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Abstract—Electromyography (EMG) is one of the important
indicators during exercise, as it is closely related to the level of muscle
activations. This work quantifies the muscle conditions of the lower
limbs in a constant workload exercise. Surface EMG signals of the
vastus laterals (VL), vastus medialis (VM), rectus femoris (RF),
gastrocnemius medianus (GM), gastrocnemius lateral (GL) and Soleus
(SOL) were recorded from fourteen healthy males. The EMG signals
were segmented in two phases: activation segment (AS) and relaxation
segment (RS). Period entropy (PE), peak count (PC), zero crossing
(ZC), wave length (WL), mean power frequency (MPF), median
frequency (MDF) and root mean square (RMS) are calculated to
provide the quantitative information of the measured EMG segments.
The outcomes reveal that the PE, PC, ZC and RMS have significantly
changed (p<.001); WL presents moderately changed (p<.01); MPF
and MDF show no changed (p>.05) during exercise. The results also
suggest that the RS is also preferred for performance evaluation, while
the results of the extracted features in AS are usually affected directly
by the amplitudes. It is further found that the VL exhibits the most
significant changes within six muscles during pedaling exercise. The
proposed work could be applied to quantify the stamina analysis and to
predict the instant muscle status in athletes.

Keywords—EMG, feature extraction, muscle status, pedaling
exercise, relaxation segment.

[. INTRODUCTION

MG is a reliable indicator of the electrical activity

produced by skeletal muscles. It had been shown that EMG
signals are associated with muscular strength and the level of
muscle fatigue during and after resistance training. With the
raising degree of muscle force, the motor units are recruited to
activate the action potentials. EMG had been popularly applied
in physiological analysis.

With the development of feature extraction algorithms, EMG
signals have been widely implemented to study the behavior
and level of muscles in all works of life, such as clinic,
engineering and rehabilitation. Song et al., [1] designed an
EMG pattern classifier which is efficient for human-machine
interaction, like a wheelchair. Fonda et al. [2] studied muscle
activity patterns to adjust a suitable saddle position to reduce
discomfort during steep uphill cycling. Chen et al. [3]
developed an on-line fatigue motoring system and assessment
for the lower limb muscles during pedaling exercise. Minning
et al. [4] found the specific muscle shown to fatigue faster than
other muscles in the shoulder and developed a rehabilitation
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program to prevent muscles being overused. Meigal et al. [5]
differentiated patients suffering from Parkinson’s disease with
EMG signals.

The EMG signals are used to investigate the performances
and dynamics of lower limb muscles during pedaling exercise.
There are various kinds of feature extractions built on the
temporal domain and frequency domain. For the time domain
features, RMS [6], mean absolute value (MAV) [7], integrated
EMG (iEMG) [8] and multi scale permutation entropy [9] are
used to analyze muscles during exercise. For the frequency
domain features, MDF [10], MPF [11] both reflected the
conduction velocity of muscle fibers. Collectively, most of the
previous studies focused on an incremental workload exercise.
Instead, this work carried out a constant workload pedaling
exercise experiment to study how the EMG signals change
during a constant cycling cadence.

This study is also devoted to search new features which have
promising changes in a constant cycling exercise. The EMG
signals in association with muscle fatigue status are analyzed.
Six lower limb EMGs from fourteen healthy males were
measured during the pedaling test. The continuous EMG
signals are then decomposed as AS and RS. Several features are
calculated both for AS and RS to identify which type of
segment is preferred for signal evaluation. The most primary
mover (the muscle that is mostly involved in a specific action)
is also investigated. The proposed method may be applicable to
quantify muscle conditions and to predict instant muscle status
in athletes.

This paper is organized as follows. The experimental
material, protocol, and the multi-channel EMG measuring
system are described in Section II. Section III elaborates on the
proposed feature extraction algorithms. The experimental
results are shown in Section IV and the conclusion and future
works are given in Section V.

II. MATERIALS

A. Subjects

Fourteen healthy male non-cyclists (age: 24.1+1.7 years;
height: 169.9+4.82 cm; body: 61.6+5.62 kg) participated in this
study. The subjects were engaged in recreational activities not
more than four hours per week. No participant had suffered
from symptoms of neuromuscular disorders in the lower
extremities. All subjects were instructed to refrain from
energetic exercise in the 24 hours preceding a test and to abstain
from drinking caffeinated beverages in order to avoid any type
of intervention in the results.
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B. EMG Locations

EMG signals were continuously measured from six muscles
of the left lower limb: VL, VM, RF, GM, GL and SOL during
the constant workload cycling exercises. The reference
electrode was placed over the iliac crest. Fig. 1 illustrated the
electrode locations recommended by SENIAM (Surface EMG
for Non-Invasive Assessment of Muscles) [12]. A pair of
surface bipolar electrodes was attached to the skin with conduct
cream at a 20 mm center-to-center electrode distance. The skin
at each electrode placement was carefully shaved and cleaned
with alcohol to minimize impedance. The lead wires were used
to connect the main unit to the electrodes.
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Anterior

Fig. 1 The EMG electrode locations on the lower limb during cycle
upright
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Fig. 2 (a) Subject adjusted the seat height for near full extension of the
legs. (b) The EMG signals of six muscles during pedaling exercise

C.Multi-Channel EMG Recording System

The EMG signals were recorded from an amplifier (AURA
PSG Wireless/Ambulatory Systems) [13]. The EMG signal was
amplified (1000x) and digitized by 10-bit AD converter. The
sampling rate of the EMG signal is 200 Hz.

D.Experimental Procedure

Each participant firstly adjusts the saddle height for full leg
extension (Fig. 2 (a)) and then performs a constant workload
test until failure to maintain the set cadence. The magnetic
upright exercise bike (Bike DNA, JT-202) was used in this
experiment. It has a monitor to display the current cycling
cadence and has eight different levels of workload control.

During the pedaling exercise, all the subjects were informed
to pedal at a rhythmic pace and to maintain a constant speed of
90 rpm. Before starting the experiment, each subject was
requested to do a warm up (level 1, lightest workload) for 30
seconds to prevent sport injuries. Then the experiment began

with a constant workload (level 6, heavy workload).
Meanwhile, the EMG signals from six muscles were measured
during exercise (Fig. 2 (b)). The experiment was terminated
when a subject failed to maintain a rate of 85 rpm for five
continuous seconds.

III. METHODS

This section presents the methodology of the feature
extractions. The flow chart is presented as in Fig. 3. For each
EMG channel, a pre-processing step was applied to remove the
residual noises and to derive the EMG envelopes of each
pedaling. The continuous EMG signals are then decomposed
into segments. The features are calculated for all EMG
segments.

( Original EMG data

[ Pre-processing ]

[ Segmentation ]

Feature Extractions
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Fig. 3 The flow chart of the proposed feature extraction method

500 @ Raw Data
>
£ OWWPWWFW\WM
%03 139 140
. 500(b) Filtered
E o Mon——siiir
%03 139 140
22 500(:) Rectification
>
: A
= I ‘L’\n\ IMM YT
938 139 140
soo(d) Envelope
e
£
38 139 140
Time(sec.)

Fig. 4 (a) Original recordings of EMG signal with a 2-second interval.
Processing results after (b) filtering (c) rectification and (d) enveloping
A. Pre-Processing Step

In this procedure, a high-pass filter (fourth-order
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Butterworth) at 20 Hz and a notch filter at 60 Hz were used to
remove the residual noise. Then, the full-wave rectification that
turns the negative EMG values to positive is applied. Finally,
the EMG envelope is derived by a fourth-order Butterworth low
pass filter at 5 Hz. Fig. 4 shows an example of the
preprocessing results from the VL EMG signals.

B. EMG Segmentation

In this section, EMG signals were segmented as burst
(activation) states and silence (relaxation) states. To identify
the activation and relaxation period of each pedal, the average
value of the EMG envelops were calculated to determine the
activation period. Since the experiment was designed as an
isokinetic and rhythmic pedaling exercise (i.e. maintaining at
90 rpm), a simple and straightforward threshold technique
could effectively identify the timing of activation and
relaxation. In this work, the threshold was set as v =1.7. If the
envelope value is greater than 1.7, it means that the muscle
condition is in a burst state; otherwise, it is classified as in a
silence state. Given the sample index of i™ onset and offset as
Onset(i) and offset(i), the center index of the i™ AS is defined
as:

. Onset(i)+0f fset(i)
AScenter (i) = - 2z (D

Sequentially, the center index of the i™ RS is formulated as:

Rscenter(i) — ASgentEr(i)+A:ScentEr(i+1) . (2)

Besides, the rotation of each pedaling will be consistently
sampled between 66 ~ 75 points (sample rate = 200 Hz). In
order to avoid capturing the overlapping samples of burst and
silence state, a length of 50 points of each segment is
recommended in this work. Finally, the samples of the i™ AS
and the i RS are respectively defined as:

AS(D) = {x(AScenter (1) = 25), ..., X(AScenter (D) + 24)}, (3)
RS(L) = {x(RScenter(i) - 25): ---:x(RScenter(i) + 24)}: (4)

where X(*) denotes the EMG signals.

C.Feature Extractions

The features introduced in this work are RMS, MPF and
MDF, ZC, wave length max (WLM), number and standard
deviation (std) of peaks (PC, PCS) and PE. Here, the j" sample
of i EMG segment is defined as X;(j), and each segment has L
sample length (L=50).

1. Root Mean Square

Previous studies show that EMG amplitude oscillation
reflects the motor-unit activation, when the level of muscle
force is increased [6]. The RMS value has a positive
relationship to the increase of pedaling number. The RMS of i"
segment is formulated as

[l i
RMS(i) = +——— %)

L
2. MPF and MDF

The muscle fibres of human skeletal muscles can be
classified as categories of slow-twitch (Type I) and fast-twitch
(Type II). The former has a lower conduction velocity, utilizing
power primarily in aerobic (endurance) exercise, like cycling
and running, without fatigue. The latter has a higher conduction
velocity, utilizing power primarily in anaerobic (heavy)
exercise, like bodybuilding and is quickly fatigued [14].
Therefore, the features calculated in the frequency domain
might be useful for investigating the progression of the EMG
status. The MPF (6) and MDF (7) of i segment are given as:

YL FGOPIG)

MPF(i) =
O == 7o)

(6)

arg

Mpr(i) = ‘0 (S P() =385 PG)) ()

where Pi(j) is the EMG segment; power spectral density at a
frequency bin j, F(j) is a frequency value at a frequency bin j
and M is the length of frequency bin.

3. Zero Crossing (ZC)

ZC is a feature that records the number of changes the
waveform cross zero and is defined as.

ZC(M) = X Flx (D) * x,( — 1) < 0} (®)
where
_ (1, if Aistrue
Fla} = { 0, otherswise ©)

ZC is sensitive to polarity changes in signals. A rapid
oscillation through baseline within a segment would derive a
higher ZC value.

4. Wave Length Max

The WL is defined as the magnitude of two successive
samples of a signal, which is calculated as:

WL() = x(G + 1) = x,()I (10)

WL is also sensitive to amplitude and frequency variations in
the signals. The maximum value of WL of i segment is used
and defined as:

WLM (i) = Max(WL;) (11)
5. Number and std Value of Peaks

A peak was defined as a sample point that is either greater
than (a top peak) or is smaller than (a bottom peak) its two
neighboring samples. The PC is defined as the total number of
those top peaks and bottom peaks. The std value of all peaks
(PCS) is also used. It was found that the PC decreases when
muscle fatigue occurred during a maximum voluntary
contraction (MVC) test [15].
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6. Period Entropy

In information theory, Shannon entropy is mainly used to
estimate an information set which contained the amount of
messages [16]. If the samples of space are distributed more
uniform, the entropy will be higher. It yields important
indications as to the level of disorder in the signal.

Given t is the number of samples between two consecutive
bottom peaks, T= { t}, t5, ..., t,}, where  is the t value of the
k™ and k+1™ botom peaks. p(t) is presented as the frequency of
t that took place in T.

_ ITtm)=t| _
p(t) = 1 vm=1,..,n (12)

Finally, PE is formulated as:

PE(i) = = Xi=1pi(m) log, pi(m) (13)
D.Data and Statistical Analysis

The exercise period was classified into five stages. That is,
the pedal number of each trial was divided to five equal parts
(i.e., 0% -20 %, 20 % - 40 %, 40 % - 60 %, 60 % - 80 %, 80 %
- 100 %). The data of each stage would be analyzed by the
segments belonging to their respective part. Data was expressed
as mean = std. One-way ANOVA was applied to present the
significant change of the calculated features during exercise.

The p-value is classified as four types:

(a) Activation Segment

VL, *p <0.001 VM., *** < 0,001
100 100
. // s '/l/
60 60
%20 40 e 8 100 ‘% 20 40 6 80 100
RF ,*"p<0.001 GM ,p>005
100 100
e o
o g0 60
20 40 e 8 100 ‘% 20 40 e 80 100
GL.p>005 SOL,p>005
100 100
o pgp g %) ]
60 60
W20 0 e 80 100 0 20 40 6 80 100

Pedal Number(%)

e ***p<(.001: high significance

e 0.001<**p<0.01: moderate significance
*  0.01<*p<0.05: weak significance

*  p>0.05: no significance.

IV. RESULTS

The average pedal number was 414 + 136 for all subjects.
The pedaling number of each trial was dived into five equal
stages for performance evaluation. The results of RMS, MPF,
MDF, ZC, WLM, PC, PCS and PE were respectively shown
and discussed in this section.

A. Results of RMS

A significant change of RMS during constant workload
cycling is shown in Fig. 5. It had high significances (p <.001) in
the thigh muscles (VL, VM and RF) in the AS segments. The
RMS values, as well as the EMG amplitudes become greater
with the increasing number of pedal rotations.

B. Results of MPF and MDF

The EMG analysis for muscle condition were commonly
analysed through frequency domain (MPF and MDF) during
pedaling exercise. The results show that MPF had no
significant change in AS and in RS during the pedaling exercise
(Fig. 6). Meanwhile, it also reveals that no significant changes
were shown in AS and in RS for MDF (Fig. 7).

(b) Relaxation Segment

VL.p>0.05 VM. p>005
100 100
60 60
%20 40 € 80 100 % 20 40 60 80 100
RF.p>0.05 GM.p>005
100 100
)
S w 80
o ¢ 60
20 40 6 80 100 ‘%0 20 40 60 80 100
GL,p>005 SOL.*p<0.05
100 100
8 80
60 60
% 20 40 6 8 100 ‘% 20 40 60 80 100
Pedal Number(%)

Fig. 5 RMS results of (a) AS and (b) RS. Significant changes were shown when AS were observed
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(a) Activation Segment

(b) Relaxation Segment
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Fig. 6 MPF results of (a) AS and (b) RS. No significant change was found
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(b) Relaxation Segment
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Fig. 7 MDF results of (a) AS and (b) RS. No significant change was found

C.Results of ZC

For ZC, Fig. 8 showed that the significant changes were only
presented in RS segments. The ZC value had a high
significance in the SOL muscle. With an increase in the number
of pedal rotations, the ZC values dropped both in the VL and
SOL muscles.

D.Results of WLM

Fig. 9 shows the results of WLM. With the increase in the
number of pedal rotations, the WLM were values also elevate.
The VL, VM and RF muscles of AS had high significance and
the VL of RS had moderate significance.

E. Results of PC and PCS

For PC, moderate significant changes were both shown in
VL and SOL of RS (Fig. 10). The PC values dropped along
with the increasing number of the pedal rotations.

For PCS, Fig. 11 showed that VL, VM and RF muscles of AS
had high significances, and VL of RS also had a high
significance. In opposite, the PCS values raised with the
increase of the pedal number, that is, the phenomenon of signal
fluctuation became prominent during the exercise.

F. Results of PE

In VL muscle of RS, the PE values gradually increased with
the rise in the number of pedal rotations (Fig. 12). It means that
the period types became more complex and unevenly
distributed during exercise.
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(a) Activation Segment

(b) Relaxation Segment
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Fig. 8 ZC results of (a) AS and (b) RS. Significant changes were shown when RS were observed
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Fig. 9 WLM results of (a) AS and (b) RS. High significant changes were shown in VL, VM and RF of AS. Moderate significant change was

shown in VL of RS
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Fig. 10 PC results of (a) AS and (b) RS. Moderate significant changes were shown in VL and SOL of RS
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{a) Activation Segment

(b) Relaxation Segment
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Fig. 11 PCS results of (a) AS and (b) RS
{a) Activation Segment (b) Relaxation Segment
VL, *p<001 VM, p>005 VL, **p<0.001 WM, p>005
o p % p - P - p
— e
80 80 80 80
70 70 70 H/‘V{\I i {_[ l l
60 60 60 60
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
o0 RF.p>005 ” GM,p>005 " RF,p>005 " GM,p>0.05
——— ——
Lw ® W l/]~++-| |
o 7 70 a 7 70
60 60 60 60
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
o GL.p>005 o SOL,p>005 o GL,p>005 " SOL,p>0.05
90 % 90
" N ' " H~|/i\l wf 41
70 70 70 70
60 60 60 60
0 20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100 0 20 40 60 80 100
Pedal Number(%) Pedal Number(%)
Fig. 12 PE results of (a) AS and (b) RS. A high significant change was shown in VL of RS
G.EMG Changes within Six Muscles Thigh Calf

Fig. 13 summarized the relationship among the features,
muscles and types of segments. The number of stars means the
level of significance calculated by the p-value in the results.
Three-stars represent the highest significance, two-stars
represents moderate significance, while one-star represents

weak significance. For the best effects of observation, the stars Zero Crossing * gl I e
mostly yield on the VL muscles and therefore VL is Peak Count * * *k
recommended for signal analysis during exercise. For RS, it
. g Y 8 . Peak Count Std P R s
also provided useful information for performance evaluation.
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Both ZC and PC showed significant changes in SOL when RS
was observed.
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Fig. 13 The comparison of significant changes of 6 muscles during
pedaling
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V.CONCLUSIONS

A feature extraction analysis among six muscles of a
constant workload cycling was proposed. The EMG signals in
association with five fatigue stages were analyzed. The
proposed eight features were investigated to explore the
significant changes during cycling. The results found that VL
has the most significant changes within the six muscles during
the pedaling exercise.

Comparing the AS and RS, the former is usually affected
directly by the EMG amplitudes. It was found that the changes
of WLM (R?=0.956) and PVS (R?=0.970) are pretty similar to
RMS in VL muscles. Therefore, it is recommended that RS is
also good for performance evaluation. Our results show that the
proposed features (i.e., ZC, PC, PCS, WLM and PE) also have
promising changes in RS during our cycling experiment.

EMG signals have been widely used to evaluate the level of
muscle activation. The proposed features investigated the
quantitative information from the EMG signals. The proposed
work could be applied to quantify stamina information and
predict the instant muscle status of athletes.
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