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Abstract—A feature weighting and selection method is proposed 

which uses the structure of a weightless neuron and exploits the 
principles that govern the operation of Genetic Algorithms and 
Evolution. Features are coded onto chromosomes in a novel way 
which allows weighting information regarding the features to be 
directly inferred from the gene values. The proposed method is 
significant in that it addresses several problems concerned with 
algorithms for feature selection and weighting as well as providing 
significant advantages such as speed, simplicity and suitability for 
real-time systems. 
 

Keywords—Feature weighting, genetic algorithm, pattern 
recognition, weightless neuron.  

I. INTRODUCTION 
N pattern classification tasks defined via features measured 
or extracted from objects, one desires the most relevant and 

least redundant set of features which can best model the 
underlying data distribution. The necessity of feature selection 
is then apparent as redundant and/or irrelevant features will 
often tend to reduce the classification performance [10]. 
Ideally, only feature subsets with high class separation 
potential are chosen and other less discriminatory features are 
either discarded or assigned a reduced weighting. If we are 
interested in knowing how much attention we should pay to a 
particular feature for a specific problem, then we need to have 
information regarding its significance to the given problem at 
hand. This can be achieved via algorithmic analysis which 
assigns a significance value for each available feature. This 
then falls into a subcategory of feature selection termed 
feature weighting [5].  

In this paper I propose a method based on Genetic 
Algorithms (GA) [6], [11] for feature weighting and selection. 
In feature selection, GAs fall into the randomized category 
and have successfully been applied to select features in large 
feature spaces. Most approaches reported in the literature use 
the GA, with relevant optimization criteria, to find a d-
dimensional subspace in a D-dimensional pattern feature 

space such that Dd < . Siedlecki and Sklansky [14] were the 
first to introduce the use of GA for direct feature selection. 
They used GA to find the best subset of features to classify 
patterns with the K-Nearest Neighbor (KNN) classifier. In 

their method, a chromosome is coded as a vector of N binary 

genes, N being the total number of features, where each gene 
is associated with a feature in the set. Within this scenario, if 
the ith gene value is 1 then the ith feature is selected to 
participate in the classification, otherwise it will have the 
value of 0, indicating exclusion. The chromosomes are 
evaluated with a fitness function, which includes classification 

accuracy and a penalty for the number of selected features. 
This approach was later viewed as a weighting of the features 
by 0/1 and expanded to discover the real-valued weights [8], 
[12]. Given a set of pattern feature vectors in the form 

of },...,,{ 21 DxxxX = , the GA produces a transformed vector 

of features of the form },...,,{ 2211 DD wxwxwxY =  where 

iw  is the weight of feature ix . This allows a linear scaling of 
the features and removal of features by assigning weights of 
zero. Many variations of the Siedlecki and Sklansky approach 
were later proposed in combination with different classifiers 
and objective functions [2], [10], [13], [16], [18] and in 
multiple classifier design [9]. Kalapanidas and Avouris [7] 
suggested a new way of coding features onto the 
chromosomes containing only the enabled features. Bhanu and 
Lin [3] proposed a GA-based feature selection algorithm 
which uses a multiple-criteria objective function and which 
automatically adapts its parameters. In [15] the Siedlecki and 
Sklansky approach was applied to the eigenvectors extracted 
by Principal Component Analysis 

II. THE PROPOSED ALGORITHM 
The basic structure of the proposed algorithm is derived 

from some of the works by S. Khola, termed "KEPFA" [19]- 
[21], which uses the structure of a weightless N-tuple-based 
neuron [1]. Here, the KEPFA algorithm uses a novel approach 
for feature weighting and uses a different fitness function.  

As with traditional GAs, the algorithm requires all feature 
values to be represented by binary patterns and combined into 

a pattern vector { }N,X 10= , where, ∑=
=

D

i inN
1  , D  being 

the total number of original features and in  being the total 
number of binary bits for the ith feature of D . In order to keep 
differences between consecutive numbers, in both real and 
binary spaces, the same, Gray codes [11] are used to define 
the base-2 format into which real-valued features are 
converted, providing the original features were not already 
coded in any base-2 format.  

 
The proposed method proceeds as follows: Denote the 

index set for the components of vector X by{ }N, L21 . A 
population U of R chromosomes are created, 

{ }RuuuU K,, 21= , where, 
{ } { }{ }maximinijji GGG,G,j,N,,g|gu ≤≤=∈= LK 121

The number of genes for a given chromosome is normally 
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NGi << , where gene jg
 represents the index of jth  bit in 

X  and 
( ) Xgf j ∈ is the value of the bit in the pattern X 

indexed by jg
. Each individual iu  addresses  iGA 2=  

memory locations according to its gene values, and each 
memory location can store a set of integer-valued identifiers 

for classes { }Kc,c,c K21 , where K is the total number of 
pattern classes. During learning, the class identifier, stored at 
the memory location a in chromosome r  is given by 

( ) ( )∑ =

−
=

0

1
2j

n
j

jr *gfXa
, pertaining to the training pattern 

X is either set to 1 or incremented, depending on the learning 
scheme used [1]. 

 

III. FITNESS FUNCTION 
The effectiveness of the genes coded in each chromosome i 

is evaluated on unseen patterns using the fitness function f , 
where, 

 
( ) ( ) ( ) ( ) ( )xpcpcxpxcpif kkk ==   (1) 

 
which is the posterior probability of class k given pattern x. 
For a given chromosome, the terms of this probability are 

obtained from the values stored for each class at the accessed 

memory address ja
, where 

xa j ≡ .  The class-conditional 

likelihood estimate 
( )kcxp

, for accessed memory address 

ja
 given class k, is then obtained as the fraction of the value 

of the identifier for class kc  and memory address ja
, 

( )kc
jan

, by the total sum of the identifier value in all memory 

addresses for class kc . 

The number of training patterns for class ck, 
tr
kc

N
, is used to 

calculate the class prior probability for kth class as the fraction 

of 
tr
kc

N
by the total number of training patterns for all classes.  

Finally, the unconditional likelihood estimate ( )xp , is then 
obtained by: 

( ) ( ) ( )∑∑∑=
k l

c
l

k

c
j

kk ananxp     (2). 

 
 
  

After each evaluation, the fittest 
*R  individuals, defined as 

all those individuals with above-average fitness, are selected 
to vote for the bits coded in their gene values. A new 
population of offspring is created by cross-over of genes 

between the selected individuals using, for example, roulette 
wheel selection.  

The algorithm is stopped when either the standard deviation 
of the fitness of the population, averaged over all individuals, 

is below δ  for Θ  generations, or the number of GA 
iterations exceeds a maximum number of generations T , 

where δ , Θ  and T are all user-defined parameters. 
The total vote for each bit, after evaluation of each 

available test pattern and pattern class, is then summed and 
obtained. The bit weights are finally given by normalising the 
votes for each bit with respect to the total number of votes. 

IV. COMPARISONS 
The proposed algorithm was tested on a dataset of profile 

correlations extracted from handwritten numerals ‘0’ to ‘9’ 
[22], in which all features were measured in reals. I used gray 
codes to represent the features in base-2 and carried out two 
sets of tests. In test set 1, 10 independent runs were carried 
out. The results presented in all figures for test set 1 are the 
averages obtained from all 10 runs. For both test sets I used 
the first 20 original features of numeral classes ‘0’ and ‘1’. 
For test set 1, the general theory and functionality of the 
algorithm was first investigated. I, therefore, used only the 
first 20 patterns for training and tuning and the following 20 
for testing, while for test set 2 I used all available patterns, 
first 100 for training and tuning and the following 100 for 
testing, for each class. For all tests, the probability of cross-
over and mutation in KEPFA were set to 0.95 and 0.03 
respectively, elitism was enabled, and roulette wheel selection 
with linear fitness scaling [6] and one-point crossover were 

employed. The values for δ  and Θ  were set to 0.5 and 5, 
respectively. As the maximum number of generation I thought 
that 100 would be a reasonable number to test. The number of 
genes for all chromosomes in all tests was set to 2 in order to 
avoid the need of modifying the crossover and mutation 
operations to deal with different allele sizes. Individuals are 
taught patterns using the Frequency Weighted Scheme [1], 
which increments a counter for each training pattern class 
whenever a training pattern of that class accesses a memory 
location. The number of individuals was fixed at 50 for all 
tests. 

KEPFA was compared with three classical feature selection 
methods, Sequential Forward Selection (SFS), Sequential 
Backward Selection (SBS) and Floating Search Selection 
(FSS) [17]. In the tests, all three methods selected features in 
the original D-dimensional real-space. A fourth feature 
selection method was also used in which feature bits with 
above average mutual information [4] content were selected 
after the original features had been transformed from the real-
space to the base-2 space.   

This is useful to compare with the bit weights obtained by 
KEPFA.  For KEPFA, features with above average weights 
were selected. Selected features from all methods, both in 
real-space and in the base-2 space, were also compared with 
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all features, that is, the original D features. All evaluations 
were made with the KNN classifier using 1 nearest neighbour.  

V. RESULTS 
Figures 1a through 1c show the results obtained for test set 

1. Figure 1a shows the average KNN classification 
performance for the 10 independent runs. In the classification, 
KEPFA selected the least number of feature bits at 9.14% of 
the total number of 151 bits, but still achieved 100% 
classification accuracy. The method using mutual information 
used 29.14% of the total number of bits to achieve the same 
performance. All the other classical methods used 5% of the 
total 20 features and achieved a classification performance of 
77.5%, 97.5% and 77.5% for SFS, SBS and FSS, respectively. 
By using all features for classification, a 100% performance 
was achieved.  Figures 1b and 1c show the percentage of 
original features and bits selected by the different methods 
respectively. 

 

 
Fig. 1 Classification accuracy using feature subsets selected by 

different methods, and all available features 
 
 

 
Fig. 2 Percentage of feature subsets selected in the original space 

using three classical methods 
 

 

 
Fig. 3 Percentage of feature subsets selected in the transformed space 

using three classical methods 
 
Genetic algorithms are often deemed to be slow to find 

solutions for certain problems which can be found more 
quickly by other methods. This, however, is expected to be 
less problematic with the KEPFA approach because the 
optimisation surface is discrete, since it is defined on 
probability mass functions. The evolution of the average 
fitness of the population, for each pattern tested and for each 
generation, is seen in figure 2a. Figure 2b shows the 
maximum fitness found in the population for each generation 
and each pattern tested. 

 

 
Fig. 4 Average population fitness 

 

 
Fig. 5 Maximum fitness achieved in population 

 
The mutual information content of each feature bit 

calculated over all available patterns and pattern classes is 
shown in figure 3a. The weighting of each feature bit given by 
the KEPFA algorithm is seen in figure 3b.  It can be seen that 
feature bits selected by KEPFA are among the feature bits 
with high mutual information. The difference, however, is the 
relative importance of the bits. This suggests that KEPFA is 
also able to find non-linear relations among features and 
weighs these accordingly to maximise the posterior 
probability. 
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Fig. 6 Mutual information measure for features in the transformed 

space 
 

 
Fig. 7 Feature weights in the transformed space 

 
For the second test set, I made the problem slightly harder 

by using all available patterns for the two classes used in test 
set 1.  

 
Figure 4a shows the KNN classification, as for test set 1, 

for each of the different methods. The percentage of features 
selected is shown in figures 4b and 4c. This time, the KEPFA 
algorithm achieved 99.0% accuracy, 1% lower performance 
than for test set 1, but using only 7.1% of the total 155 feature 
bits. By contrast, the SFS, SBS and FSS still selected 5% of 
the total 20 features but achieved only 93.0%, 92.0% and 
93.0% classification performance, respectively. The feature 
selection based on mutual information used 19.35% of the 
total 155 feature bits and achieved 98% accuracy. By using all 
features, 99% classification performance was achieved, the 
same as KEPFA. 

 

 
Fig. 8 Classification accuracy using feature subsets selected by 

different methods, and all available features for test set 2 
 

 
Fig. 9 Percentage of feature subsets selected in the original space 

using three classical methods for test set 2 
 

 
Fig. 10 Percentage of feature subsets selected in the transformed 

space using three classical methods for test set 2 
 
 The convergence of the algorithm for each test pattern is 

seen in figures 5a and 5b. The number of generations needed 
to reach a stable state was, similar to test set 1, fairly low. It 
appears that KEPFA has not converged prematurely, since the 
performance of the selected features is identical to some of the 
other methods, or even better. 

 

 
Fig. 11 Average population fitness for test set 2 

 

 
Fig. 12 Maximum fitness achieved in population for test set 2 

 
 The feature bit mutual information and weights obtained 

by KEPFA are seen in figure 6a and 6b. It can be seen that the 
weighted feature bits are among the bits with high mutual 
information, as for test set 1. 
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Fig. 13 Mutual information measure for features in the 

transformed space for test set 2 
 

 
Fig. 14 Feature weights in the transformed space for test set 2 

VI. ANALYSIS AND DISCUSSION 
The results presented show that the KEPFA algorithm is 

capable of finding important weights of bits when real-valued 
feature spaces are transformed into binary spaces. It should 
appear slightly paradoxical to map the original feature space 
into a larger space as the main objective is to reduce the 
feature space size. However, as the mapping is from a 
continuous space into a discrete space, the search space is 
effectively reduced, also reducing the effect of the curse of 
dimensionality. This, however, allows the identification of 
small subspaces in base-2 space that are highly concentrated 
in information, but non-linearly related to the original real 
space. The information contained in the real space is 
theoretically the same as that in the base-2 space, except of 
course for the loss due to quantisation which can sometimes 
be regarded as an error term. 

The selection of bits based on the extracted weights was 
evaluated with the KNN classifier. Comparison with other 
feature selection algorithms showed that the performance of 
KEPFA was better for both test sets. It should also be 
mentioned that the three classical feature selection algorithms, 
SFS, SBS and FSS, were all evaluating feature subsets using 
the KNN classifier in their selection processes. The final 
evaluation of the selected features was, hence, biased towards 
these algorithms, as the final evaluation was carried out using 
the KNN classifier. KEPFA was, therefore, in a less 
advantaged position, as the features selected by KEPFA and 
the final evaluation were made with completely different 
algorithms.  

The evolution of potential solutions shows that KEPFA is 
capable of carrying out a consistent search and weighting of 
important feature bits within the pattern space. Furthermore, 
as the evolution figures show, KEPFA converges after a 
reasonably low number of generations, indicating its speed 
and effectiveness. An important aspect of the proposed 

method is the high level of data compression achievable, since 
large numbers of features can be expressed in only small 
subsets of bits. This is a highly desirable aspect for embedded 
and real-time systems. The compression achieved is expected 
to be significant though data dependent. Moreover, a further 
important aspect of the proposed method is that the search 
spaces for the SFS, SBS and FSS algorithms grow 
exponentially with the size of the feature space. This limits 
their application for large spaces due to time constraints. 
However, the search space of KEPFA only grows linearly 
allowing search in large spaces. 
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