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Abstract—The approach based on the wavelet transform has 

been widely used for image denoising due to its multi-resolution 
nature, its ability to produce high levels of noise reduction and the 
low level of distortion introduced. However, by removing noise, high 
frequency components belonging to edges are also removed, which 
leads to blurring the signal features. This paper proposes a new 
method of image noise reduction based on local variance and edge 
analysis. The analysis is performed by dividing an image into 32 x 32 
pixel blocks, and transforming the data into wavelet domain. Fast 
lifting wavelet spatial-frequency decomposition and reconstruction is 
developed with the advantages of being computationally efficient and 
boundary effects minimized.  The adaptive thresholding by local 
variance estimation and edge strength measurement can effectively 
reduce image noise while preserve the features of the original image 
corresponding to the boundaries of the objects. Experimental results 
demonstrate that the method performs well for images contaminated 
by natural and artificial noise, and is suitable to be adapted for 
different class of images and type of noises. The proposed algorithm 
provides a potential solution with parallel computation for real time 
or embedded system application. 
 

Keywords—Edge strength, Fast lifting wavelet, Image denoising, 
Local variance. 

I. INTRODUCTION 
CIENTIFIC data sets collected by sensors are generally 
contaminated with noise, either as a result of the data 

acquisition process, or because of naturally occurring 
phenomena such as atmospheric disturbance, which can all 
degrade the target data of interest [1]. A first pre-processing 
step in analyzing such data sets is denoising, that is, 
estimating the unknown signal of interest from the available 
noisy data.  
    As multi-dimensional data, an image is often corrupted by 
noise in its acquisition and transmission [2]. Images acquired 
through modern sensors, such as charge-coupled device 
(CCD) cameras, may be contaminated by a variety of noise 
sources [3]. As a result, an image might be degraded by noise 
leading to a significant reduction of its quality [4]. Image 
noise is usually with reference to stochastic variations as 
opposed to deterministic distortions such as shading or lack of 
focus. It is actually the degree of variation of pixel values 
caused by the statistical nature of radioactive decay and 
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detection processes. Even if we acquire an image of a uniform 
(flat) source on an ideal gamma camera with perfect 
uniformity and efficiency, the number of counts detected in all 
pixels of the image will not be the same. In addition to noise 
added inherently by a sensor, image processing techniques 
also corrupt the image with noise [5]. Therefore for any 
sophisticated algorithms in computer vision and image 
processing, noise reduction is a required step to remove the 
noise while retaining as much as possible the important signal 
features. This problem has existed for a long time and yet 
there is no good enough solution for it [6]. A tradeoff between 
the removed noise and the blurring in the image always exists. 
Generally speaking, image noise comes in two parts, 
luminance noise and chroma noise. Luminance noise makes 
an image look grainy on screen, but is usually not visible 
when printed. Chroma noise is visible as random red and blue 
pixels and is usually less obvious both on screen and printed. 
Removing luminance noise reduces the sharpness of the image 
and removing the chroma noise damages some of the correct 
color. So noise reduction is a balance between how much 
softness and color damage we are willing to accept versus 
how much noise we want to remove. Unless using an 
uncompressed mode with camera, JPEG artifacts also get 
added into the mix. In many applications, image denoising is 
used to produce good estimates of the original image from 
noisy observations. The restored image should contain less 
noise than the observations while still keep sharp transitions 
(i.e. edges) [7]. Traditionally, spatial filters, such as mean 
filter, median filter and wiener filter, have long been used for 
removing noise from images and signals [2], [8]. These filters, 
known as linear filtering technique, usually smooth the data to 
reduce the noise, but, in the process, also blur the data. Edge-
preserving smoothing algorithm, such as symmetric nearest 
neighbor (SNN) filter [9], maximum homogeneity neighbor 
(MHN) filter [10], and morphology-based filter [11], 
smoothes noise in homogeneous regions and sharpens the 
boundaries between regions. However, these methods 
generally involve the choice of the size and shape of the 
structuring element (filter window). The size of the structuring 
element directly influences the degree of noise smoothing by 
the filter, and the size and shape both affect the preservation 
of fine details in the image. Recently, there has been a lot of 
work on nonlinear techniques in various scientific 
communities that claim to improve on spatial filters by 
denoising more effectively while better preserving the edges 
in the data. Among them, nonlinear wavelet-based image 
denoising methods have attracted extensive research attentions 
over the last decade [12], [13], because of the multi-resolution 
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nature, the ability to produce high levels of noise reduction 
and the low level of distortion introduced. These methods 
transform the data into a wavelet basis, threshold the wavelet 
coefficients, then transform back the thresholded coefficients 
into the original domain to obtain the denoised data. Under 
certain conditions, the large coefficients in the wavelet domain 
correspond to the signal features, while the small ones 
represent mostly noise. One obtains different denoisers 
depending on the wavelet transform, the number of 
multiresolution levels, the thresholding function (which 
specifies how to apply the threshold to the wavelet 
coefficients), the thresholding rule (which specifies how to 
calculate the threshold), and in certain cases, the noise 
estimate (which specifies how to estimate the usually known 
level of the noise) used. Much of the literature thus far has 
concentrated on developing adaptive scheme to estimate the 
best threshold [14]-[16]. Image denoising using various 
wavelet thresholding or shrinkage schemes has shown to have 
near-optimal properties in the minimax sense and perform 
well in simulation studies [17]-[20]. Using the mean squared 
error (MSE) as a measure of the quality of denoising, the test 
results show that SureShrink [21] and BayesShrink [22] 
methods consistently outperform the other wavelet-based 
technique. However, while the wavelet transform-threshold-
inverse transform methods have been successful over 
extensive tests, the assumption that one can distinguish noise 
from signal solely based on coefficient magnitudes is violated 
when noise levels are higher than signal magnitudes.  Under 
this high noise circumstance, the spatial configuration of 
neighboring wavelet coefficients can play an important role in 
noise-signal classifications. Signals tend to form meaningful 
features (e.g. edges), while noisy coefficients often scatter 
randomly [13]. On the other hand, wavelet-based approaches 
sometimes create noticeable artifacts that can substantially 
degrade the image [18]. 
    All denoising algorithms reviewed are some form of a low 
pass filter. The assumption is that noise is captured by the 
high frequency coefficients and by filtering these coefficients 
the unwanted noise is removed. Unfortunately, edges also 
have high frequency components and by removing noise, high 
frequency components belonging to edges are also removed 
[23]. While spatial filters are very simple to implement and 
computationally faster than wavelet-based methods [18], they 
often result in grainier images than the ones obtained from 
wavelet techniques, which generally tend to smooth the edges 
as well. This paper proposes a new method of wavelet 
thresholding for image denoising based on local variance and 
edge analysis to preserve edges. 

II. WAVELET ANALYSIS AND THE LIFTING SCHEME 
The wavelet transform (WT) is a relatively new tool for 

carving up functions, operators, or data, into components of 
different frequency, allowing one to study each component 
separately. Unlike Fourier transform which is an excellent tool 
for decomposing a signal or function in terms of its frequency 
components, but not localized in time (space), wavelet 
transform is known to be more suitable for nonstationary 
signals where the description of the signal involves both time 

(space) and frequency. The values of the time frequency 
representation of the signal provide an indication of the 
specific times at which certain spectral components of the 
signal can be observed. Wavelet analysis provides a mapping 
that has the ability to trade off time resolution for frequency 
resolution and vice versa. It is effectively a mathematical 
microscope, which allows the user to zoom on features of 
interest at different scales and locations.  
    The WT is defined as the inner product of the signal )(tx  
with a two-parameter family with the basis function: 
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ab,  is an oscillatory function,   

Ψ    denotes the complex conjugate of Ψ , 
  b    is the time delay (translate parameter) which gives the      
        position of the wavelet,  
  a    is the scale factor (dilation parameter) which determines   
        the  frequency content.  
 
The value WT(b,a) measures the frequency content of )(tx  in 
a certain frequency band within a certain time interval. 
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Fig. 1 An example of block diagram of lifting steps 
 

    Over the last decade wavelets attracting thousands of 
theoreticians and engineers both from mathematical analysis 
and the signal processing community have been applied 
successfully in such diverse fields as digital communications, 
remote sensing, vibration, biomedical signal processing, 
medical imaging, astronomy and numerical analysis. Typical 
applications include compression, noise reduction, and feature 
extraction in sound, image, and video processing. The need 
for improvement of wavelets comes from a shortcoming that 
is inherent because of its construction. Second generation 
wavelets named when the concept of lifting was introduced 
[24], [25], open a new direction to construct wavelets which 
are not necessarily translates and dilates of one fixed function. 
A construction using lifting is entirely spatial and therefore 
ideally suited for building second generation wavelets when 
Fourier techniques are no longer available. Second generation 
wavelets are more general in the sense that all the classical 
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wavelets can be generated by the lifting scheme. The lifting 
scheme makes optimal use of similarities between the high 
and low pass filters so as to achieve a faster implementation of 
wavelet transform. The flexibility afforded by the lifting 
scheme allows the basis functions associated with wavelet 
coefficients near a window’s boundaries to change their 
general shape at the boundaries. In this manner, a basis 
function more accommodating to a boundary can be used to 
minimize boundary effects. This is the case such as data 
segmentation where artifacts may be introduced at the 
boundaries using first generation wavelets with a fixed mother 
wavelet. 

                           

  
       
                  (a)                                    (b) 
 

Fig. 2 An example of forward WT (a) classical case  (b) polyphase 
representation with delay 

 
    Lifting steps also known as ladder structures, is a technique 
to construct wavelet bases or to factor wavelet filters into 
basic building blocks. An example of block diagram of lifting 
steps is shown in Fig. 1, where x  is a signal, evenx  is the 

even part of the signal, and oddx  is the odd part, P  is a 

predictor, U  is an update operator, and 
 

                              )( evenodd xPxd −=   

                           )(dUxs even +=                               (2) 

 
    Classical implementation of WT uses two band filter bank 
(FB) with recursion on its low pass (LP). Equivalent 
polyphase representation is depicted in Fig. 2, where HP 
denotes high pass, polyphase matrix 

~( )P z  is assembled from 
even and odd filter components. Output of the FB analysis 
part is then: 
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For any filter pair ( , )h g  with det[ ( )]P z = 1 , always exist 
factorisation of P z( )  [26]:
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Equation (5) allows ladder realization of 
~( )P z  by reversible 

lifting steps followed with normalisation by factor K as 
shown in Fig. 3. 
 

 
 
                 Fig. 3 Ladder structure of lifting steps  

Signal is partitioned into even and odd components that are 
then mutually predicted by ti  (to zero signal in HP part) and 
updated by si  (to retain in LP part signal moments).  After 
normalization the algorithm is recursively applied to LP part. 
Backward transforms simply undo all ladder steps from right 
to left using reversed operators. Based on the structure of one 
dimensional (1D) wavelet transform, two dimensional (2D) 
lifting steps that can be used for predict/update steps on 
lattices, can then be built for image analysis. The algorithm 
developed uses weighted coefficients of lifting factorization of 
1D prototype transform, but replacing 1D neighborhoods by 
2D rings [27]. Weight 

iw  for lifting coefficient depends on 

number of pixels in actual ring: 
 

                       ringthiinpixelsofnumberiw −= 2                           (6) 

Thus filters with forward predict/update steps can be 
expressed as [27]: 
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where   st  = 1…m (m is number of predict/update steps), 
{ }centernhd jk ,  is operator which returns value of j-th point in 

k-th neighborhood of center , )(st
kα and )(st

kβ are lifting 
coefficients associated with actual predict/update step and k-th 
neighborhood of center . New 2D version of forward 
predict/update steps can be expressed as follows: 
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Fig. 4 An example of ring {center} 

 
 
where { }centerring jk , is 2D neighborhood operator as in 

Equation  (7),  wk is weight for k-th ring.  An example of ring 
{center} is shown in Fig. 4 with 4 pixels for the first ring 
hence 5.01 =w  and 8 pixels for the second ring hence 

25.02 =w . Thus 2D versions of many biorthogonal filters can 

be constructed. To implement them, the parameters )(st
kα and 

)(st
kβ  need to be calculated. In this study, for image 

decomposition and reconstruction in spectral bands, 
symmetric biorthogonal wavelet is required for perfect 
reconstruction. Thus 9/7 filter pair for fast computation is used 
by factoring wavelet transform into lifting steps [28]. This 
filter pair is smooth and relatively short. The analysis low pass 
filter has 9 coefficients, while the synthesis high pass filter has 
7 coefficients. The mathematical property of symmetry and 
compact support with 4 vanishing moments in both analysis 
and synthesis high pass filters, provides the advantages of 9/7 
filter bank over other wavelet families in many applications. 
This is particularly suited to spatial-frequency analysis and 
feature extraction of image data due to the fast computation 
and good approximation properties. The factoring process of 
9/7 filter pair starts from the analysis filter 
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The lifting coefficients can be computed as 
            

31400 /2 hhhhr −=  
            

314421 / hhhhhr −−=  
            

103310 / rrhhhs −−=  
            

100 2rrt −=  

The 2D wavelet transform can then be implemented with 
boundary effects minimized using: 
         586134342.1/ 34
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An example of image spatial-frequency decomposed in 3 
levels is shown in Fig. 5. 

III. WAVELET DENOISING BY LOCAL VARIANCE AND EDGE 
ANALYSIS 

    Wavelet thresholding is a powerful tool for the reduction of 
noise in images, due to wavelets capability to give detail 
spatial-frequency information. This property promises a 
possibility for better discrimination between the noise and the 
real data. In order to predict or estimate the noise visibility for 
a given image, it is important to determine a well-defined 
functional relationship between the image and noise 
descriptors. In the case of direct observations of the object f , 

the wavelet transform of the data results in coefficients }{ λd  
of the form [29] 
 

                 λλ σzfd +>Ψ=< ,                                  (10) 

where  λd       wavelet coefficients 

         Ψ        wavelet function  
         f         object 

}{ λz represents a Gaussian white noise process, due to the 
orthonormality of the underlying wavelets. Specifically, by 
taking the wavelet transform of the data, we obtain a 
representation which contains the main structure of the image 
in a relatively few large coefficients, and the noise in the 
remaining small coefficients. This is because in most cases, 
noise can generally be represented as a normally distributed 
(Gaussian), zero-mean random process. Image denoising 
using various wavelet thresholding or shrinkage schemes, 
such as SureShrink [21] and BayesShrink [22], is thus 
performed by thresholding the small wavelet coefficients.  The 
thresholds are derived under certain rules (e.g. universal) and 
generalized to images in either level- or subband-dependent 
manner. However, when the thresholding calculated globally 
applied to the subband or level based wavelet coefficients of 
an image, and filtering out the small coefficients to remove 
noise, high frequency components belonging to edges are also 
removed, which leads to blurring the signal features. To 
improve wavelet denoising, local variance evaluation can be 
used. This is because the local variance can effectively 
characterize the local feature of the image. An area with the 
smallest variation represents a homogeneous region, while 
regions containing edges will have a higher variance than 
more homogeneous regions. In order to effectively reduce 
image noise, edges or borders between the different domains 
containing important features for the interpretation of images 
should be preserved. Here we propose a new denoising 
method by dividing an image into 32 x 32 pixel blocks and 
each block is transformed into wavelet domain. The choice of 
block size is critical. To take advantage of local analysis, 
block size tends to be small. However too small size does not 
allow wavelet decomposition in enough levels required by 
wavelet analysis. The size of 32 is a balance having maximum 
4 level spatial-frequency 
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Fig. 5 An aerial image and its spatial-frequency decomposition in 3 levels (bottom right to top left corresponding to high to low frequency 
subbands) 

 
 
decomposition that many applications use. Local variance and 
edge analysis is based on the block in wavelet and image 
domain. Fast lifting wavelet algorithm is developed for the 
purpose of spatial frequency decomposition and 
reconstruction by lifting factorization of the conventional 
wavelet. The development of fast lifting wavelet transform 
and inverse transform not only speeds up the calculation, but 
also minimises the boundary effects. This allows a soft-
thresholding scheme to be implemented to threshold the small 
wavelet coefficients considered to be noise not affecting edges 
with a subband-dependent noise estimation technique. This 
thresholding is subband-dependent and can be obtained based 
on the calculation of noise level, local variance and edge 
strength. Thus the formula for the threshold on a given 
subband j is: 
 

                            
X

j σ
σ

ε
ηλ )

) 220
=                                 (11) 

 

where η is a weighting coefficient ( %)1000 << η  
calculated by the overall noise level estimation [30],  ε is the 

measure of the image edge strength , 2σ) is the local estimated 

noise variance, and  
2

Xσ)  is the local estimated signal 
variance on the subband considered. The noise variance is 
estimated as the median absolute deviation of the diagonal 
detail coefficients on level 1 (highest frequency 

subband 1HH  16 x 16 block) [22]: 
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The estimate of the signal standard deviation is 
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variance of the observations, with  nn × being the size of the 
wavelet coefficients on the subband under consideration. In 
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≥ , all coefficients from the subband are set to 

zero. The local edge strength is measured by using image 
gradient [31]: 
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                                                                                         (14) 
where  ),( jif   is image pixel value. The measure indicates 
how busy the image is in terms of the number of edges and 
contours in it.  
    Variance and edge measure are locally computed at each 
block. Adaptive wavelet denoising is treated in each subband 
level. The thresholding is governed by the global noise 
estimation to recognize the real noise coefficients, and to 
avoid significantly blurring the images, while smooth the 
noise including that attached to edges. A block with more 
edges will have a lower threshold value, so that edges can be 
preserved. Conversely a block with fewer edges will have a 
higher threshold value, so that more noise can be removed in 
such a relatively homogeneous region. To illustrate the 
properties of the proposed noise reduction technique with 
wavelet thresholding, a 1D example is shown in Figure 6 with 
noisy signal consisting of sharp changes. The block size used 
for denoising is 32. The original signal and denoised signal 
are plotted together for comparison. It can be seen that noises 
are effectively smoothed while signal features (sharp changes) 
are well preserved. 
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Fig. 6 Noise reduction of 1D example by lifting wavelet thresholding 

based on local variance and edge analysis 
 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 
    An adaptive fast lifting wavelet thresholding based on local 
variance and edge analysis was developed for image noise 
reduction with edge preservation. The proposed algorithm 
takes the advantage of the development of 2D lifting wavelet 
by the fast computation and the minimized boundary effects. 
Hence an image can be divided into 32 x 32 pixel blocks for 
local variance and edge analysis. The algorithm can be 
implemented by the following procedure: 
 

a) Global noise estimation of an image  
b) Dividing the image into 32 x 32 blocks 
c) Edge strength measurement 
d) Wavelet spatial-frequency decomposition 
e) Local variance estimation 
f) Subband-dependent locally adaptive thresholding 
g) Wavelet reconstruction 
h) Repeat procedure c) to g) for all blocks 
i) Image reconstruction with noise reduced 

 
To demonstrate this approach, a standard Lena image was 
used. The quality of the denoising can be objectively 
evaluated using the mean squared error (MSE) and the peak 
signal-to-noise-ratio (PSNR) defined below. For a given 
estimate ),(ˆ jif  of ),( jif , the MSE is   
          
               2

1 1
)),(ˆ),((1

∑ ∑
= =

−=
I

i

J

j
jifjif

IJ
MSE                   (15) 

 
The PSNR on dB scale is 
 

              
MSE

jifPSNR
2

10

))],([max(log10=
                            (16) 

 
Fig. 7 shows the denoising results using the Lena image with 
additive Gaussian noise at standard deviation 15=σ  (noise 
level). For visual quality inspection, the best linear filtering 

technique i.e. wiener filter was also used for comparison. 
Notice that wavelet thresholding method (BayesShrink) is 
better than wiener filtering in terms of mean squared error 
(MSE), but the proposed method is the best, not only because 
the MSE is smaller, but also the edges are better retained. This 
can be seen in detail zoom-in images as shown in Fig. 8. It is 
worth noting that, blocking artifacts is not noticeable as block 
boundary effects are minimized by changing wavelet shape at 
the boundaries. Ringing artifacts do not occur around the 
sharp edges, as the wavelet thresholding is dependent on the 
edge strength. For comparison, a stronger noise level with 

40=σ  and block size of 64 were also used for testing the 
denoising methods. The denoising results are summarized in 
Table I. The choice of block size of 32 is justified from the 
results of best performance of local analysis method. Results 
in Table I show that the proposed method with block size 32 
and 64 both outperforms wiener filter and wavelet 
thresholding in terms of MSE and PSNR. The noise in these 
images was artificially added. Three examples are given here 
using sensor captured (remotely sensed) aerial images with 
natural noise and stored in JPEG format. The first one with 
high noise level and the denoised image is shown in Fig. 9. 
The second one with low noise level and the denoised image 
is shown in Fig. 10. The third one is a good quality image and 
the denoised image is shown in Fig. 11. As for sensor image 
with natural noise, no reference image is available, visual 
observation is thus used for quality examination. It is noted 
here that the original image in (A) was corrupted by noise. 
The test results are illustrated using (B) wiener filtering, (C) 
wavelet thresholding, (D) wavelet thresholding by local 
variance and edge analysis. The proposed algorithm produced 
better result by smoothing the image without blurring edges. It 
can be seen that the noise in the denoised images is 
significantly reduced using the proposed approach, while the 
sharpness is almost unchanged, i.e. the sharp edges are well 
preserved.  To evaluate the computational load, a standard 512 
x 512 pixel size image was used and the proposed algorithm 
was implemented on a Pentium 4 2.0 GHz PC workstation, 
and the computing time was estimated approximately 25 
seconds.  
    Experimental work has demonstrated that wavelet 
denoising is more effective than the traditional spatial filter. 
While the proposed method with fast lifting wavelet 
thresholding based on local variance and edge analysis is 
computationally efficient and achieves better denoising results 
than others. The method performs well both visually and in 
terms of MSE and PSNR for images contaminated by natural 
and artificial noise, and is suitable to be adapted for different 
class of images and type of noises. Although performed 
serially here, the computations can be massively parallelized. 
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(a)                                                                         (b) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c)                                                                          (d) 
 
 
Fig. 7 Denoising results: (A) Lena image with additive Gaussian noise (MSE=285.72) (B) Wiener filter denoising (MSE= 58.83) (C) Wavelet 

thresholding (MSE=54.39) (D) Wavelet thresholding by local variance and edge analysis (MSE=53.51) 
 
 
 
 
 
 
 
 
 
 
 
 
                                  (a)                                   (b)                                   (c)                                (d) 
 

Fig. 8 Detail zoom-in images corresponding to Fig. 7 
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TABLE I 
COMPARISON OF DENOISING RESULTS OF NOISY LENA IMAGE USING DIFFERENT METHODS 

      Noise 
Level 

15=σ       Noise 
Level 

40=σ  

Denoising Method      MSE    PSNR     MSE      PSNR 

Noisy Image    285.72    23.57   1425.23      16.59 

Wiener Filter    58.83    30.43   239.36      24.34 

Wavelet Thresholding    54.39    30.78   223.98      24.63 

Wavelet Thresholding by 
Local Analysis (32x32) 

   53.51    30.85   213.53      24.84 

Wavelet Thresholding by 
Local Analysis (64x64) 

   54.03    30.81   219.89      24.71 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           (a)                                   (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           (c)                                                                                    (d) 
 

Fig. 9 Denoising results: (a) Original image (b) Wiener filter denoising (c) Wavelet thresholding (d) Wavelet thresholding by local variance 
and edge analysis 
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V. CONCLUSION 
    A fast lifting wavelet thresholding based on local variance 
analysis and edge strength measurement was developed for 
image noise reduction. Fast lifting wavelet transform for 
image spatial-frequency decomposition and reconstruction has 
the advantages of being computationally efficient with 
boundary effects minimized. The locally adaptive wavelet 
thresholding scheme is employed to smooth image noise, 

while still preserve the sharp edges. Experimental results 
demonstrate that the method performs well both visually and 
in terms of mean squared error for images contaminated by 
natural and artificial noise, and is suitable to be adapted for 
different class of images and type of noises. The proposed 
algorithm provides a potential solution with parallel 
computation for real time or embedded system application. 

 

 

 

 

 

 

 

 

(a)                                                                                                         (b) 

 

 

 

 

 

 

 

 

(c)                                                                                                   (d) 

 

Fig. 10 Denoising results: (a) Original image (b) Wiener filter denoising (c) Wavelet thresholding (d) Wavelet thresholding by 
local variance and edge analysis 
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                                                                        (a)                                (b) 

 

 

 

 

 

 

 

 

(c)                                                                                                     (d) 

 
Fig. 11 Denoising results: (a) Original image (b) Wiener filter denoising (c) Wavelet thresholding (d) Wavelet thresholding by local variance 

and edge analysis 
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