplies. Therefore, we can separate
the time the system spends for its permanent services and
life time of a program, thus actual run time of a program is
achieved.

Fig. 1. Components in Java technology architecture

The remaining parts of this paper are structured as follows:
section 2 introduces technological background of this work
and discussions about related works. Section 3 presents the
benchmark setup. Section 4 provides the results of this bench-
mark and some discussions. Finally, section 5, presents our
conclusions.

II. BACKGROUND AND RELATED WORK

A. Linear time measurement

Most current Operating Systems (OS) are multi task sys-
tems. There are many jobs can be served at the same time.
To fulfil this characteristic a typical OS has a superior mode
(called kernel mode in Linux), which has the highest priority to
do continuous pooling to distribute and revoke resources. The
superior mode or kernel mode normally can not be interfered
by any lower priority modes in which the applications are
executed.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

81

However, a typical way to measure the runtime of a program
is to use the timer provided by the Java runtime environment
provides. It is shown as follows:

long tStart = 0;
long tEnd = 0;

tStart = System.currentTimeMillis();

// some business code here

tEnd = System.currentTimeMillis();
System.out.println(tStart - tEnd);

In between two timer calls, System.currentTimeMillis(), it
can be anything. It can be a whole Java benchmark workload
or just only partial of a benchmark workload, it is depended
on different implementers. The respective Java bytecodes of
the Java program above is shown below.

1: lconst_0
2: lstore_1
3: lconst_0
4: lstore_3
5: invokestatic #2; /invoke timer
6: lstore_1
7: invokestatic #2; /invoke timer
8: lstore_3
9: getstatic #3;
10: lload_3
11: lload_1
12: lsub /get difference
13: invokevirtual #4;

The method System.currentTimeMillis() is translated into
bytecodes at line 5 and line 7 as invokestatic and its argument
is value Nr.2 to the constant pool of the class file. These
invokestatic call a static method as a timer resolutions. The
runtime of a program is calculated as the difference between
the values of the two timers through the sub at line 12.

At the system level, when the line invokestatic #2 is ex-
ecuted then a native function clock get time is called. The
return values are the difference, measured in milliseconds,
between the actual current time and midnight, January 1, 1970
UTC.

This method is called the linear time measurement because
the time spending for the running services and other existing
programs in the system can add up to the results. As illustrated
in Figure 2, the actual time needed for Task 1 is: Δt1 +Δt2 +
Δt3.

Fig. 2. Jobs are executed in a multi tasks Operating System

B. User time and System time

Any application has to go through at least two modes: kernel
mode and user mode, the running time respectively to them
are system time and user time, see Figure 3. The starting point
and the ending point of a task are done by the kernel mode.
During the execution time in user mode, an application may
require the kernel mode to provide resources to fullfill its duty.
For instance: a typing program in use to write this paper has to
switch back and forth both application mode and kernel mode
whenever the ”Save” button is clicked.

Fig. 3. How time has gone when tasks are executed in a multi tasks system

To have a clear distinguish between user time and system
is very important in a Java micro benchmark. Because of the
dynamic linking process of the JVM, sometimes the loading
time for required parts of the system class library is more
consuming than time for executing tasks. However, to separate
user time and system time is the duty of an accounting system
of a OS. That means if a OS do not support this features then
its kernel scheaduler must be rewrited.

The dynamic linking mechanism in Java is happened when
the program is executed, the JVM loads program classes and
interfaces and hooks them together. This dynamic linking
mechanism is totally different to the traditional linking in C++.
Figure 4 and 5 shows those difference. In Java technology
one more step has to be made to load Java library, instead
of taking directly binary code from the dynamic library (*.dll
in Windows or *.so in Unix). This feature also makes the



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

82

question which places to put the timers is very important for
any benchmark.

Fig. 4. State transitions in a dynamic linking system

Fig. 5. Dynamic linking states in Java architecture

Since the running time of a Java macro benchmark are
normally much more bigger than its system time. That is the
reasons in most cases, the combination values of user time
and system time of an application is considered as its running
time.

C. Timer service implementation

There are two ways to implemente timer services in a
system: soft-timer and hard-timer. Soft-timers are preferred to
hard timers in a general purpose OS because they reduce the
overhead of time consuming task of interrupts. Normally, a OS
supplies the timer and its according operations can categories
into 3 API levels:

• Level 1: provides low-level hardware related operations
• Level 2: provides soft-timer related services
• Level 3: provides access either to the storage of the real-

time clock or to the system clock
The first level of operations, considered as low-level system

operations, is developed and provided by board support pack-
age developers. The second level of timer-related operations
includes the core timer operations that are heavily used by both
the system modules and applications. Either an independent
timer-handling facility or a built-in one that is part of the
kernel offers these operations. The third level operations are
mainly used by user-level applications. The operations in
this level interact either with the system clock or with the
real-time clock. Its typical operations are clock get time and
clock set time.

Figure 6 depicts steps in servicing the timer interrupt. The
soft-timer facility is responsible for maintaining soft timers

Fig. 6. Steps in servicing the timer interrupt [1]

at each timer tick. It is comprised of two components: one
component lives within the timer tick ISR and the other
component lives in the context of a task. This feature helps
to keep the system clock is not drift away if the task spans in
multiple ticks.

Note that the clock resolutions are system-dependent and
can not be set by the JVM implementer. While the unit of
time of the return value is a millisecond, the granularity of
the values depends on the underlying operating system and
may be larger. In the Linux, the resolution is usually 10ms on
32-bit architectures and 1ms on 64-bit architectures.

D. Runtime and loading time

The runtime or execution time of a Java program is shown
in the equation below:

Runtime = start up time + translation time +
bytecode execution time

Start up time is the time a JVM needed to start its internal
data structures and invoke its components. In some JVMs, the
Java program and the input to this program are loaded into
the memory. Based on its runtime library the execution path
of the program can be built in the linking processe. All of
these steps are happened in the start up time, ready for the
second step, which is the translation step.

The translation time is the time spent on translating byte-
codes, from the standard bytecodes, the bycodes defined by
Sun, to internal built-in specific purpose bytecodes of a JVM.
The translation varies with different JVMs. Typically, a JVM
with an interpreter architecture spends no time for translating.
While other JVMs, such as the HotSpot, heavily optimize
certain bytecodes, and translating bytecodes more than once;
which results in an increased translation time.

The bytecode execution time of the JVM depends on how
many bytecodes need to be executed in a code path. And the
code path can be changed accordingly to the input of the
program. A visual example we can give is a graphical user
interface application (GUI), whenever an user triggers any GUI
element then a code path is built accordingly to the event.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

83

In general, by using current native timer functions at Level 2
of a OS we can find the runtime of a program precisely, as we
did in FHOJ benchmark framework. Nevertheless, to caculate
start up time and bytecode execution time of a JVM, a high
resolution timers [2] and a fine tuning system accounting must
be built. It is of interest to this reseach.

To make comparision in runtime of Java program between
JVMs, the standard deviation σ is used to show the spread of
the values of measure times away from its mean. The lower
deviation, the better results of a benchmark are.

σ =

√√√√ 1
N

N∑
i=1

(xi − x̄)2 (1)

Where N is the number of times to run a program, x̄ is the
mean of xi, caculated by the equation below.

x̄ =
1
N

N∑
i=1

xi (2)

E. Related work

Java Grande [3], [4] consists of benchmarks in three cate-
gories: low-level operations, kernel and large scale application.
The low-level operations catergory measures the performance
of JVM such as: arithmetic and math library operations,
garbage collection and method calls and casting. The kernel
category consists of small programs, including Fourier co-
efficient analysis, LU factorization, alphabeta pruned search,
heap sort and IDEA. The large scale application is intended
to represent real application programs, currently there is only
one application in this catergory.

Caffemark [5] has been developed to measure some aspects
of Java such as: loop performance, the execution of decisions-
marking instructions and recursive function calls. However,
the Caffemark Benchmark does not emulate the operations of
real-world programs.

Spec98 [6] was developed with the expectation of being
the standard for performance evaluation of JVM. It measures
the efficiency of JVM, the just-in-time (JIT) compiler, and
operating system implementations. On the hardware side, it
includes CPU (integer and floating-point), cache, memory, and
other platform-specific performance.

HBench Java [7] introduces vectors based on the method
to characterize a JVM in an abstract level. The principle of
this Benchmark is the observation that a system’s performance
is determined by the performance of individual primitive
operations that support. By introducing a simple linear model
rather than a complex model, HBench retain the simplicity
of a linear model by adding multiple data points for single
primitives. The basic primitive operation of this model is the
JVM’s assembly instructions or bytecode. The higher abstract
levels are: system classes, memory management, execution
engine and JIT.

Linpack Benchmark [8] is a measure of a system’s floating
point rate of execution. It is determined by running a computer
program that solves a dense system of a linear equation, which
is a common task in engineering. The solution is obtained

by Gaussian elimination with partial pivoting, the result is
reported in millions of floating point operations per second
(Mflop/s).

PennBench [9] is another Java benchmark, it is claimed
to be the first Java benchmark for the embedded system
especially to cell-phone and PDA like devices. This Bench-
mark focuses mainly on the memory characteristic of a JVM
according to its input applications.

The DaCapo benchmark suite [10], [11] is a set of 11 non-
trivial, real-world, open source Java benchmarks, intended as
a tool for Java benchmarking by the programming language,
memory management and computer architecture communities.
It is supposed that it superiors than SPEC Java in a variety of
way, including more complex code, richer object behaviors,
and more demanding memory system requirements.

Although each of the benchmarks mentioned above was
designed for a specific purpose. However, there is one thing
in common in all mentioned benchmarks that is all of them
use the linear time measurement when they want to measure
running time of applications. This is a common weakness of
all benchmarks.

III. FHOJ BENCHMARK FRAMEWORK

The purpose of this benchmark is mainly to measure the
performance of the JVM. However, it also covers a part of
job of the compiler step, changing file header of workload in
order to make them compatible to all JVMs, see Figure: 7. The
Testset or the workload, consists of a bundle of Java programs
which have to be passed through Java compiler to get binary
files (*.class) as the input for the benchmark. Then those files
are triggered to run by the BenchmarkCtr module.

The whole BenchmarkCtr module is written in shell script,
makes the use of API timer functions at the level 2 of timer
operations the OS supply. It is designed to compatible with
Unix-like and Solaris systems. The BenchmarkCtr is respon-
sible for tuning rules in the FHOJ benchmark, eg: number of
execution times, input parameters, mean value calculation, etc.

The numbers of applications in the Testset can be changed
depending on the specific purposes to do the benchmark. The
workload of other benchmarks can be also directed into the
FHOJ framework. In this case what we have to do is simply
to eliminate the timers functions and the output result in those
benchmark.

Log files will be generated after the execution process.
Then reports will be created base on the Log files of the
JVMs. Up till now, all information gather from Log files for
creating reports must be done manually, such as: mean value of
execution time and graphics generation, further improvement
will be done later.

IV. BENCHMARK SETUP AND RESULTS

A. Benchmark setup

The benchmark is setup with 5 Java virtual machines: SUN
JVM 1.4, SUN JVM 1.6 Client and Server version, IBM JVM
1.4 and KVM. The Client and Server version of SUN JVM



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

84

Fig. 7. FHOJ Benchmark framework

Name of JVM Size (MB) Number of class
SUN JVM 1.6 41.708 16482
SUN JVM 1.4 26.311 9435
IBM JVM 1.4 22.152 15075
KVM/CLDC 0.179 116

TABLE I
THE SIZE OF JAVA CLASS LIBRARIES IN THIS BENCHMARK

1.6 are set by changing the parameters of the SUN JVM 1.6.
No changes had been made in all the runtime lib (JRL) which
accompany with those JVMs. SUN JVM 1.6 Client and Server
version employ the same JRL. Table I shows the size of the
JRL used in this benchmark.

The KVM uses the Interpreter execution engine in which
every single Java bytecode has to be translated into one or
many native codes step by step. The SUN JVM 1.4.2 and
IBM JVM 1.4.2 have Just In Time (JIT) architecture which is
considered the second generation of a JVM. The SUN JVM
1.6.0 uses Dynamic Adaptive Compilation (DAC) architecture,
the JIT with some improvements in Hotspot mechanism.

As mentioned above, the workload of other benchmark can
be redirected to the FHOJ framework if it is needed. In the
scope of this study, our workload consists of just only 18
Java programs, covers 4 areas of features of Java programming
language:

• Simple arithmetic computation
• Large computation
• Large computation with multiple stacks called
• Object oriented and polymorphism

B. Results and discussion

Firgure 8 shows the user interface of the FHOJ benchmark.
In the following sections, we present some achieved results in
the scope of this study.

1) Precompiled system class with ROMizing technique:
There is no answer for the question which JVM is the best.
One JVM can be very good at class loading part but it can
perform poorly at garbage collection or at execution engine,

Fig. 8. The user interface of the FHOJ

etc. That is the reason why we have variant answers for
different programs, see Figure 9. For the most programs in
the benchmark Sun JVM 1.6.0 Server is the best but it is
come third for the matrix program, Sun JVM 1.4.2 is worse
than IBM JVM 1.4.2 for the ack program but it is better for
the fibo program.

With Romizing technique, the runtime systems class is
embedded in its core, KVM needs only 0 millisecond (rounded
up value) for the HelloWorld program compared with a few
dozen milliseconds in the cases of other JVMs.

Fig. 9. Runtime comparison, the lower the better.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

85

Categories Name Description

Simple Arithmetic
SquareRoot1 Integer Square root of 27 with Newton method
Nestedloop 6 nested for loop with index value is 10

Large computation MatrixArr1 Fill the int array of 5000 elements with value 1
Matrix Multiply two dimension matrices of integers, each has a size of 30

Multiple stacks call

SquareRoot integer Square root of 27 with recursive calls implementation
HelloWorld Print string Hello World to standard output
Random Generate random 100 double numbers and print out
Fibo Fibonacci for 35, with recursive calls implementation
Quicksort Sort an array which has 100 numbers by Quick sort algorithm
Towers Hanoi Tower for 15 disks

Object oriented

HashMap1 Create HashMap, add 10 elements to HashMap
Shellsort Shellsort with object oriented implementation, 10 random elements
HashMap2 Create a HashMap with 1000 element, copy to other HashMap
BankAccout Bank Account list with 1000 members
FFT OO Fast Fourier Transform with OO implemented

TABLE II
FHOJ WORKLOAD - TESTSET

2) Performance of the JIT versus the Interpreter: JVMs
which use the JIT architecture is likely to have longer start-up
times because the JIT compiler has to compile Java bytecodes
into native machine language before executing.

Nevertheless, ADC and JIT execution engine prove to be far
more better than the Interpreter architecture when applications
have to deal with large computation or multiple stack called,
see Figure 10. For complex programs, KVM spends from 10
up to 50 times more than other JVMs.

Fig. 10. Fibonacci up to the 35th number. The lower the better. Show the
advance of the JIT compare with the Interpreter execution engine in large
computation applications

3) Standard runtime deviation: The standard deviations of
JVMs for Hanoi tower are calculated using the formula 1 and
2, see table III. The second column shows the values in FHOJ,
the third column shows the values when we measure time by
using the traditional method. The third column shows how
better the values in FHOJ framework in percent. The standard
deviation of the benchmark using the FHOJ framework for
the Hanoi Tower program is about 7% lower than the values
which are archieved from the tranditional way to do time
measurement in other benchmarks.

Note that the standard deviation achieved using the FHOJ
framework will be increased or decreased depending on the
running services in this computer. The higher number of the
running services in the system is, the better values of the FHOJ
framework will be. Table IV shows the comparison when all

Fig. 11. Runtime comparison, Hanoi 27 towers. The lower the better.

Vendor FHOJ Td. method Pc(%)

IBM 1.4.2 0.0016970 0.0019234 13.34
SUN 1.4.2 0.0012467 0.0013345 7.05
SUN 1.6.0 Client 0.0013202 0.0014013 6.14
SUN 1.6.0 Sever 0.0011501 0.0012223 6.28

TABLE III
STANDARD RUNTIME DEVIATION COMPARISION OF JVMS FOR THE

HANOI TOWER PROGRAM.

services in this system were set in enable. Both results of
Table III and Table IV are produced by the same hardware
configuration.

Vendor FHOJ Td. method Pc(%)

IBM 1.4.2 0.0031720 0.0035346 10.26
SUN 1.4.2 0.0022331 0.0026633 16.15
SUN 1.6.0 Client 0.0021272 0.0024873 14.48
SUN 1.6.0 Sever 0.0028501 0.0034582 17.58

TABLE IV
STANDARD RUNTIME DEVIATION COMPARISION OF JVMS FOR THE

HANOI TOWER PROGRAM WHEN MORE SEVICES IN THE SYSTEM WERE

ACTIVATED.

V. CONCLUSION

FHOJ Benchmark has been designed and implemented, the
advance features of FHJO, that directly deal with behaviors of



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:1, 2009

86

multi tasks operating systems. The variances of the runtime
measurement in FHOJ are proved, in some cases, to be about
7% more reliable than other benchmarks.

By introducing an add-on module, the BenchmarkCrt, FHOJ
has separated processes of the workload and output results.
The changes in parameters in benchmark such as: input values
to workload, execution times, is done by changing options in
the BenchmarkCrt, and will not effect to the precise values of
the output.

By deploying both a high resolution timer [2] and a fine
grained accounting system [12], we can improve the precision
of the FHOJ framework’s results. However, in this way a
significant work must be done since we have to re-write the
kernel schedule management of the OS.

Developing further automation steps in the framework such
as: reports collection and reports generation is also necessary
to do. Collection data from a large number of running times
should not done manually to produce the reports.

The TestSet or workload for the FHOJ currently is not
inclusive, that means the applications used in FHOJ do not
really stand for daily applications. It is also a common
problem of other benchmarks. Therefore, further analysis of
the workload should be done.

VI. ACKNOWLEDGMENT

The author would like to thank Prof. Dr. Jan-Wilhelm
Fischer of the University Of Applied Sciences Offenburg for
his help and support in making this work possible.

REFERENCES

[1] Q. Li and C. Yao, Real-Time Concepts for Embedded Systems. CMP
Books, 2003.

[2] H. resolution timers, “http://high-res-timers.sourceforge.net/.” [Online].
Available: http://high-res-timers.sourceforge.net/

[3] J. P. Charles Daly, Jane Horgan and J. Waldron, “Platform Independent
Dynamic Java Virtual Machine Analysis: the Java Grande Forum Bench-
mark Suite,” In Proceedings of the 2001 joint ACM-ISCOPE conference
on Java Grande, pp. 106–115, 2001.

[4] M. D. W. D. S. H. J. M. Bull, L. A. Smith and R. A. Davey, “A Method-
ology for Benchmarking Java Grande Applications,” In Proceedings of
the ACM 1999 conference on Java Grande, pp. 81–88, 1999.

[5] P. S. Corporation, “CaffeineMark,” http://www.benchmarkhq.ru/cm30/,
2002.

[6] S. Org, “Spec JVM 98,” http://www.spec.org/osg/jvm98, 1998.
[7] X. Zhang and M. Seltzer, “HBench: Java: An Application-Specific

Benchmarking Framework for Java Virtual Machine,” In Proceedings
of the ACM 2000 conference on Java Grande, 2000.

[8] R. W. Jack Dongarra and P. McMahan, “LINPACK Benchmarks,”
http://www.netlib.org/benchmark/linpackjava/.

[9] N. V. G. Chen, M. Kandemir and M. J. Irwin, “PennBench: A
Benchmark Suite for Embedded Java,” IEEE International Workshop
on Workload Characterization, pp. 71–80, 2002.

[10] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann, “The DaCapo benchmarks: Java benchmarking
development and analysis,” in OOPSLA ’06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications. New York, NY, USA: ACM,
2006, pp. 169–190.

[11] S. M. Blackburn, K. S. McKinley, R. Garner, C. Hoffmann, A. M.
Khan, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanovik, T. VanDrunen, D. von Dincklage, and B. Wiedermann,
“Wake up and smell the coffee: evaluation methodology for the 21st
century,” Commun. ACM, vol. 51, no. 8, pp. 83–89, 2008.

[12] M. S. Shuichi Oikawa and T. Nakajima, “Accounting system: a fine-
grained CPU resource protection mechanism for embedded system,” In
Proceedings of the Ninth IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing, 2006.

[13] G. M. I. Bate, G.Bernat and P. Puschner, “Low-Level Analysis of a
Portable Java Byte Code WCET Analysis Framework,” In Proceedings
of the Seventh International Conference on Real-Time Systems and
Applications, 2000.

[14] Jack Shirazi and Kirk Pepperdine, “Eye on performance: Micro perfor-
mance benchmarking,” IBM journal, 2003.

[15] Jack Shizazi and Kirk Pepperdine, “Eye on performance: When good
benchmark go bad,” IBM journal, 2005.

[16] A. G. Lieve Eeckhout and K. D. Bosschere, “How Java Programs
Interact with Virtual Machines at the Microarchitectural Level,” In
Proceedings of the OOPSLA 03 conference, 2003.

[17] R. Pozo and B. Miller, “SciMark 2.0 Benchmark,”
http://math.nist.gov/scimark2, 2004.

[18] M. G. Yefim Shuf, Maurico J. Serrano and J. P. Singh, “Characterizing
the Memory Behavior of Java Workloads: A Structured View and
Opportunities for Optimizations,” ACM Sigmetrics, 2001.

[19] S. M. Y. T. T. Y. Morgan Hirosuke Miki, Mamoru Sakamoto and
I. Shirakawa, “Evaluation of Processor Code Efficiency for Embedded
Systems,” In Proceedings of the 15th international conference on
Supercomputing, 2001.

[20] V. Q. La, “Design Virtual Machine for Java Processing for a Small
Embedded Microprocessor Core,” Master’s thesis, University Of Applied
Sciences Offenburg, 2007.

[21] V.-Q. La, “A study on Java Virtual Machine for Real-time embedded
systems,” IEEE International Conference on Computer Science and
Software Engineering (CSSE 2008), Accepted 2008.


