
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4111

Abstract—There are many classical algorithms for finding

routing in FPGA. But Using DNA computing we can solve the routes
efficiently and fast. The run time complexity of DNA algorithms is
much less than other classical algorithms which are used for solving
routing in FPGA. The research in DNA computing is in a primary
level. High information density of DNA molecules and massive
parallelism involved in the DNA reactions make DNA computing a
powerful tool. It has been proved by many research accomplishments
that any procedure that can be programmed in a silicon computer can
be realized as a DNA computing procedure. In this paper we have
proposed two tier approaches for the FPGA routing solution. First,
geometric FPGA detailed routing task is solved by transforming it
into a Boolean satisfiability equation with the property that any
assignment of input variables that satisfies the equation specifies a
valid routing. Satisfying assignment for particular route will result in
a valid routing and absence of a satisfying assignment implies that
the layout is un-routable. In second step, DNA search algorithm is
applied on this Boolean equation for solving routing alternatives
utilizing the properties of DNA computation. The simulated results
are satisfactory and give the indication of applicability of DNA
computing for solving the FPGA Routing problem.

Keywords— FPGA, Routing, DNA Computing.

I. INTRODUCTION
HE Routing affects the performance of FPGA-based
systems in two major ways. First, a typical design must be

partitioned and mapped onto several FPGAs. Because FPGA
size is fixed, the ability to pack larger partitions onto a single
FPGA can reduce the total number of partitions (and hence
FPGAs) required to implement the design. The feasibility of
implementing a piece of the design on a single FPGA is often
limited by routing-resource availability.

Second, since FPGA resource utilization typically does not
exceed 80%, considerable flexibility remains onboard the
FPGA for optimizing the routing.

Paper has Submitted for review on Nov. 22, 2007.

Parvinder S. Sandhu is Professor with Computer Science &
Engineering Department, Rayat & Bahra Institute of Engineering & Bio-
Technology, Sahauran, Distt. Mohali (Punjab)-140104 INDIA
(Phone: +91-98555-32004; (Email: parvinder.sandhu@gmail.com)
 Manpreet Singh is Lecturer with Information Technology Department,
Guru Nanak Dev Engineering College, Ludhiana (Punjab) - 141006 INDIA
(Phone:+91-9888879002; Fax: +91161-2490339; (e-mail:
mpreet78@gmail.com)
 Manjinder Singh Kahlon is working with Computer Science & Engineering
Department, Rayat Institute of I.T., Railmajra (Punjab,) INDIA

For example, we could reduce signal propagation delay
through critical paths by using the most direct interconnections
 (i.e., shortest paths), where a secondary criterion is to
minimize wirelength in order to reduce capacitance and
conserve routing resources.

There are two models of routing networks: the segmented
and non-segmented.

a) Non-segmented model: A non segmented model as a

regular grid of five horizontal and five vertical metal lines
passing between switch blocks S. The switch blocks are
rectangular switch boxes they are used to connect the wiring
segments in one channel segment to those in another.
Depending on the topology of the S block, each wiring
segment on one side of S may be switch able to either all or
some fraction of wiring segment on each side of the S block.
Fewer the wiring segments the wiring can be switched to, the
harder the FPGA is to route.

In addition to the switch blocks, there are connection blocks
that are used to connect the logic blocks pins to the routing
channel depending on the topology, each L block pin may be
switch able to either all or some fraction of wiring segments a
pin can be switched to, the harder the FPGA is to route.

b) Segmented model: In segmented model, the tracks in the

channels contain predefined wiring segments of same or
different lengths. Other wiring segment passes through the
channels vertically each input and output of a logic block is
connected to a dedicated vertical segment, as a result there are
no vertical constraints. There are additional global vertical
lines, which provide connection between different channels.
Connection between two horizontal segments is provided
through an antifuse, where as a connection between horizontal
and vertical segment is provided through cross fuse
programming one of these fuses provides a low resistance bi-
directional connection between two segment . When blown,
anti-fuses connect the two segment two form a longer one. In
order two program fuse a high voltage is applied cross.

 There are additional global vertical lines, which provide
connection between different channels. Connection between
two horizontal segments is provided through an antifuse,
where as a connection between horizontal and vertical
segment is provided through cross fuse programming one of
these fuses provides a low resistance bi-directional connection
between two segment [1]. When blown, anti-fuses connect the

Faster FPGA Routing Solution using DNA
Computing

Manpreet Singh, Parvinder Singh Sandhu, and Manjinder Singh Kahlon

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4112

two segment two form a longer one. In order two program
fuse a high voltage is applied cross.

There are many classical algorithms for finding routing in
FPGA. But Using DNA computing we can solve the routes
efficiently and fast. The run time complexity of DNA
algorithms is much less than other classical algorithms which
are used for solving routing in FPGA. In this paper we have
proposed two tier approach for the FPGA routing solution.

II. PROPOSED SOLUTION
We have tried to solve geometric FPGA detailed routing

task by transforming it into a Boolean satisfiability equation
with the property that any assignment of input variables that
satisfies the equation specifies a valid routing [2]. Satisfying
assignment for particular route will result in a valid routing
and absence of a satisfying assignment implies that the layout
is unroutable. In second step DNA search algorithm is applied
on this Boolean equation for solving routing alternatives
utilizing the properties of DNA computation. The approach
relies on DNA Satisfiability Detailed Router (DSDR) that uses
systematic search with quantum search algorithms capable of
handling very large SAT instances. To make the picture
clearer let us take a brief look at what is Boolean satisfiability
(SAT).

The Boolean satisfiability problem (SAT) is a decision
problem considered in the complexity theory. An instance of
the problem is defined by a Boolean expression written using
only AND, OR, NOT, variables, and parentheses. The
question is: given the expression, is there some assignment of
TRUE and FALSE values to the variables that will make the
entire expression true. Detailed FPGA routing problem can be
solved by transforming the routing problem as large but
atomic Boolean equation. By representing the routing problem
as Boolean function one can also prove that particular routing
alternative does not exist or the netlist is unroutable. Modern
SAT-solvers are enriched with clause-learning and
backtracking techniques to help prune the solution space.
Boolean Satisfiability (SAT) is the problem of finding a
solution (if one exists) to the equation f=1, where f is a
Boolean formula to be satisfied. The formula (f) can be
represented in Conjunctive Normal Form (CNF), or with
Binary Decision Diagrams (BDDs) [3]. There are two classes
of high-performance algorithm for solving instances of SAT in
practice: modern variants of the David-Putnam-Loveland
algorithm, such as GRASP, Zchaff, and stochastic local search
algorithms, such as WalkSAT.

 Particularly in hardware design and verification
applications, satisfiability and other logical properties of a
given propositional formula are often decided based on a
representation of the formula as a binary decision diagram
(BDD). Classically many search style solutions have been
proposed for SAT, the most well known being variations of
the Davis-Putnam procedure. The best-known version is based
on a backtracking search algorithm that, at each node in the
search tree, elects an assignment and prunes subsequent search

by iteratively applying the unit clause and the pure literal
rules. The other algorithms that are used in the SAT based
problems are backtracking search [3], resolution based
checker, integer linear programming based routing, BDD,
recursive learning. We have taken DNA search algorithms to
solve this problem Using these concepts we can develop DNA
search algorithms that can find the required routing solutions
more quickly and effectively than is possible on a classical
computer.

In the proposed method FPGA detailed routing is
formulated in Boolean Satisfiability problem (SAT). The basic
idea was that we construct a set of Boolean functions
representing routing constraints over the entire FPGA, and
invoke a quantum Boolean SAT solver on the generated
function to find any satisfying assignments. Finally the found
SAT solution determines precisely a full FPGA detailed
routing solution. Our new, DNA satisfiability based detailed
FPGA router is based on the DNA properties to solve the
Boolean satisfiability.

For each two-pin connection, a global router produces a set
of individually feasible global route alternatives [4]. Due to
detailed route conflicts, not all the global alternatives can
survive. DSDR then considers current detailed routing
solutions as well as the multiple global route alternatives by
DNA strands. Each two-pin connection generates a Boolean
routability function R (X) that captures all the possible routing
constraints over the existing routing solution simultaneously.
Finally, a DSDR Boolean SAT solver is invoked on the
routability function to determine if there exists any legal
detailed routing solution.

Our Boolean routability function R (X), where X is a
suitable Boolean vector of binary variables that encode the
track number for each two-pin connection, can be expressed as
the conjunction given below:

)()()(XEXLXR ∧=
(1)

Liveness constraint function L (X) guarantees that at least one
global route alternative per two-pin connection should be
chosen as a final legal routing solution. Exclusivity constraint
function E (X) ensures that electrically distinct nets with
overlapping vertical or horizontal spans in the same channel
are always assigned to different tracks.

A global router is invoked to assigns a set of n global route
alternatives for each two-pin connection. The method of
generating global routes per two-pin connection is an
independent procedure from the detailed routing formulation.
Liveness and exclusivity constraint are generated to yield the
routing constraint Boolean function R (X) in conjunctive
normal form. The routing alternatives of a netlist are modeled
in terms of Boolean variables that represent all of the detailed
routes admissible by the given global routing solution. Within
the global routing region specified for net A, for example,
there are only three possible detailed routes indicated by the
three Boolean variables AR0, AR1, AR2. A similar set of
routes and corresponding route variables is created for nets B

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4113

and C. A particular route is considered as the routing solution
if its corresponding Boolean variable is assigned the logic
value 1, and is excluded otherwise. The liveness constraint for
a given two-pin connection has a simple form, namely an OR
over the connection’s Fc route variables (see Fig.1-b). For a
netlist with n two-pin connections, liveness constraints yield a
set of n CNF clauses, each containing Fc positive literals. This
type of routing constraint is evaluated as follows, e.g. Excl
(Resource (4,1,0))= () ()00 BRAR ∨ indicates that the routing
resource, track segment 0 of C-block (4,1), can only be used
by either detailed route of net A or detailed route 0 of net B,
but not both. In general, if different detailed routes from
different nets are competing for the same routing resource, a
set of exclusivity () 21−kk constraints are created to insure
that at most one of those detailed routes are assigned to that
resource. The routability of a netlist for a given placement and
global routing configuration is expressed by a single Boolean
function which is the conjunction of all liveness and
exclusivity constraints:

[]

sourcesallrwhere
NetsallnallfornExclnLiveXR

Re
)()()(

∈
∈∧=

(2)

Where X is a vector of Boolean variables that represent the
possible detailed routes for each of the nets.

NET A route Boolean variable (AR0, AR1, AR2)
NET B route Boolean variable (BR0, BR1, BR2)
NET C route Boolean variable (CR0, CR1, CR2)

(a)

Liveness (A)= ()210 ARARAR ∨∨
Liveness (B) = ()210 BRBRBR ∨∨
Liveness (C) = ()210 CRCRCR ∨∨

(b) Liveness constraints

 Exclusively (Resource (4,1,0))= 00 BRAR ∨

Exclusively (Resource (4,1,1)) = 11 BRAR ∨

Exclusively (Resource (4,1,2)) = 22 BRAR ∨
Exclusively (Resource (2,1,0)) = 02 CRAR ∨
Exclusively (Resource (2,1,1)) = 12 CRAR ∨
Exclusively (Resource (2,1,2)) = 22 CRAR ∨

(c) Exclusivity constraints

Fig. 1 Global routing configuration for NETS A, B and C and three
possible detailed routes for NET A.
We propose and analyze a simple new randomized algorithm
called ResolveSat for finding satisfying assignments of
Boolean formulas in conjunctive normal form. The algorithm
consist of two stages: a preprocessing stage in which
resolution is applied to enlarge the set of clauses of the
formula, followed by search stage that uses a simple
randomized greedy procedure to look for satisfying
assignment. We show that for each k, the running time of
ResolveSat on a k-CNF formula is significantly better than 2 n,
even in the worst case. In particular, we show that the
algorithm finds a satisfying assignment of a general
satisfiabilty 3-CNF in time O (2 .448n) with high probability.
First we need a few definitions. For our purpose A CNF
Boolean formula F(x1, x2,….., xn) is viewed as both a
Boolean function and a set of clauses. We say that F is a k-
CNF if all the clauses have size at most k. for a clause C, We
write vars (C) for the set of variables appearing in C. If vε
vars(C), the orientation of v is positive if the literal v is in C
and is negative if vvv is negative. The following simple
subroutine takes as input an arbitrary assignment and tries to
modify it to a satisfying assignment of formula f by
considering the variables one by one in the order given by
permutation π

Procedure Modify (CNF formula G(x1, x2,….,xn),
 Permutation π of {1, 2…n}, assignment y)
 G0=G
 For i=1 to n

 If G i-1 contains the unit clause x)(iπ
 Then u x(i) =1

 Else if G i-1 contains the unit clause x)(iπ

 Then u)(iπ =0

 Else u)(iπ =y)(iπ

 Gi= Gi-1 ⎡ ⎤
)()(iuix

ππ =

 [End of for loop]
Return u;
[End of Procedure Modify]

The algorithm Search is obtained by running Modify
(G,), yπ on many pairs (), yπ where π is a random
permutation and y is a random assignment.

Procedure Search (CNF-formula F, integer I)
 Repeat I times
 π = uniformly random permutation of 1…n

 y= uniformly random vector ∈ ()n1,0
 u= Modify (F,π , y);
 If u satisfies F

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4114

 Then output (u); exit;
 End of loop
 Output (’unsatifiable’)

End of Procedure Search

The algorithm Search was analyzed and summarize the results
in theorem 1. The algorithm we investigate here is obtained by
combining Search with a preprocessing step consisting of
bounded resolution.
Resolve (CNF Formula F, integer s)
Fs=F.
While Fs has an S-bounded resolve pair C1, C2
With R (C1, C2).
Return (Fs)
We analyze the following simple combination of Resolve and
Search
ResolveSat (CNF-formula F, integer s, positive integer I)
Fs=Resolve (F, s)
Search (Fs, I)

The algorithm Search was analyzed it is easily seen that
Search(F,I) runs in time I/F/poly(n).it is also clear that
Search(F,I) always answer unsatisfiable if F is unsatisfiable
and tha problem of interest is to upper bound the error
probability in the case that F is satisfiable. For a formula F and
assignment z write),(zFτ to be the probability over random
π and y that Modify (F,π , y) returns the assignment z.
Define)(Fτ to be the sum of),(zFτ over z that satisfy f
i.e. τ (F) is the probability that Modify (F,π ,y) finds some
satisfying assignment.

Theorem 1: For any satisfiable k-CNF formula F on n
variables ≥)(Fτ 2 –(1-1/k)n . Thus the algorithm Search with
I=2(1-1/k)n has the error probability O (e-n) and runs in time 2(1-

1/k)n poly(n)

III. FORM OF DNA MOLECULES AND OPERATIONS
Our algorithm requires 2n + 3 well-behaved sequences of
DNA:

1. A header sequence, h.
2. A separator sequence, s.
3. A primer sequence, p.
4. n “true" sequences, each denoted xi

T representing the
assignment “ xi=true”.
5. n “false" sequences, each denoted xi

F , representing
the assignment “xi =false".

The algorithm requires synthesis of 2n assignment sequences
which are used to append variable assignments to solution
strands. There is a true and false sequence for each variable xi,

Fig. 2 Structure of b2

F assignment sequence for “x2 = false".

In the Fig. 2 Each box (s, p, s and so on) represents a DNA

subsequence. s is the sticky end that anneals to the s sticky
end on the solution strand during an APPEND.

The allowable operations are now:

1. APPEND (t, {s1, s2 … sk}): append to the end of each
strand in tube t one of the subsequences s1, s2… sk. at
random. This operation is a generalization of the
standard append introduced by [5].We use this to
append one variable assignment at a time.

2. u ← combine(t1,t2…… tk): combine the contents of
tubes t1 through tk into a single tube u. Tubes t1,……. tn
are left empty (unless, of course, u = ti for some 1 <=
i <= k).

3. DETECT (t): select one strand at random from tube t,
if any, and sequence it.

4. u ← extract(t, s): extract from tube t all strands

containing the subsequence s

 and place them in tube u.

5. {u1, u2… Uk) ← POUR (t): pour out, or aliquot, the

contents of t into k
 equal portions in test tubes u1 through uk. Tube t is
left empty.

6. TO-DOUBLE-STRANDED (t): make each of the

single-stranded molecules
 in tube t double-stranded except for a sticky end as
shown in Fig. 3.

7. TO-SINGLE-STRANDED (t): denature each double-
stranded molecule in tube t and remove one
strand, leaving the other as a single-stranded
molecule in t.

Fig. 3 Implementation of operation TO-DOUBLE-STRANDED.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

4115

The reason for the increased number of operations used in
our model is that in our algorithm, the assembly of potential
solution strands is very involved whereas this step in most
other algorithms is relatively easy. However, all the
biotechniques required to implement these operations are
standard procedures used in other extract-based DNA
algorithms. Finally, we note that our measure of time
complexity will be the number of extract steps in the
computation, and the space complexity will be the number of
strands in the system.

IV. RESULTS
The running time of ResolveSat (F, s, I) can be bounded as

follows. Resolve(F,s) adds at most O(n s) clauses to F and can
be implemented easily in time n2s /F/poly(n). Search (Fs, I)
runs in time I(F + ns)poly(n). Hence the overall running
time of resolveSat(F,s,I) is crudely bounded form above by
I(F + ns)poly(n). The simulated results are satisfactory and

gives the indication of applicability of DNA computing for
solving the FPGA Routing problem.

V. CONCLUSION
This paper has proposed a faster approach for finding the

FPGA Routing solution using DNA Computing. Because the
DNA Computing, due to its high degree of parallelism, can
overcome the difficulties that may cause the problem
intractable on silicon computers, however using DNA
computing principles for solving simple problems may not be
suggestible. To make the DNA computing applicable in
practice further research in both fields- Computer science and
biology – is necessary. Computer science needs to develop
more elaborate DNA algorithms, while better enzymes and
protocols are needed to from biology to manipulate DNA
molecules more selectively with minimal errors.

REFERENCES
[1] Eliezer L. Lozinskii, Impurity: Another phase transition of SAT, Journal

on Satisfiability, Boolean Modeling and Computation, vol. 1, 2006, pp.
123-14

[2] Gi-Joon Nam, K. A. Sakallah, R. A. Rutenbar, A Comparative Study of
Two Boolean Formulations of FPGA Detailed Routing Constraints,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Volume 21, Issue 6, June 2002 pp. 674 – 684.

[3] E. Bach, A. Condon, E. Glaser and C. Tanguay, DNA models and
algorithms for NP-complete problems, Proceedings of the 11th Annual
IEEE Conference on Computational Complexity, March 1996, pp. 290.

[4] N. Jonoska and S. A. Karl, A molecular computution of the Road
Coloring problem, Proceedings of the 2nd Annual Meeting of DNA
based computers, 1996.

[5] Leonard M. Adleman, “Computing with DNA”, Scientific American,
August 1998.

Manpreet Singh received the B.Tech. Electronics & Electrical
Communication from Guru Nanak Dev Engineering College, Ludhiana and
M.Tech. in Computer Science & Engineering from P. A. U., Ludhiana. He is
presently working with Department of CSE & IT, Guru Nanak Dev
Engineering College, Ludhiana. His current research interests are

Bioinformatics, Distributed Computing and Data Mining. He has published
around 20 research papers in various National and International conferences.

Parvinder Singh Sandhu is working as Professor in the Department of
Computer Science and Engineering with Rayat & Bahra Institute of
Engineeirng & Bio-technology, Sahauran, Mohali and previously he was with
Guru Nanak Dev Engineering College, Ludhiana (Punjab). He is Master of
Engineering in Software Engineering (Thapar University, Patiala), M.B.A. and
Bachelor in Computer Engineering from National Institute of Technology
(NIT), Kurukshetra. He has published 18 research papers in referred
International journals and 17 papers in renowned international conferences.
His current research interests are Software Reusability, Bio-informatics,
Software Maintenance and Machine Learning.

