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Abstract—In this work, we present a comparison between two 

techniques of image compression. In the first case, the image is 
divided in blocks which are collected according to zig-zag scan. In 
the second one, we apply the Fast Cosine Transform to the image, 
and then the transformed image is divided in blocks which are 
collected according to zig-zag scan too. Later, in both cases, the 
Karhunen-Loève transform is applied to mentioned blocks. On the 
other hand, we present three new metrics based on eigenvalues for a 
better comparative evaluation of the techniques. Simulations show 
that the combined version is the best, with minor Mean Absolute 
Error (MAE) and Mean Squared Error (MSE), higher Peak Signal to 
Noise Ratio (PSNR) and better image quality. Finally, new technique 
was far superior to JPEG and JPEG2000. 
 

Keywords—Fast Cosine Transform, image compression, JPEG, 
JPEG2000, Karhunen-Loève Transform, zig-zag scan. 

I. INTRODUCTION 
ODERN image compression techniques often involve 
Dis- crete Cosine Transform (DCT) [1-26] with 

different Fast Cosine Transform (FCT) versions for a fast 
implementation [6,10,11,12,14,16,17] and Karhunen-Loève 
Transform (KLT) [27-29]. While DCT is applied to image 
compression [1,2,4,6, 8-12,16,17,19-21], KLT is applied in 
image decorrelation [30-34], that is to say, KLT is used inside 
compression techniques of several images with a high degree 
of mutual correlation, for example, frames of medical images 
[35], video [36, 37], and multi [30, 32-34] and hyperspectral 
imagery [38-40]. 

Many efforts have been made in the recent years in order to 
compress efficiently such data sets. The challenge is to have a 
data representation which takes into account at the same time 
both the advantages and disadvantages of KLT [29], for a 
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most efficient compression based on an optimal decorrelation. 
Several authors have tried to combine the DCT with the 

KLT but with questionable success [1], with particular interest 
to  multispectral imagery [30, 32, 34]. 

In all cases, the KLT is used to decorrelate in the spectral 
domain. All images are first decomposed into blocks, and each 
block uses its own KLT instead of one single matrix for the 
whole image. In this paper, we use the KLT for a 
decorrelation between sub-blocks resulting of the applications 
of a DCT with zig-zag scan, that is to say, in the spectral 
domain. 

We introduce in this paper an appropriate sequence, 
decorrelating first the data in the spatial domain using the 
DCT and afterwards in spectral domain, using the KLT, 
allows us a more efficient (and robust, in presence of noise) 
compression scheme. 

The resulting compression scheme is a lossy image 
compression. This type of compression system does not retain 
the exact image pixel to pixel. Instead it takes advantage of 
limitations in the human eye to approximate the image so that 
it is visually the same as the original. These methods can 
achieve vastly superior compression rates than lossless 
methods, but they must be used sensibly [41]. 

Lossy compression techniques generally only work well 
with real-life photography; they often give disastrous results 
with other types of images such as line art, or text. Putting an 
image through several compression-decompression cycles will 
cause the image to deteriorate beyond acceptable standards. 
So a lossy compression should only be used after all 
processing has been done, it should not be used as an 
intermediate storage format. Further note that while the 
reconstructed image looks the same as the original, this is 
according to the human eye. If a computer has to process the 
image in a recognition system, it may be completely thrown 
off by the changes [41]. 

On the other hands, consider the generic transform coder in 
Fig.1 consisting of a 2-D transform, quantizer, and entropy 
coder. We see here that loss occurs during quantization and 
after the transform. Therefore, in order to conduct our 
analysis, 
we must repeat the transform to return to the stage where loss 
occurs and examine the effect of quantization on transform 
coefficients [42]. 
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In this work, additional losses are incorporated, because, 
after of KLT applications a pruning of decorrelated sub-
blocks is applied before the quantization, with a statistical 
criterion [28]. 

 
 

Fig. 1 Generic transform coding for digital images 
 

The Bidimensional Discrete Cosine Transform and its fast 
implementation are outlined in Section II. Zig-zag scan is 
outlined in Section III. KLT is outlined in Section IV. 
Combinations are outline in Section V. In Section VI, we 
discuss briefly the more appropriate metrics for compression. 
In Section VII, the experimental results using the proposed 
algorithm are presented. Finally, Section VIII provides a 
conclusion of the paper.  

II. BIDIMENSIONAL DISCRETE COSINE TRANSFORM 
The Bidimensional Discrete Cosine Transform (DCT-2D) 

[1,2,4,6,8-12,16,17,19-21], demostrated its superiority in front 
of Discrete Wavelet Transform to work in combination with 
the KLT in decorrelation and compression processes [43]. 
However, for all practical cases, it is necessary a fast imple-
mentation of the same [6,10,11,12,14,16,17]. 

Since the 2-D DCT (typically 4 x 4, 8 x 8 and 16 x 16) is 
the standard decorrelation transform in the international 

image/video coding standards [44] it is not suprising that 
research efforts have been concentrated to develop algorithms 
for the efficient computation of 2-D DCT only. The orthonor-
mal 2-D DCT for an N x N input data matrix {xnm}, m, n = 0, 
1, …, N-1 is defined by the following relation [44]: 
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and the inverse 2-D DCT, as 
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Where, the signal flow graph for the forward 4x4 DCT 

computation, can be see on Fig.2. 
 

 
Fig. 2: The signal flow graph for the forward 4x4 DCT computation. 

 
 

    The fast algorithms for the direct 8×8 DCT computation 
[44] are derived using an algebraic and computational theore-
tical approach. First, a matrix factorization of DCT transform 
matrix (1) is converted (with additions and permutations) to a 
direct sum of matrices corresponding to certain polynomial 
products modulo irreducible polynomials. Then, these cons-
tructions using theorems regarding the structure of Kronecker 
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products of Matrices are exploited to derive efficient 8×8 DCT 
algorithms. Although a practical fast Algorithm for the 8×8 
DCT computation requires 94 multiplications and 454 addi-
tions, Its computational structure is rather complicated. 

III. ZIG-ZAG SCAN 
Fig.3 shows the zig-zag spatial scanning method [2], which 

is fundamental for JPEG compression algorithm [2].  
 

 
Fig. 3: Zig-zag space scanning method order. 

 
 

In Fig.3 each numbering cell represent a sub-block (inside 
spectral domain) which may be spatially ordered (in upward 
order) in a three dimensional matrix before KLT, see Fig.4. 

 

 
Fig. 4: Building of 3D-matrix with sub-blocks in upward order 

 
As can be seen from Fig.3, pixels, which have to be treated 

or not with a DCT, are concentrated in blocks. Block clusters 
of 2×2, 4×4, 8×8 … pixels, can be easily extracted, since 
pixels in these blocks are transmitted one after another (zig-
zag ordering, the same ordering employed in JPEG image 
compression format [2]). This feature can be handy for spatial 
image processing, such as resolution reduction. In order to 
reduce image resolution by a factor of two, the mean of four 
pixels (a 2×2 block) has to be calculated. With this ordering 
(zig-zag), it can be done in a simple, straightforward way, 
without requiring multiple storage elements. This calculation 
can be expanded to blocks of sizes 4×4, 8×8 etc. 

IV. KARHUNEN-LOEVE TRANSFORM (KLT) 
The KLT begin with the covariance matrix of the vectors x 

generated between values of pixel with similar allocation in all 
arranged sub-blocks of 3D-matrix, as show in Fig.5. 

 
 

Fig. 5: Formation of a vector from corresponding pixels in six      
sub-blocks 

 
The covariance matrix results, 
 
Cx = E{(x-mx)(x-mx)T}                                                      (4) 
 
with: 
x = (x1, x2, …. , xn) T, where x is one of the correlated  
         original vector set , “T” indicates transpose and  
         n is the number of sub-blocks. 
mx = E{x} is the mean vector, and where E{•} is the  
         expected value of the argument, and the subscript  
         denotes that m is associated with the population of x  
         vectors.   
 
In the appropriate mathematical form: 
 

∑
=

=
csbrsb

k
kcsbrsbx xm

*

1
*
1                                                        (5) 

 
where: 
rsb is the sub-block row number  
csb is the sub-block column number  
 
On the other hands, 
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Therefore, KLT will be, 
 

y=VT(x-mx)                                                                     (7) 
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with: 

y = (y1, y 2, …. , y n) T, where y is one of the decorrelated  
       transformed vector set 
V is a matrix whose columns are the eigenvectors of Cx . 
 
When applying the calculus of eigenvectors, two matrices 

arise, V y Cy , being Cy a diagonal matrix, where the elements 
on its main diagonal are de eigenvalues of Cx . 

 
If we wish to calculate the covariance matrix of vectors y, 

results 
Cy = E{(y-my)(y-my)T} = E{yyT}                                    (8) 

 
Because, my is a null vector. Besides, Cy is a diagonal 

matrix. Depending on the correlation degree between the 
original sub-blocks, KLT will be more or less efficient 
decorrelating them. Such efficiency depends on how the 
elements of the main diagonal of the covariance matrix Cy fall 
in value, from right to left. The faster they fall in value, the 
KLT will be more efficient decorrelating them. As an 
example, based on Fig.6, which represents to Lena of 512-by-
512 pixels, and if we work with sub-blocks of 64-by-64 
pixels, as we must see in Fig.7, we obtain the eigenvalues of 
Fig.8. However, if by a determined method we are starting 
from a set of sub-blocks as those shown in Fig.9, then we will 
obtain the eigenvalues of Fig.10. The second case is highly 
more efficient than the first one. 

 

 
 

Fig. 6: Lena of 512-by-512 pixels, with 8 bits-per-pixel (bpp) 
 
 

The Fig.9-10 represents a set of sub-blocks much more 
efficient than Fig.7-8, because, the sub-blocks of the Fig.7-8 
are more correlated morphologically. In Fig.7 is evident than 
each sub-block represent a little version of Lena. In Fig.10 the 
first 2 sub-blocks account for about 95% of the total variance, 
while in Fig.8 the first 46 sub-blocks account for about 95% 
of the total variance. Therefore, Fig.7 is a inefficient set, while 
Fig.9 is highly efficient. This is the reason that makes the KLT 

as efficient in multi and hyperspectral imagery and very ineffi-
cient in images alone (monoframe) [21,27-34,38-40,43]. 

Fig.8 and Fig.10 represents the respective normalized 
eigen-values spectrum, i.e., divided by the first eigenvalue 
(largest). 

 
 

 
 

Fig. 7: Original set of sub-blocks of 64-by-64 pixels 
 
 

 
Fig. 8: Eigenvalues spectrum of Fig. 6 
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Fig. 9: Efficient set of sub-blocks of 64-by-64 pixels 

 
 

Fig. 10: Eigenvalues spectrum of  Fig. 8. 
 
 

A method prior to KLT (for monoframe images) which 
resulted in a high correlation of sub-blocks to make the KLT 
more efficient and will be very welcome. 

 
On the other hands, the inverse KLT will be, 

 
x = V y + mx                                                                      (9) 

 
A complete lossy image compression algorithm based on 

KLT may be: 
 
CODEC: 
1. Image sub-blocking with zig-zag scan and construction  
    of three dimensional matrix. 
2. KLT to resulting sub-blocks 
3. Pruning of sub-blocks based on percentage of resulting  
    covariance matrix 
4. Quantization 
5. Entropy encoding 

 
To channel or storage 
 
DECODEC: 
6. Entropy decoding 
7. Zero-padding: Complete with zeros the sub-blocks  
    pruned 
8. Inverse KLT 
9. Reconstruction of bidimensional matrix from the new  
    sub-blocks set with inverse of zig-zag scan and image  
    reassembling. 

V. COMBINATIONS 
Based on the last section, the proposed solution to achieve 

the goal is as follows: 
 
CODEC 
1. FCT-2D to image 
2. Image sub-blocking with zig-zag scan and construc- 
    tion of three dimensional matrix 
3. Construction of three dimensional matrix 
4. KLT 
5. Pruning 
6. Quantization 
7. Entropy encoding 
 
To channel or storage 
 
DECODEC 
6. Entropy decoding 
7. Zero-padding: Complete with zeros the sub-blocks  
    pruned 
8. Inverse KLT 
9. Reconstruction of bidimensional matrix from the  
    new sub-blocks set with inverse of zig-zag scan and  
    image reassembling 
10. Inverse of FCT-2D 

VI. METRICS 

A. Data Compression Ratio (CR) 
    Data compression ratio, also known as compression power, 
is a computer-science term used to quantify the reduction in 
data-representation size produced by a data compression 
algorithm. The data compression ratio is analogous to the 
physical compression ratio used to measure physical 
compression of substances, and is defined in the same way, as 
the ratio between the uncompressed size and the compressed 
size [20]: 
 

SizeCompressed
SizeedUncompress

CR =                                                 (10) 

 
Thus a representation that compresses a 10MB file to 2MB 

has a compression ratio of 10/2 = 5, often notated as an 
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explicit ratio, 5:1 (read "five to one"), or as an implicit ratio, 
5X. Note that this formulation applies equally for compres-
sion, where the uncompressed size is that of the original; and 
for decompression, where the uncompressed size is that of the 
reproduction. 

B. Bit-per-pixel (bpp) 
    The "bits per pixel" refers to the sum of the bits in all three 
color channels and represents the sum colors available at each 
pixel before compression (

bc
bpp ). However, as a compres-

sion metric, the bits-per-pixel refers to the average of the bits 
in all three color channels, after of compression process 
(

ac
bpp ). 

CR
bcbpp

bc
bpp

SizeedUncompress
SizeCompressed

ac
bpp =×=                (11) 

 
Besides, bpp is also defined as 

pixelsofNumber
bitscodedofNumber

ac
bpp =                                        (12) 

 

C. Mean Absolute Error (MAE) 
    The mean absolute error is a quantity used to measure how 
close forecasts or predictions are to the eventual outcomes. 
The mean absolute error (MAE) is given by 
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which for two NR×NC (rows-by-columns) monochrome ima-
ges I and Id , where the second one of the images is consi-
dered a decompressed approximation of the other of the first 
one. 
 

D. Mean Squared Error (MSE) 
    The mean square error or MSE in Image Compression is 
one of many ways to quantify the difference between an 
original image and the true value of the quantity being 
decompressed image, which for two NR×NC (rows-by-
columns) monochrome images I and Id , where the second one 
of the images is considered a decompressed approxi-mation of 
the other is defined as: 
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E. Peak Signal-To-Noise Ratio (PSNR) 
    The phrase peak signal-to-noise ratio, often abbreviated 

PSNR, is an engineering term for the ratio between the 
maximum possible power of a signal and the power of 
corrupting noise that affects the fidelity of its representation. 

Because many signals have a very wide dynamic range, PSNR 
is usually expressed in terms of the logarithmic decibel scale. 
The PSNR is most commonly used as a measure of quality of 
reconstruction in image compression, etc [20]. It is most easily 
defined via the mean squared error (MSE), so, the PSNR is 
defined as [20]: 

 

)(
10

log20)
2

(
10

log10
MSE

IMAX

MSE
IMAX

PSNR ==              (15) 

 
Here, MAXI is the maximum pixel value of the image. 

When the pixels are represented using 8 bits per sample, this 
is 256. More generally, when samples are represented using 
linear pulse code modulation (PCM) with B bits per sample, 
maximum possible value of MAXI is 2B-1. 
 

For color images with three red-green-blue (RGB) values 
per pixel, the definition of PSNR is the same except the MSE 
is the sum over all squared value differences divided by image 
size and by three [20]. 
 

Typical values for the PSNR in lossy image and video 
compression are between 30 and 50 dB, where higher is 
better. 

 

F. First Gap Percent (FGP) [45] 
    This metric is defined as: 
 

%1001 ×⎟
⎠
⎞

⎜
⎝
⎛ −= λ

λFGP                                             (16) 

 
where 2λ is the second eigenvalue, and 1λ is the first eigen-
value. Since the spectrum of eigenvalues is monotonically 
decreasing, if the difference between 1λ and 2λ is large, this 
percentual difference should be high, as is the case of  Fig.8, 
and corresponds to Fig.10, where the first normalized 
eigenvalue is 1, while the second coincides with the axis of 
abscissae. While in the case of Fig.7, to be different mosaics, 
this gap is percentual low, so 2λ is near 1λ as shown in Fig.9. 
The same figure shows that a large number of eigenvalues 
have values significantly above zero, which we do not allow 
efficient compression by pruning, if we get rid of the mosaics 
that contribute less to the final image at the time of recons-
truction [45]. 
 

G. First vs Rest Percent (FRP) [45] 
This metric is defined as: 
 

%1001 ×⎟
⎠
⎞⎜

⎝
⎛ −

−= λ
λλFRP                                      (17) 
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and gives us the notion of 1λ about the difference between 

2λ and Nλ . This metric will be critical to assessing the 
compression ratio in terms of percentage of pruning the least 
significant eigenvalues. 
 

H. First Percent (FP) [45] 
This last metric is defined as: 
 

%100

1

×=
∑

=

N

i
i

FP
λ

λ
                                                      (18) 

 
and gives us the notion of the weight of the 1λ for the entire 
spectrum. It will be particularly useful in assessing extreme 
compression rates [45]. 
 
      However, the underlying question is: can achieve and 
artificial state where the last three metrics have values close to 
100%? 

VII. COMPUTERS SIMULATIONS 
The simulations are organized in two sets of experiments: 

 
Experiment 1: KLT vs FCT+KLT 

 This experiment includes calculations of following metrics: 
1. Based on image reconstruction 

1.1. MAE 
1.2. MSE 
1.3. PSNR 

2. Based on compression performance 
2.1. CR 
2.2. bpp 
2.3. Elapsed time (etime) 

3. Based on spectrum of eigenvalues 
3.1. FGP 
3.2. FRP 
3.3. FP 

 
Main characteristics: 

1. Image = Lena 
2. Color = gray 
3. Size = 512-by-512 pixels 
4. Bits-per-pixel = 8 
5. Maximum compression rate = 4:1 
6. Sub-blocks size = 64-by-64 pixels  
                               
Experiment 2: FCT+KLT vs JPEG vs JPEG2000 

 This experiment includes calculations of following metrics: 
1. Based on image reconstruction 

1.1. MAE 
1.2. MSE 
1.3. PSNR 

2. Based on compression performance 
2.1. CR 
2.2. bpp 

 
Main characteristics: 

1. Image = Lena 
2. Color = gray 
3. Size = 512-by-512 pixels 
4. Bits-per-pixel = 8 
5. Maximum compression rate = 10:1 
6. Sub-blocks size = 32-by-32 pixels for FCT+KLT 
                              = 8-by-8 pixels for JPEG and JPEG2000 

 
Experiment 1: KLT vs FCT+KLT 

Based on Fig. 6, which represents to Lena of 512-by-512 pixels, 
with 8 bits-per-pixel (bpp), Table I shows metrics vs KLT (alone) 
and combinations of FCT plus KLT. 

With identical CR (3.9990) and bpp (2.0005) the rest of 
metrics shows a great superiority of FCT+KLT in front of 
KLT alone. In facts, all metrics based on spectrum of eigenva-
lues demonstrated a marked improvement thanks to the 
presen-ce of FCT before KLT. Specifically, Fig.11 represents 
the reconstructed image using KLT alone, while Fig.12 
represents the reconstructed image employing FCT before 
KLT. Look at the block artifacts by not wearing FCT before 
KLT. 

 
TABLE I: METRICS VS KLT AND FCT+KLT 

Metric KLT FCT+KLT 
MAE 4.1733 1.1105 
MSE 39.5500 5.3119 
PSNR 32.1593 40.8783 

CR 3.9990 3.9990 
bpp 2.0005 2.0005 

etime (seg) 94.0702 93.7234 
FGP 68.7584 99.7167 
FRP 68.7854 99.7170 
FP 30.8915 99.2517 

 
 

 
Fig. 11: Reconstructed image using KLT alones. 
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Fig. 12: Reconstructed image using FCT+KLT. 

 
 
Fig.13 represents the error pixel-to-pixel for KLT alone. 

Look at the presence of red and blue pixels where the zero 
value is represented by green. Instead, Fig.14 shows similar 
values in all pixels, that is to say, green color (representing 
zero values). This is a clear comparative advantage the novel  
(FCT+KLT) over the version with KLT alone. This results 
were already known but with wavelets [43]. 

 
 

 
Fig. 13: Error pixel-to-pixel for KLT alone. 

 
 

 
Fig. 14: Error pixel-to-pixel for FCT+KLT. 

 
 

Experiment 2: FCT+KLT vs JPEG vs JPEG2000 
Based on Fig.6 too, Table II shows metrics vs JPEG, JPEG2000, 

and FCT plus KLT. 
 Though some metrics are better, we must remember that the 

JPEG and JPEG2000 wears blocks of 8x8 pixels, while, FCT 
plus KLT wears (in this case) blocks of 32x32. With smaller 
blocks, we get much higher metric JPEG and JPEG2000. 

 
 

TABLE II: METRICS VS FCT+KLT, JPEG AND JPEG2000 
Metric FCT+KLT JPEG JPEG2000 
MAE 0.7970 0.7510 0.8856 
MSE 2.3781 2.0604 2.8011 
PSNR 44.9242 44.9913 43.6576 

CR 10.6641 4.5453 10.0061 
bpp 0.7502 1.7600 0.7995 

 
     On the other hand, Fig.15 represents decompressed image 
using JPEG, Fig.16 represents decompressed image using 
JPEG2000, and Fig.17 represents reconstructed image using 
FCT+KLT. 
 

 
 

Fig. 15: Decompressed image using JPEG. 
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Fig. 16: Decompressed image using JPEG2000. 

 
 

 
Fig. 17: Reconstructed image using FCT+KLT. 

 
Fig. 18: Error pixel-to-pixel for JPEG. 

 
 

 
Fig. 19: Error pixel-to-pixel for JPEG2000. 

 
 

 
Fig. 20: Error pixel-to-pixel for FCT+KLT. 

 
   Figures 18, 19 and 20 represents error pixel-to-pixel for 
JPEG, JPEG2000, and FCT+KLT respectively. 

Finally, all techniques were implemented in MATLAB® 
(Mathworks, Natick, MA) [46] on a PC with an Intel® 
Core(TM) QUAD CPU Q6600 2.40 GHz processors and 4 
GB RAM. 

VIII. CONCLUSION 
Experiment 1: KLT vs FCT+KLT 

 In this experiment FCT+KLT is better than KLT alone. 
As shown in the Figure 11, although KLT is optimum, it is 

inefficient in the sub-blocks decorrelation, in the cases where 
such sub-blocks are morphologically differents. The experi-
mental evidence shows that previous FCT supplies KLT of the 
necessary morphological affinity, see Figure 12. 

As discussed earlier, the KLT is theoretically the optimum 
method to spectrally decorrelate a set of sub-blocks image. 
However, it is computationally expensive. Future research 
should be geared to the use of lower-cost computational 
appro-aches [43,45]. 
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Experiment 2: FCT+KLT vs JPEG vs JPEG2000 
  In this experiment, we have demonstrated than FCT+KLT 

have the same CR than JPEG2000 but with blocks of 32-by-
32 pixels vs JPEG2000 with blocks of 8-by-8 pixels. These, 
represents a faster encoding/decoding process and a smaller 
number of blocks to be manipulated. 

As seen in the Table II, FCT+KLT metrics are among the 
values of the metrics of JPEG and JPEG2000, with similar 
error pixel-to-pixel (see Figures 18, 19 and 20). 

Finally, the reconstructed images have a similar look-and-
feel in the three cases (see Figures 15, 16 and 17). 
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