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Abstract—Two finite element (FEM) models are presented in 

this paper to address the random nature of the response of glued 
timber structures made of wood segments with variable elastic 
moduli evaluated from 3600 indentation measurements. This total 
database served to create the same number of ensembles as was the 
number of segments in the tested beam. Statistics of these ensembles 
were then assigned to given segments of beams and the Latin 
Hypercube Sampling (LHS) method was called to perform 100 
simulations resulting into the ensemble of 100 deflections subjected 
to statistical evaluation. Here, a detailed geometrical arrangement of 
individual segments in the laminated beam was considered in the 
construction of two-dimensional FEM model subjected to in four-
point bending to comply with the laboratory tests. Since laboratory 
measurements of local elastic moduli may in general suffer from a 
significant experimental error, it appears advantageous to exploit the 
full scale measurements of timber beams, i.e. deflections, to improve 
their prior distributions with the help of the Bayesian statistical 
method. This, however, requires an efficient computational model 
when simulating the laboratory tests numerically. To this end, a 
simplified model based on Mindlin’s beam theory was established. 
The improved posterior distributions show that the most significant 
change of the Young’s modulus distribution takes place in laminae in 
the most strained zones, i.e. in the top and bottom layers within the 
beam center region. Posterior distributions of moduli of elasticity 
were subsequently utilized in the 2D FEM model and compared with 
the original simulations. 
 
Keywords—Bayesian inference, FEM, four point bending test, 

laminated timber, parameter estimation, prior and posterior 
distribution, Young’s modulus.  

I. INTRODUCTION 

OOD is an anisotropic and heterogeneous building 
material. Its local properties may thus vary quite 

significantly from point to point. On the contrary, 
computational models of wood require rather precise values of 
material parameters especially when dealing with structural 
elements of large dimensions or elements subjected to extreme 
load conditions. These elements are typically manufactured 
from glued laminated timber. This significantly increases 
variance of material parameters, because glued laminated 
timber is composed of many segments. The manufacturing 
process may result in cases where two neighboring segments 
differ more than twice in terms of their stiffness. This 
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founding follows from the results of an extensive experimental 
program where each of the five timber beams was subjected to 
3600 indentation measurements yielding local values of 
moduli of elasticity [1]. Point out that this non-destructive 
technique suffers from a relatively large measurement error. 
Therein, the measured indentation depth is transformed into a 
local value of the modulus of elasticity along the fiber 
direction using an empirical expression. Because it is possible 
to measure the depth of indentation with the accuracy of 0.5 
mm only, the resulting error in the calculated values may 
exceed 0.25 GPa. The resulting ensembles of moduli of 
elasticity, statistically represented by their prior distributions, 
must therefore be improved. Here, a suitable method of attack 
is the Bayesian statistical method [2], [3].  

Bayes’ theorem has far-reaching implication but requires to 
shift our perception of probability. We need to attribute 
probability distribution also to quantities that are hidden from 
us and cannot be measured directly. While in case of the 
observable quantity the probability density expresses how 
often a given value occurs, in case of unobserved quantity the 
probability density expresses, how much we believe in that 
particular value. For example, in the present study of the 
laminated timber beam subjected to four point bending the 
observed quantity is the reading of the displacements at given 
points, while the unobserved quantities are the values of 
Young’s modulus in each lamina, the true value of the 
displacement and the standard deviation of random 
measurement error. 

If there is a stochastic relationship between the unobserved 
quantities and observed data we can reappraise our prior 
knowledge about the unobserved quantities, i.e. in our present 
study the prior probability densities of Young’s moduli 
acquired from indentation measurements, and obtain a 
rationally updated knowledge, i.e. their posterior probability 
densities. 

The main advantage of this approach is its mathematical 
soundness: if our model (stochastic relations) is correct then 
the posterior belief is the most rational one given the prior 
belief and the observed data. This is what Bayes’ theorem 
says. On the other hand, one must be prepared that the integral 
statistics of posterior distribution such as mean value, standard 
deviation or quantiles can be computed analytically only for a 
limited category of models. Posterior distribution obtained 
with models of arbitrary structure has to be analyzed 
numerically via Markov chain Monte Carlo methods such as 
Metropolis–Hasting algorithm, Gibbs sampling or 
Hamiltonian Monte Carlo algorithm. Luckily the last two 
methods are implemented in open source programs JAGS [4] 
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and Stan [5], respectively, and allow the user to specify the 
stochastic model declaratively in a dialect of BUGS language 
and generate the samples of unobserved model parameters 
distributed according their posterior distributions. 

In this paper, the direct use of prior probability distributions 
of Young’s moduli will be used first in FEM simulations 
combined with LHS method to get statistics of the 
displacements evaluated at specific points. At this step, the 2D 
plane-stress FEM model will be constructed such as to 
represent the actual beam tested in laboratory as close as 
possible. Next, the Bayesian statistical method will be 
exploited in combination with the simplified beam-like FEM 
model based on Mindlin’s beam theory to arrive at improved 
posterior distributions. These will in turn be adopted in the 
first step to judge the degree of improvement and significance 
of the Bayesian approach for this particular example.  

II. LABORATORY MEASUREMENTS 

Two sets of experiments are reviewed in this paper. First, 
the indentation measurements of local Young’s moduli are 
summarized together with their statistical evaluation and 
construction of prior distributions. The full scale four-point 
bending test of glued laminated beam made of segments 
examined in the former tests is discussed providing values of 
vertical deflection at selected points. These then enter the 
Bayesian updating procedure to generate the desired posterior 
estimates of the prior distributions. 

A. Prior Distributions of Young’s Moduli from Indentation 

Measurements 

Modulus of elasticity of wood can be measured by various 
methods. When considering wood segments already built into 
an existing structure it is necessary to adopt non-destructive 
testing methods, which cause either no or very low damage to 
the tested material. Owing to a considerable heterogeneity of 
laminated timber structures a large number of local 
measurements is needed. At present, only one such 
experimental method, which builds upon driving an indenter 
with the help of Pilodyn 6J device in Fig. 1 into the wood, is 
available. 

In particular, a spike 2.5 mm in diameter is shot into the 
wood with the enforced energy of 6 J. The local elastic 
modulus in the fiber direction is then evaluated empirically 
based on the depth of indentation as, see also [1], 

 

,193671.564 +−= ptE                         (1) 

 
where E is the searched Young’s modulus in MPa and tp is the 
measured indentation depth in mm. The Pilodyn 6J device 
allows for reading with the accuracy of 0.5 mm. Clearly, if the 
measuring error is 0.5 mm then the corresponding error of 
computed modulus amounts to 2.5 GPa. Additional error 
follows from the material heterogeneity and uneven 
inclination of tangents to annual rings at the point of 
indentation with respect to the vertical surface of the structural 
element. 

 

 

Fig. 1 Pilodyn 6J indentation device 
 

 

Fig. 2 Location of measuring points for the determination of local 
moduli of elasticity 

 
The examined beam was subjected to 3600 measurements 

on both sides as shown in Fig. 2. The calculated elastic moduli 
were grouped into ensembles corresponding to individual 
segments. Fig. 3 provides graphical representation of prior 
distributions for all 21 segments together with one distribution 
pertinent to all 3600 values. These distributions were first used 
in initial LHS-based simulations, see Section III, and 
subsequently updated in Section IV. 

B. Laboratory Measurements of Four Point Bending Test 

Note that Bayesian updating requires the knowledge of at 
least one additional measured parameter. In this study we 
chose the beam deflections measured during the four point 
bending test at three different locations, see Fig. 4. The beam 
was loaded gradually up to the final failure. At each load step 
the two applied forces were increased by 2 kN each, kept 
constant for a short period of time followed by collecting the 
deflection values. The three vertical displacements were all 
measured at the bottom surface of the beam below the two 
forces (w1, w3) and at the beam center (w2). The resulting 
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values are listed in Table I. 
 

 

Fig. 3 Prior distributions of probability density functions assuming 
Gaussian distribution at all segments (S1-S21) of the examined beam 

and for the entire beam (S) 
 

 

Fig. 4 Four point bending test 

III. PREDICTION OF BEAM DEFLECTION USING PRIOR 

DISTRIBUTIONS 

In the first computational step the prior distributions 
acquired in Section II-A were adopted in stochastic FEM 
simulations. The 2D computational model was created such as 
to fully comply with the tested beam, i.e. prior to meshing the 
model into rectangular elements it was subdivided into 
sections being represented by parts of individual lamellas 
between two finger joints, recall Fig. 2. As typical of Bayesian 
approach the prior distributions were considered as 
statistically independent events. Following our previous work 
[1], the LHS method was employed to generate individual 
realizations. In our particular case, the stochastic analysis 
considered 100 runs which attributed to the subdivision of the 
distribution function of Young’s modulus pertaining to 
segment i into 100 equally distributed intervals to randomly 
select its central value for a given run associated with a given 
value of Ei, i = 1,...,21. Each of the 100 realizations appears 
with the same probability and only once. This thus provides 

100 fictitious beams that can be analyzed to render the values 
of deflections at points corresponding to their measured 
counterparts. Finally, the recorded deflections were 
statistically evaluated to render their mean value and standard 
deviation stored in the 1st row of Table V. 

 
TABLE I 

MEASURED VERTICAL DISPLACEMENTS FOR A GIVEN LOAD LEVEL 

F, kN w1, mm w2, mm w3, mm 
3.97 1.15 1.34 1.19 
7.98 2.54 2.85 2.57 
11.96 3.84 4.38 3.95 
15.96 5.21 5.92 5.33 
19.97 6.59 7.47 6.74 
24.01 7.93 9.01 8.10 
28.02 9.34 10.58 9.51 
32.02 10.68 12.11 10.92 
36.05 12.13 13.67 12.32 
40.06 13.51 15.31 13.84 
44.03 14.95 16.93 15.30 
48.03 16.39 18.53 16.74 
52.05 17.76 20.10 18.18 
56.04 19.20 21.73 19.60 
60.03 20.63 23.37 21.08 
64.02 22.01 24.96 22.53 
68.00 23.47 26.68 24.05 
72.02 24.87 28.30 25.50 
76.02 26.27 29.94 26.93 
80.07 27.64 31.57 28.35 
84.18 28.99 33.17 29.74 
88.20 30.41 34.87 31.15 
92.19 31.80 36.56 32.62 
96.15 33.21 38.32 34.20 

IV. BAYESIAN STATISTICAL METHOD AND UPDATING 

This section presents theoretical grounds of the Bayesian 
statistical method with particular application to glued 
laminated beams. Individual steps are described in the 
following paragraphs leading to improved posterior 
probability density distributions of Young’s moduli for 
individual segments. These are then introduced into the 
stochastic simulations outlined in the previous section to 
compare with the predictions based on prior distributions and 
experimental measurements, see ahead Table V. 

A. Beam Element of Laminated Timber 

It has already been advocated that the application of 
Bayesian statistical method requires an efficient tool for the 
evaluation of the objective function, i.e. a tool to predict the 
values of measured displacements numerically. To that end, 
we propose to replace the original 2D model with a beam-like 
model developed on the basis of Mindlin’s beam theory. 

This approach requires replacing the heterogeneous cross-
section by an equivalent one with the effective (homogenized) 
material properties. In our particular case, the cross-section 
consists of eight layers (lamellas) with different values of 
Young’s modulus E, see Fig. 5. 
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Fig. 5 Description of laminated timber beam cross
 
We index the lamellas in the cross-section by 

in the i-th lamella Ei denotes the value of Young’s modulus 
and zi is the distance between the i-th ply center and the center 
of the entire cross-section. The homogenized bending stiffness 
of the cross-section becomes  
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where d and b are the lamina’s width and thickness, 
respectively. The value zT represents the position of the 
centroid of the homogenized cross-section 
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The homogenized shearing stiffness of the cross
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Conventionally, the vector of nodal forces of the finite 
element is expressed as a product of the element stiffness 
matrix and the vector of nodal displacements
 

.eee rKR =                                      

 
Omitting the axial forces, which are zero during pure bend
we express the vectors of nodal forces and displacements as
 

{ ,,, 211e MZMZ=R

 

{ ,,, 2211e ww ϕϕ=r

 
and the stiffness matrix of the element with the length 

 

Fig. 5 Description of laminated timber beam cross-section 

section by i = 1,...,8. Thus 
denotes the value of Young’s modulus 

th ply center and the center 
The homogenized bending stiffness 

( )− 2 ,Tii zzE           (2) 

are the lamina’s width and thickness, 
represents the position of the 

section  

                                   (3) 

enized shearing stiffness of the cross-section reads 

                              (4) 

),Tz                       (5) 

                                   (6) 

f nodal forces of the finite 
element is expressed as a product of the element stiffness 
matrix and the vector of nodal displacements 

                                     (7) 

Omitting the axial forces, which are zero during pure bending, 
we express the vectors of nodal forces and displacements as 

} ,2
T

M                       (8) 
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T                        (9) 

and the stiffness matrix of the element with the length l 

assumes this form  
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Fig. 6 (a) Model of laminated timber beam, 
21 segments in the examined beam

 
The FEM model of the laminated timber is established by 

localizing the stiffness matrices of individual elements into the 
global stiffness matrix of the structure. The positions of 
elements nodes were chosen to coincide with the finger joints 
of all segments in the beam as shown in Fig. 6
section parameters, thus, do not change along the element 
length, but are different from element to element depending on 
actual values of Young’s moduli in given element layup. The 
particular timber consists of 21 segments of different virtually 
random lengths arranged in 
length into 14 elements, see Fig. 6

The calculated nodal displacements were finally introduced 
into the same elements shape functions as adopted in the 
formulation of the element stiffness in (10) to yield the 
vertical displacements w1 = w
w(x = 2l/3) at the measurement points, see also Fig. 6
Table II compares the numerical predictions provided by both 
the original 2D and the present beam
showing the sufficient accuracy and thus supporting the 
applicability of the simplified model.
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a) Model of laminated timber beam, (b) Actual location of all 
21 segments in the examined beam 

The FEM model of the laminated timber is established by 
g the stiffness matrices of individual elements into the 

global stiffness matrix of the structure. The positions of 
elements nodes were chosen to coincide with the finger joints 
of all segments in the beam as shown in Fig. 6 (a). The cross-

do not change along the element 
length, but are different from element to element depending on 
actual values of Young’s moduli in given element layup. The 
particular timber consists of 21 segments of different virtually 

 8 layers which divide the beam 
length into 14 elements, see Fig. 6 (b).  

The calculated nodal displacements were finally introduced 
into the same elements shape functions as adopted in the 
formulation of the element stiffness in (10) to yield the 

w(x = l/3), w2 = w(x = l/2) and w3 = 
at the measurement points, see also Fig. 6 (b). 

Table II compares the numerical predictions provided by both 
the original 2D and the present beam-like FEM models clearly 

cient accuracy and thus supporting the 
applicability of the simplified model. 
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TABLE II 
COMPARISON OF NUMERICAL RESULTS PROVIDED BY 2D AND BEAM-LIKE 

FEM MODELS FOR MEAN VALUES OF PRIOR DISTRIBUTIONS OF YOUNG’S 

MODULI  

Value 
w1 
mm 

w2 
mm 

w3 
mm 

2D model 24.21 27.71 24.09 

Beam model 23.96 27.43 23.87 

B. Definition of Response Function 

Although for this particular study the beam-like model is 
sufficiently simple and efficient to enter the Bayesian updating 
procedure, it may still be more convenient to introduced 
further simplification particularly in view of the employed 
simulation softwares mentioned later in this section.  

To this end, we shall consider the FEM computations as a 
simple function that maps an arbitrary set of values Em and the 
load force levels Fj,j = 1,...,17 to the displacements at 
measured points i = 1,...,3 as 

 

( ) .jiij Ffw E=                                 (12) 

 
The function fi(E) thus represents the FEM calculations of a 
displacement at the i-th point for a unit load (F = 1 kN) and Fj 

represents the actual force applied in the j-th loading step. 
The formulation of function fi(E) to be used within the 

Markov chain Monte Carlo (MCMC) program goes a one step 
further. Although the MCMC programs are capable of calling 
a user defined function in external module, this approach can 
be limiting for two reasons. First, the function (the finite 
element model) has to be implemented exclusively in C++, 
compiled only with recommended compiler and included in a 
certain module class implementing specific interfaces. Even 
though the process of creating a custom module is documented 
to a certain level it can be quite demanding to wire things 
together correctly. The second reason is potential performance 
limits. The custom function is evaluated every time the 
MCMC algorithm is called to generate one of typically 
thousands of samples. 

To treat the above mentioned drawback we promote an 
alternative approach that replaces the function fi(E) with its 
approximation. Such approximation is easily implemented 
directly in the model definition and also faster to evaluate. In 
case of the FEM model of a laminated timber beam we 
approximated functions fi linearly as1  
 

( ) ( ) ( ) ( )..
_

EEii E
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The derivatives of fi were precomputed numerically by 
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1This simplified approach gives admissible results with the coefficient of 

variation in the range of 10–20%. 

[ ] [ ] ,hEE ijijij δ•=•                             (16) 

 
where [•] denotes either addition or subtraction, δij is 
Kronecker delta and h represents the small change in 
particular value Ei. The numerical test of the linear 
approximation showed that the error is below 2% for Ei = µEi ± 
2σEi. Having the precomputed function values and derivatives 
on hand the evaluation of the approximated function (13) only 
involves vector subtraction and dot product which are trivial to 
express in both open source programs for generating the 
MCMC chains used in our study, namely the Stan and JAGS 
software products [4], [6]. 

C. Hierarchical Model 

A hierarchical model of a stochastic system relates the 
involved quantities in either stochastic or deterministic 
manner. The model of bending test of a laminated timber beam 
can possibly be formulated as 

 

( ),,~ wwij ij
w σµN

                          (17) 

 

( ) ,jiw Ff
ij

E←µ                           (18) 

 

( ),,~
ii EEiE σµN                          (19) 

 

( ).,Gamma-Inv~ βασ w
                   (20) 

 
Relation (17) states that the measured values of 

displacements are normally distributed around the true values. 
The standard deviation is identical for all load steps and all 
measured points. Deterministic relation (18) includes the FEM 
model and provides the theoretical mean value based on the 
values of Young’s moduli and load. Relation (19) specifies the 
distribution of our prior belief in different values of Young’s 
moduli in different segments. We assume that each quantity Ei 

is normally distributed with the mean value and the standard 
deviation estimated previously from the indentation tests. 
Finally, we have to specify our prior belief in values of σw. In 
general, σw can either be exactly known or, as in our model, it 
can be estimated from the data. In the later case, we still have 
to provide the prior distributions. The inverse gamma 
distribution is commonly chosen for this purpose since it is a 
conjugate prior distribution for the parameter σ of the normal 
distribution N(µ,σ). Parameters α = β = 0.1 are fixed and their 
values are chosen to form a virtually uninformative 
distribution. Eventually, the present model results in 21 
uncertain parameters (Ei and σw). 

Having the model formulated, we utilize the Bayes theorem 
to express the posterior probability density of the parameters 

 

( ) ( ) ( ).,,|w|, ij wwijw ppwp σσσ EEE ∝          (21) 

 
The likelihood can be expressed, with the help of (18), as 

 

( ) ( )( ),,,w,| ij wjiNwij Fffwp σσ EE =              (22) 
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and since the variables Ei and σw are mutually independent we 
write the prior distribution as 
 

( ) ( ) ( ),,,,,,
21

1
w ii EEi

i

NIGw Effp σµβασσ ∏
=

=E         (23) 

 
where fN (y,µ,σ) is the probability density function of normal 
distribution and fIG (y,α,β) is the probability density function of 
the inverse gamma distribution. 

The symbol ∝ means that the posterior distribution does not 
equal the right hand side but is merely proportional to it. 
Therefore, it does not integrate to 1 as is common for the 
probability density functions. Luckily, the family of MCMC 
algorithms allows us to generate samples of parameters 
distributed according to the posterior distribution in such a 
proportional form. Once we have enough samples of the 
updated model parameters, we compute their statistics, 
compare them to the prior distribution and thus learn how the 
observed data changed our prior belief in model parameters. 

 
TABLE III 

PRIOR AND POSTERIOR MEAN VALUES OF YOUNG’S MODULUS [GPA] OF I-TH 

LAMINA COMPUTED FROM 10000 SAMPLES GENERATED WITH STAN AND 

JAGS 

i µE,pri 
µE,post µE,post - µE,pri 

Stan JAGS Stan JAGS 

1 11.91 12.17 12.44 0.26 0.53 

2 12.58 12.54 12.53 -0.04 -0.05 

3 10.48 11.04 10.92 0.56 0.44 

4 12.39 12.74 12.64 0.35 0.25 

5 11.32 10.75 10.88 -0.57 -0.44 

6 11.23 11.22 11.22 -0.01 -0.01 

7 12.36 12.76 12.85 0.40 0.49 

8 12.16 11.52 11.59 -0.64 -0.57 

9 11.33 11.31 11.30 -0.02 -0.03 

10 12.43 12.44 12.46 0.01 0.03 

11 11.36 11.28 11.29 -0.08 -0.07 

12 10.84 10.84 10.82 0 -0.02 

13 11.77 11.80 11.80 0.03 0.03 

14 12.18 12.17 12.17 -0.01 -0.01 

15 12.66 12.64 12.63 -0.02 -0.03 

16 11.76 12.04 12.11 0.28 0.35 

17 12.28 11.69 11.81 -0.59 -0.47 

18 12.15 12.23 12.22 0.08 0.07 

19 12.47 12.51 12.51 0.04 0.04 

20 11.65 14.34 13.83 2.69 2.18 

21 12.23 11.31 11.17 -0.92 -1.06 

D.  Resulting Estimates of Posterior Distributions  

As already mentioned in Section IV-B we have compared 
the application of two source programs for generating the 
MCMC chains of samples in Bayesian updating procedure. 
The resulting shifts in mean values of Ei generated by Stan and 
JAGS softwares are shown in Table III. 

The results suggest that the mean values are corrected 
mostly in the segments that are located near the top and 
bottom parts of the timber beam, e.g. segments 1, 20 and 21, 
see Fig. 6 (b). This corresponds to the obvious fact that the 

material at these zones influences the most the resulting 
vertical displacements. On the other hand, the stiffness of 
segments which hardly influences the observed overall 
behavior is not updated at all, e.g. segments 6, 9 and 12. 

It can also be seen from the data that there is no clear trend 
in the updated mean values. This can as well be expected, 
because the displacements computed with the prior mean 
values µEi fit the measured values quite accurately, recall Table 
II and compare with laboratory measurements given in the last 
row of Table V. Therefore the mean values of Young’s moduli 
are not either just increased or just decreased throughout the 
entire timber beam but are merely tuned to each other 
according to the likelihood given by the observed data. 

The last stochastic parameter refined by the updating 
procedure is the standard deviation σw of the measured values 
wij. The samples generated from its posterior distributions by 
Stan have a mean value µσw = 0.3406 (0.3459 for samples 
generated by JAGS) and standard deviation σσw = 0.02893 

(0.03026 for JAGS). This suggests that the deterministic 
model represents the actual four point bending test fairly well 
and the assumption of linear relation between the load and the 
displacements is acceptable. 

 
TABLE IV 

PRIOR AND POSTERIOR STANDARD DEVIATIONS OF YOUNG’S MODULUS [GPA] 

OF I-TH LAMINA COMPUTED FROM 10000 SAMPLES GENERATED WITH STAN 

AND JAGS 

i σE,pri 
σE,post σE,post - σE,pri 

Stan JAGS Stan JAGS 

1 1.44 0.98 0.85 -0.46 -0.59 

2 0.84 0.84 0.92 0 0.08 

3 2.75 2.69 1.63 -0.06 -1.12 

4 1.19 1.13 1.03 -0.06 -0.16 

5 1.41 1.41 1.17 0 -0.24 

6 0.97 0.99 1.00 0.02 0.03 

7 0.96 0.96 0.99 0 0.03 

8 1.21 1.21 1.09 0 -0.12 

9 1.93 1.94 1.37 0.01 -0.56 

10 0.94 0.94 0.96 0 0.02 

11 1.35 1.35 1.17 0 -0.18 

12 1.04 1.04 1.03 -0.01 -0.01 

13 1.01 1.00 1.00 -0.01 -0.01 

14 0.96 0.95 0.98 -0.01 0.02 

15 0.84 0.83 0.92 -0.01 0.08 

16 0.90 0.88 0.91 -0.02 0.01 

17 1.26 1.25 1.11 -0.01 -0.15 

18 1.34 1.34 1.17 0 -0.17 

19 1.03 1.01 0.98 -0.02 -0.05 

20 1.96 1.15 0.95 -0.81 -1.01 

21 1.24 0.95 0.88 -0.29 -0.36 

V.  CONCLUSIONS AND FUTURE WORK 

In this paper, the material properties were treated as random 
variables characterized by their distributions. The prior 
estimates were updated utilizing Bayesian statistical theory 
and exploiting the Stan and JAGS software products. The 
methodology of this approach was validated against the 
measurements of displacements. 
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It is fair to acknowledge that in this specific case of the 
linear response of the beam the Bayesian statistical method 
renders just a petty improvement compared to direct 
deterministic calculation of deflection using the measured 
values of Ei. Though the proposed methodology undoubtedly 
tends to decrease the standard deviation of deflection, see 
Table V. 

 
TABLE V 

COMPARISON OF FINAL PREDICTIONS BASED ON PRIOR AND POSTERIOR 

DISTRIBUTIONS WITH MEASUREMENTS 

Method 
w1 (mm) w2 (mm) w3 (mm) 

µ σ µ σ µ σ 
Prior Distrib. 24.21 1.198 27.86 1.383 24.34 1.232 

Posterior 
Distrib. Stan 

23.63 0.786 26.99 0.886 23.30 0.751 

Posterior 
Distrib. JAGS 

23.60 0.707 26.97 0.794 23.30 0.666 

Measurements 23.47 26.68 24.05 

 
All the same, a more pronounced effect may be anticipated 

in predicting the bearing capacity of the beam, considering the 
fracture phenomena as well as the orthotropic properties of 
wood. Further improvement is contemplated by treating the 
material properties as random fields instead of random 
variables. 

The mean values and standard deviations of posterior 
distribution slightly differ for samples generated with Stan and 
JAGS softwares. This indicates that one of the two generated 
chains may not be long enough to achieve steady state. In 
practical applications the convergence of Markov chain should 
be checked either visually or by appropriate convergence 
criteria. 
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